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Abstract

The human vision system is able to effortlessly perceive both short-range and
long-range motion patterns in complex dynamic scenes. Previous work has as-
sumed that two different mechanisms are involved in processing these two types of
motion. In this paper, we propose a hierarchical model as a unified framework for
modeling both short-range and long-range motion perception. Our model consists
of two key components: a data likelihood that proposes multiple motion hypothe-
ses using nonlinear matching, and a hierarchical prior thatimposes slowness and
spatial smoothness constraints on the motion field at multiple scales. We tested our
model on two types of stimuli, random dot kinematograms and multiple-aperture
stimuli, both commonly used in human vision research. We demonstrate that the
hierarchical model adequately accounts for human performance in psychophysical
experiments.

1 Introduction

We encounter complex dynamic scenes in everyday life. As illustrated by the motion sequence
depicted in Figure 1, humans readily perceive the baseball player’s body movements and the faster-
moving baseball simultaneously. However, from the computational perspective, this is not a trivial
problem to solve. The difficulty is due to the large speed difference between the two objects, i.e,
the displacement of the player’s body is much smaller than the displacement of the baseball be-
tween the two frames. Separate motion systems have been proposed to explain human perception in
scenarios like this example. In particular, Braddick [1] proposed that there is a short-range motion
system which is responsible for perceiving movements with relatively small displacements (e.g., the
player’s movement), and a long-range motion system which perceives motion with large displace-
ments (e.g., the flying baseball), which is sometimes calledapparent motion. Lu and Sperling [2]
have further argued for the existence of three motion systems in human vision. The first and second-
order systems conduct motion analysis on luminance and texture information respectively, while the
third-order system uses a feature-tracking strategy. In the baseball example, the first-order motion
system would be used to perceive the player’s movements, butthe third-order system would be re-
quired for perceiving the faster motion of the baseball. Short-range motion and first-order motion
appear to apply to the same class of phenomena, and can be modeled using computational theories
that are based on motion energy or related techniques. However, long-range motion and third-order
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Figure 1: Left panel: Short-range and long-range motion: two frames from a baseball sequence
where the ball moves with much faster speed than the other objects. Right panel: A graphical
illustration of our hierarchical model in one dimension. Each node represents motion at different
location and scales. A child node can have multiple parents,and the prior constraints on motion are
expressed by parent-child interactions.

motion employ qualitatively different computational strategies involving tracking features over time,
which may require attention-driven processes.

In contrast to these previous multi-system theories [2, 3],we develop a unified single-system frame-
work to account for these phenomena of human motion perception. We model motion estimation
as an inference problem which uses flexible prior assumptions about motion flows and statistical
models for quantifying the uncertainty in motion measurement. Our model differs from the tradi-
tional approaches in two aspects.First, the prior model is defined over a hierarchical graph, see
Figure 1, where the nodes of the graph represent the motion atdifferent scales. This hierarchical
structure is motivated by the human visual system that is organized hierarchically [8, 9, 4]. Such
a representation makes it possible to define motion priors and contextual effects at a range of dif-
ferent scales, and so differs from other models of motion perception based on motion priors [5, 6].
This model connects lower level nodes to multiple coarser-level nodes, resulting in a loopy graph
structure, which imposes a more flexible prior than tree-structured models (eg. [7]). We define a
probability distribution on this graph using potentials defined over the graph cliques to capture spa-
tial smoothness constraints [10] at different scales and slowness constraints [5, 11, 12, 13].Second,
our data likelihood terms allow a large space of possible motions, which include both short-range
and long-range motion. Locally, the motion is often highly ambiguous (e.g., the likelihood term
allows many possible motions) which is resolved in our modelby imposing the hierarchical motion
prior. Note that we do not coarsen the image and do not rely on coarse-to-fine processing [14].
Instead we use a bottom-up compositional/hierarchical approach where local hypotheses about the
motion are combined to form hypotheses for larger regions ofthe image. This enables us to deal
simultaneously with both long-range and short-range motion.

We tested our model using two types of stimuli commonly used in human vision research. The first
stimulus type are random dot kinematograms (RDKs), where some of the dots (the signal) move
coherently with large displacements, whereas other dots (the noise) move randomly. RDKs are one
of the most important stimuli used in both physiological andpsychophysical studies of motion per-
ception. For example, electrophysiological studies have used RDKs to analyze the neuronal basis of
motion perception, identifying a functional link between the activity of motion-selective neurons and
behavioral judgments of motion perception [15]. Psychophysical studies have used RDKs to mea-
sure the sensitivity of the human visual system for perceiving coherent motion, and also to infer how
motion information is integrated to perceive global motionunder different viewing conditions [16].
We used two-frame RDKs as an example of a long-range motion stimulus. The second stimulus type
are moving gratings or plaids. These stimuli have been used to study many perceptual phenomena.
For example, when randomly orientated lines or grating elements drift behind apertures, the per-
ceived direction of motion is heavily biased by the orientation of the lines/gratings, as well as by the
shape and contrast of the apertures [17, 18, 19]. Multiple-aperture stimuli have also recently been
used to study coherent motion perception with short-range motion stimulus [20, 21]. For both types
of stimuli we compared the model predictions with human performance across various experimental
conditions.
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2 Hierarchical Model for Motion Estimation

Our hierarchical model represents a motion field using a graph G = (V , E), which hasL + 1
hierarchical levels, i.e.,V = ν

0∪ ...∪ν
l ∪ ...∪ν

L. The levell has a set of nodesνl = {νl(i, j), i =
1 . . . , Ml, j = 1 . . . , Nl}, forming a 2D lattice indexed by(i, j). More specifically, we start from
the pixel lattice and construct the hierarchy as follows.

The nodes{ν0(i, j)} at the0th level correspond to the pixel position{x|x = (i, j)} of the image
lattice. We recursively add higher levels with nodesν

l (l = 1, ..., L). The levell lattice decreases
by a factor of2 along each coordinate direction from levell − 1. The edgesE of the graph connect
nodes at each level of the hierarchy to nodes in the neighboring levels. Specifically, edges connect
nodeνl(i, j) at levell to a set of child nodesChl(i, j) = {νl−1(i′, j′)} at levell − 1 satisfying
2i−d ≤ i′ ≤ 2i+d, 2j−d ≤ j′ ≤ 2j+d. Hered is a parameter controlling how many neighboring
nodes in a level share child nodes. Figure 1 illustrates the graph structure of this hierarchical model
in the 1-D case and withd = 2. Note that our graphG contains closed loops due to sharing of child
nodes.

To apply the model to motion estimation, we define state variableu
l(i, j) at each node to represent

the motion, and connect the0th level nodes to two consecutive image frames,D = (It(x), It+1(x)).
The problem of motion estimation is to estimate the 2D motionfield u(x) at timet for every pixel
site x from input D. For simplicity, we useul

i to denote the motion instead oful(i, j) in the
following sections.

2.1 Model formulation

We define a probability distribution over the motion fieldU = {ul
i}

L
l=0 andu

l = {ul
i}on the graph

G conditioned on the input image pairD:

P (U |D) =
1

Z
exp

(

−

[

Ed(D,u0) +

L−1
∑

l=0

El
u(ul,ul+1)

])

(1)

whereEd is the data term for the motion based on local image cues andEl
u are hierarchical priors

on the motion which impose slow and smoothness constraints at different levels. Energy terms
Ed, {E

l
u} are defined usingL1 norms to encourage robustness [22]. This robust norm helps deal

with the measurement noise that often occur at motion boundary and to prevent over-smoothing at
the higher levels. The details of two energy function terms are described as follows:

1) The Data TermEd

The data energy term is defined only at the bottom level of the hierarchy. It is specified in terms of
theL1 norm between local image intensity values from adjacent frames. More precisely:

Ed(D,u0) =
∑

i

(

||It(xi) − It+1(xi + u
0
i )||L1

+ α||u0
i ||L1

)

(2)

where the first term defines a difference measure between two measurements centered atxi in It

and centered atxi + u
0
i in It+1 respectively. We choose to use pixel values only here. The second

term imposes a slowness prior on the motion which is weightedby the coefficientα. Note that the
first term is a matching term that computes the similarity betweenIt(x) andIt+1(x + u) given any
displacementu. These similarity scores atx gives confidence for different local motion hypotheses:
higher similarity means the motion is more likely while lower means it is less likely.

2) The Hierarchical Prior {El
u}

We define a hierarchical prior on the slowness and spatial smoothness of motion fields. The first
term of this prior is expressed by energy terms between nodesat different levels of the hierarchy and
enforces a smoothness preference for their statesu – that the motion of a child node is similar to
the motion of its parent. We use the robustL1 norm in the energy terms so that the violation of that
consistency constraint will be penalized moderately. Thisimposes weak smoothness on the motion
field and allows abrupt change on motion boundaries. The second term is aL1 norm of motion
velocities that encourages the slowness.
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Figure 2: An illustration of our inference procedure. Left top panel: the original hierarchical graph
with loops. Left bottom panel: the bottom-up process proceeds on a tree graph with multiple copies
of nodes (connected by solid lines) which relaxes the problem. The top-down process enforces
the consistency constraints between copies of each node (denoted by dash line connection). Right
panel: An example of the inference procedure on two street scene frames. We show the estimates
from minimizingẼ(U) (bottom-up) andE(U) (top-down). The motions are color-coded and also
displayed by arrows.

To be specific, the energy functionEu(ul,ul+1) is defined to be:

El
u(ul,ul+1) = β(l)

∑

i∈νl+1





∑

j∈Chl+1(i)

||ul+1
i − u

l
j ||L1

+ γ||ul+1
i ||L1



 , (3)

whereβ(l) is the weight parameter for the energy terms at thelth level andγ controls the relative
weight of the slowness prior. Note that our hierarchical smoothness prior differs from conventional
smoothness constraints, e.g., [10], because they impose smoothness ’sideways’ between neighboring
pixels at the same resolution level, which requires that themotion is similar between neighboring
sites at the pixel level only. Imposing longer range interactions sideways becomes problematic as it
leads to Markov Random Field (MRF) models with a large numberof edges. This structure makes it
difficult to do inference using standard techniques like belief propagation and max-flow/min-cut. By
contrast, we impose smoothness by requiring that child nodes have similar motions to their parent
nodes. This ’hierarchical’ formulation enables us to impose smoothness interactions at different
hierarchy levels while inference can be done efficiently by exploiting the hierarchy.

2.2 Motion Estimation

We estimate the motion field by computing the most probable motion Û = argmaxU P (U |D),
whereP (U |D) was defined as a Gibbs distribution in equation (1). Performing inference on this
model is challenging since the energy is defined over a hierarchical graph structure with many closed
loops, the state variablesU are continuous-valued, and the energy function is non-convex.

Our strategy is to convert this into a discrete optimizationproblem by quantizing the motion state
space. For example, we estimate the motion at an integer-valued resolution if the accuracy is suffi-
cient for certain experimental settings. Given a discrete state space, our algorithm involves bottom-
up and top-down processing and is sketched in Figure 2. The algorithm is designed to be paralleliz-
able and to only require computations between neighboring nodes. This is desirable for biological
plausibility but also has the practical advantage that we can implement the algorithm using GPU
type architectures which enables fast convergence. We describe our inference algorithm in detail as
follows.

i) Bottom-up Pass. We first approximate the hierarchial graph with a tree-structured model by
making multiple copies of child nodes such that each child node has a single parent (see [23]). This
enables us to perform exact inference on the relaxed model using dynamic programming. More
specifically, we compute an approximate energy functionẼ(U) recursively by exploiting the tree
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structure:
Ẽ(ul+1

i ) =
∑

j∈Chl+1(i)

min
u

l
j

[El
u(ul+1

i ,ul
j) + Ẽ(ul

j)]

whereẼ(u0
j ) at the bottom level is the data energyEd(u

0
j ; D). At the top levelL we compute the

states(ûL
i ) which minimizeẼ(uL

i ).

ii) Top-down Pass. Given the top-level motion(ûL
i ), we then compute the optimal motion con-

figuration for other levels using the following top-down procedure. The top-down pass enforces
the consistency constraints, relaxed earlier on the recursively-computed energy functioñE, so that
all copies of each node have the same optimal state. We minimize the following energy function
recursively for each node:

û
l
j = arg min

u
l
j

[
∑

i∈Pal(j)

El
u(ûl+1

i ;ul
j) + Ẽ(ul

j)]

wherePal(j) is the set of parents of level-l nodej. In the top-down pass, the spatial smoothness is
imposed to the motion estimates at higher levels which provide context information to disambiguate
the motion estimated at lower levels.

The intuition for this two-pass inference algorithm is thatthe motion estimates of the lower level
nodes are typically more ambiguous than the motion estimates of the higher level nodes because the
higher levels are able to integrate information from largernumber of nodes at lower levels (although
some information is lost due to the coarse representation ofmotion field). Hence the estimates
from the higher-level nodes are usually less noisy and can beused to give “context” to resolve the
ambiguities of the lower level nodes. From another perspective, this can be thought of as a message-
passing type algorithm which uses a specific scheduling scheme [24].

3 Experiments with random dot kinematograms

3.1 The stimuli and simulation procedures

Random dot kinematogram (RDK) stimuli consist of two image frames withN dots in each frame
[1, 16, 6]. As shown in figure (3), the dots in the first frame arelocated at random positions. A pro-
portionCN of dots (the signal dots) are moved coherently to the second frame with a translational
motion. The remaining(1−C)N dots (the noise dots) are moved to random positions in the second
frame. The displacement of signal dots are large between thetwo frames. As a result, the two-frame
RDK stimuli are typically considered as an example of long-range motion. The difficulty of per-
ceiving coherent motion in RDK stimuli is due to the large correspondence uncertainty introduced
by the noise dots as shown in rightmost panel in figure (3).

Figure 3: The left three panels show coherent stimuli withN = 20, C = 0.1, N = 20, C =
0.5 andN = 20, C = 1.0 respectively. The closed and open circles denote dots in thefirst and
second frame respectively. The arrows show the motion of those dots which are moving coherently.
Correspondence noise is illustrated by the rightmost panelshowing that a dot in the first frame has
many candidate matches in the second frame.

Barlow and Tripathy [16] used RDK stimuli to investigate howdot density can affect human perfor-
mance in a global motion discrimination task. They found that human performance (measured by
the coherence threshold) vary little with dot density. We tested our model on the same task to judge
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Figure 4: Estimated motion fields for random dot kinematograms. First row: 50 dots in the
RDK stimulus; Second row: 100 dots in the RDK stimulus; Column-wise, coherence ratioC =
0.0, 0.3, 0.6, 0.9, respectively. The arrows indicate the motion estimated for each dot.

the global motion direction using RDK motion stimulus as theinput image. We applied our model
to estimate motion fields and used the average velocity to indicate the global motion direction (to
the left or to the right). We ran 500 trials for each coherenceratio condition. The dot number varies
with N = 40, 80, 100, 200, 400, 800 respectively, corresponding to a wide range of dot densities.
The model performance was computed for each coherence ratioto fit psychometric functions and to
find the coherence threshold at which model performance can reach 75% accuracy.

3.2 The Results

Figure (4) shows examples of the estimated motion field for various values of dot numberN and
coherence ratioC. The model outputs provide visually coherent motion estimates when the coher-
ence ratio was greater than 0.3, which is consistent with human perception. With the increase of
coherence ratio, the estimated motion flow appears to be morecoherent.

To further compare with human performance [16], we examinedwhether model performance can be
affected by dot density in the RDK display. The right plot in figure (5) shows the model performance
as a function of the coherence ratio. The coherence threshold, using the criterion of 75% accuracy,
showed that model performance varied little with the increase of dot density, which is consistent
with human performance reported in psychophysical experiments [16, 6].

4 Experiments with multi-aperture stimuli

4.1 The two types of stimulus

The multiple-aperture stimulus consisted of a dense set of spatially isolated elements. Two types of
elements were used in our simulations: (i) drifting sine-wave gratings with random orientation, and
(ii) plaids which includes two gratings with orthogonal orientations. Each element was displayed
through a stationary Gaussian window. Figure (6) shows examples of these two types of stimuli.

The grating elements are of formPi(~x, t) = G(~x − ~xi, Σ)F (~x − ~xi − ~vit) where~xi denotes the
center of the element, andF (.) represents a grating ,F (x, y) = sin(fx sin(θi)+fy cos(θi)), where
f is the fixed spatial frequency andθi is the orientation of the grating.

The grating stimulus isI(~x, t) =
∑N

i=1 Pi(~x, t), whereN is the number of elements (which is kept
constant). For theCN signal gratings, the motion~vi was set to a fixed value~v. For the(1 − C)N
noise gratings, we set|~vi| = |~v| and the direction of~vi was sampled from a uniform distribution.
The grating orientation anglesθi were sampled from a uniform distribution also.
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Figure 5: Left panel: Figure 2 in [16] showing that the coherence ratio threshold varies very little
with dot density. Right panel: Simulations of our model showa similar trend.N =40, 80, 100, 200,
400 and 800.

Figure 6: Multi-aperture gratings and plaids. Left column:sample stimuli. Right column: stimuli
with the local drifting velocity of each element indicated by arrows. The stimulus details are shown
in the magnified windows at the upper right corner of each image.

The plaid elements combine two gratings with orthogonal orientations (each grating has the same
speed but can have a different motion direction). This leadsto plaid elementQi(~x, t) = G(~x −
~xi, Σ){F1(~x − ~xi − ~vi,1t) + F2(~x − ~xi − ~vi,2t), whereF1(x, y) = sin(fx sin θi + fy cos θi) and
F2(x, y) = sin(−fx cos θi + fy sin θi).

The plaid stimulus isI(~x, t) =
∑N

i=1 Qi(~x, t). For theCN signal plaids, the motions~vi,1, ~vi,2 were
set to a fixed~v. For the(1 − C)N noise plaids, the directions of~vi,1, ~vi,2 were randomly assigned,
but their magnitude|~v| was fixed.
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Figure 7: Left two panels: Estimated motion fields of gratingand plaids stimuli. Rightmost panel:
Psychometric functions of gratings and plaids stimuli.

4.2 Simulation procedures and results

The left two panels in Figure (7) show the estimated motion fields for the two types of stimulus we
studied with the same coherence ratios 0.7. Plaids stimuli produce more coherent estimated motion
field than grating stimuli, which is understandable. because they have less ambiguous local motion
cues.

We tested our model in an 8-direction discrimination task for estimating global motion direction
[20]. The model used raw images frames as the input. We ran 300trials for each stimulus type, and
used the direction of the average motion to predict the global motion direction. The prediction accu-
racy – i.e. the number of times our model predicted the correct motion direction from 8 alternatives
– was calculated at different coherence ratio levels. This difference between gratings and plaids is
shown in the rightmost panel of Figure (7), where the psychometric function of plaids stimuli is
always above that of grating stimuli, indicating better performance. These simulation results of our
model are consistent with the psychophysics experiments in[20].

5 Discussion

In this paper, we proposed a unified single-system frameworkthat is capable of dealing with both
short-range and long-range motion. It differs from traditional motion energy models because it does
not use spatiotemporal filtering. Note that it was shown in [6] that motion energy models are not
well suited to the long-range motion stimuli studied in thispaper. The local ambiguities of motion
are resolved by a novel hierarchical prior which combines slowness and smoothness at a range of
different scales. Our model accounts well for human perception of both short-range and long-range
motion using the two standard stimulus types (RDKs and gratings).

The hierarchical structure of our model is partly motivatedby known properties of cortical organi-
zation. It also has the computational motivation of being able to represent prior knowledge about
motion at different scales and to allow efficient computation.
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