A unified model of short-range and long-range
motion perception

Shuang Wu Xuming He Hongjing Lu
Department of Statistics Department of Statistics  Department of Psychology
UCLA UCLA UCLA
Los Angeles, CA 90095 Los Angeles , CA 90095 Los Angeles , CA 90095

shuangw@t at . ucl a. edu hexm@t at . ucl a. edu hongj i ng@icl a. edu

Alan Yuille
Department of Statistics, Psychology, and Computer Seienc
UCLA
Los Angeles, CA 90095
yui |l e@t at . ucl a. edu

Abstract

The human vision system is able to effortlessly perceivé lsbtort-range and
long-range motion patterns in complex dynamic scenes. i®rswork has as-
sumed that two different mechanisms are involved in prangsbese two types of
motion. In this paper, we propose a hierarchical model asfeedriramework for
modeling both short-range and long-range motion percep@ur model consists
of two key components: a data likelihood that proposes pieltinotion hypothe-
ses using nonlinear matching, and a hierarchical priorithpbses slowness and
spatial smoothness constraints on the motion field at niekigales. We tested our
model on two types of stimuli, random dot kinematograms anttiple-aperture
stimuli, both commonly used in human vision research. Weatestrate that the
hierarchical model adequately accounts for human perfocaen psychophysical
experiments.

1 Introduction

We encounter complex dynamic scenes in everyday life. Astilhited by the motion sequence
depicted in Figure 1, humans readily perceive the baselzgleps body movements and the faster-
moving baseball simultaneously. However, from the comjpartal perspective, this is not a trivial
problem to solve. The difficulty is due to the large speededéhce between the two objects, i.e,
the displacement of the player’s body is much smaller thandibplacement of the baseball be-
tween the two frames. Separate motion systems have beeosga{o explain human perception in
scenarios like this example. In particular, Braddick [1$posed that there is a short-range motion
system which is responsible for perceiving movements vatétively small displacements (e.g., the
player's movement), and a long-range motion system whicbgdges motion with large displace-
ments (e.g., the flying baseball), which is sometimes callgghrent motion. Lu and Sperling [2]
have further argued for the existence of three motion systamuman vision. The first and second-
order systems conduct motion analysis on luminance andreitformation respectively, while the
third-order system uses a feature-tracking strategy. drbtiseball example, the first-order motion
system would be used to perceive the player's movementshéuhird-order system would be re-
quired for perceiving the faster motion of the baseball. rErenge motion and first-order motion
appear to apply to the same class of phenomena, and can béeshading computational theories
that are based on motion energy or related techniques. Howleng-range motion and third-order
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Figure 1: Left panel: Short-range and long-range motioro frmmes from a baseball sequence
where the ball moves with much faster speed than the othecthj Right panel: A graphical
illustration of our hierarchical model in one dimension.cBanode represents motion at different
location and scales. A child node can have multiple parantsthe prior constraints on motion are
expressed by parent-child interactions.

motion employ qualitatively different computational $&gies involving tracking features over time,
which may require attention-driven processes.

In contrast to these previous multi-system theories [2v8]develop a unified single-system frame-
work to account for these phenomena of human motion pemepiVe model motion estimation
as an inference problem which uses flexible prior assumptatrout motion flows and statistical
models for quantifying the uncertainty in motion measurem®ur model differs from the tradi-
tional approaches in two aspectsirst, the prior model is defined over a hierarchical graph, see
Figure 1, where the nodes of the graph represent the motidiff@tent scales. This hierarchical
structure is motivated by the human visual system that iaregd hierarchically [8, 9, 4]. Such
a representation makes it possible to define motion pricdscantextual effects at a range of dif-
ferent scales, and so differs from other models of motiorgyaion based on motion priors [5, 6].
This model connects lower level nodes to multiple coareeellnodes, resulting in a loopy graph
structure, which imposes a more flexible prior than treeestred models (eg. [7]). We define a
probability distribution on this graph using potentialdided over the graph cliques to capture spa-
tial smoothness constraints [10] at different scales amdrgtss constraints [5, 11, 12, 18Jecond
our data likelihood terms allow a large space of possibleiane{ which include both short-range
and long-range motion. Locally, the motion is often highigldguous (e.g., the likelihood term
allows many possible motions) which is resolved in our mdyeimposing the hierarchical motion
prior. Note that we do not coarsen the image and do not relyoamse-to-fine processing [14].
Instead we use a bottom-up compositional/hierarchicalagh where local hypotheses about the
motion are combined to form hypotheses for larger regiorth@fimage. This enables us to deal
simultaneously with both long-range and short-range motio

We tested our model using two types of stimuli commonly useldliman vision research. The first
stimulus type are random dot kinematograms (RDKs), wheneesof the dots (the signal) move
coherently with large displacements, whereas other diagsnvise) move randomly. RDKs are one
of the most important stimuli used in both physiological asgichophysical studies of motion per-
ception. For example, electrophysiological studies haezllRDKs to analyze the neuronal basis of
motion perception, identifying a functional link betweée factivity of motion-selective neurons and
behavioral judgments of motion perception [15]. Psychaidaf studies have used RDKs to mea-
sure the sensitivity of the human visual system for perogigioherent motion, and also to infer how
motion information is integrated to perceive global motiorder different viewing conditions [16].
We used two-frame RDKs as an example of a long-range mofimukts. The second stimulus type
are moving gratings or plaids. These stimuli have been wsstlitly many perceptual phenomena.
For example, when randomly orientated lines or grating el@sdrift behind apertures, the per-
ceived direction of motion is heavily biased by the orieiotabf the lines/gratings, as well as by the
shape and contrast of the apertures [17, 18, 19]. Multipkrtare stimuli have also recently been
used to study coherent motion perception with short-ranggom stimulus [20, 21]. For both types
of stimuli we compared the model predictions with humanqenfance across various experimental
conditions.



2 Hierarchical Model for Motion Estimation

Our hierarchical model represents a motion field using algtap= (V,¢&), which hasL + 1
hierarchical levels, i.e}¥ = v°U...uv'U...UvE. The level has a set of nodeg = {v!(i, j),i =
1...,M;,5 =1...,N;}, forming a 2D lattice indexed by, j). More specifically, we start from
the pixel lattice and construct the hierarchy as follows.

The nodeg+°(i, j)} at the0*” level correspond to the pixel positiqa:|x = (i, j)} of the image
lattice. We recursively add higher levels with nodéql = 1, ..., L). The levell lattice decreases
by a factor of2 along each coordinate direction from level 1. The edge€ of the graph connect
nodes at each level of the hierarchy to nodes in the neigh@pteizels. Specifically, edges connect
nodev!(i, j) at levell to a set of child node§'h! (i, j) = {v'~1(i',5")} at levell — 1 satisfying
21—d < <2i+d,25—d < 7' < 2j+d. Hered is a parameter controlling how many neighboring
nodes in a level share child nodes. Figure 1 illustrates taptgstructure of this hierarchical model
in the 1-D case and witlhi = 2. Note that our grapty contains closed loops due to sharing of child
nodes.

To apply the model to motion estimation, we define state taeia’ (4, j) at each node to represent
the motion, and connect " level nodes to two consecutive image fram@sy (I, (), I;11(z)).
The problem of motion estimation is to estimate the 2D mofield u(x) at timet for every pixel
site z from input D. For simplicity, we useu! to denote the motion instead of (4, j) in the
following sections.

2.1 Model formulation

We define a probability distribution over the motion fiéld= {ul}~ ; andu’ = {ul}on the graph
G conditioned on the input image pdir:

PU|D) = %exp <—

L—1
Eq(D,u’) + ) El(u, ul“)D @)

=0

whereE, is the data term for the motion based on local image cuedznare hierarchical priors

on the motion which impose slow and smoothness constrairdéfarent levels. Energy terms
E4,{E!} are defined usind.; norms to encourage robustness [22]. This robust norm helak d
with the measurement noise that often occur at motion bayradad to prevent over-smoothing at
the higher levels. The details of two energy function ternescescribed as follows:

1) The Data Term Ejy

The data energy term is defined only at the bottom level of thealchy. It is specified in terms of
the L; norm between local image intensity values from adjacemés More precisely:

Eq(D,u’) = Z (I () = Tga (@i + )|z, + ol [uf|L,) @)

i

where the first term defines a difference measure between wesunements centeredaatin I;
and centered at; + u? in I, respectively. We choose to use pixel values only here. Tbense
term imposes a slowness prior on the motion which is weightethe coefficientv. Note that the
first term is a matching term that computes the similarityMaetn’, (x) and ;11 (z + u) given any
displacementi. These similarity scores atgives confidence for different local motion hypotheses:
higher similarity means the motion is more likely while laweeans it is less likely.

2) The Hierarchical Prior {E',}

We define a hierarchical prior on the slowness and spatiab#mess of motion fields. The first
term of this prior is expressed by energy terms between retdiferent levels of the hierarchy and
enforces a smoothness preference for their stateghat the motion of a child node is similar to
the motion of its parent. We use the robidistnorm in the energy terms so that the violation of that
consistency constraint will be penalized moderately. Thgoses weak smoothness on the motion
field and allows abrupt change on motion boundaries. Thenseterm is al.; horm of motion
velocities that encourages the slowness.



Figure 2: An illustration of our inference procedure. Lefptpanel: the original hierarchical graph

with loops. Left bottom panel: the bottom-up process prdsem a tree graph with multiple copies

of nodes (connected by solid lines) which relaxes the prabl&he top-down process enforces

the consistency constraints between copies of each nodetétkeby dash line connection). Right

panel: An example of the inference procedure on two stremiestrames. We show the estimates
from minimizing E(U) (bottom-up) and®(U) (top-down). The motions are color-coded and also
displayed by arrows.

To be specific, the energy functids, (u’, u' ) is defined to be:

Bl uh =p0) Y >t =, + Al | ©)

i€viy1 \JEChITL(4)

whereg(1) is the weight parameter for the energy terms at/thdevel andy controls the relative
weight of the slowness prior. Note that our hierarchical sthoess prior differs from conventional
smoothness constraints, e.g., [10], because they impasatBness 'sideways’ between neighboring
pixels at the same resolution level, which requires thaintlegion is similar between neighboring
sites at the pixel level only. Imposing longer range intéoans sideways becomes problematic as it
leads to Markov Random Field (MRF) models with a large nunatberdges. This structure makes it
difficult to do inference using standard techniques likedf@ropagation and max-flow/min-cut. By
contrast, we impose smoothness by requiring that child sibdge similar motions to their parent
nodes. This ’hierarchical’ formulation enables us to imgpemoothness interactions at different
hierarchy levels while inference can be done efficiently Xiyl@iting the hierarchy.

2.2 Motion Estimation

We estimate the motion field by computing the most probabléand/ = argmaxy P(U|D),
where P(U|D) was defined as a Gibbs distribution in equation (1). Perfognmference on this
model is challenging since the energy is defined over a hukieal graph structure with many closed
loops, the state variablésare continuous-valued, and the energy function is non-eanv

Our strategy is to convert this into a discrete optimizapooblem by quantizing the motion state
space. For example, we estimate the motion at an integeedaésolution if the accuracy is suffi-
cient for certain experimental settings. Given a discrettespace, our algorithm involves bottom-
up and top-down processing and is sketched in Figure 2. Quoeitim is designed to be paralleliz-
able and to only require computations between neighboraatgs. This is desirable for biological
plausibility but also has the practical advantage that weiogplement the algorithm using GPU
type architectures which enables fast convergence. Weildesaur inference algorithm in detail as
follows.

i) Bottom-up Pass. We first approximate the hierarchial graph with a tree-stmed model by
making multiple copies of child nodes such that each childenwas a single parent (see [23]). This
enables us to perform exact inference on the relaxed modgy dynamic programming. More
specifically, we compute an approximate energy funcfifiy’) recursively by exploiting the tree
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whereE(u‘;) at the bottom level is the data enerﬁy(ug; D). At the top levelL we compute the
stateg”) which minimizeE(uk).

ii) Top-down Pass. Given the top-level motiorii”), we then compute the optimal motion con-
figuration for other levels using the following top-down pedlure. The top-down pass enforces
the consistency constraints, relaxed earlier on the re®lyscomputed energy functioft, so that

all copies of each node have the same optimal state. We nziaithe following energy function
recursively for each node:

wherePdal(j) is the set of parents of levélrode;. In the top-down pass, the spatial smoothness is
imposed to the motion estimates at higher levels which pgegontext information to disambiguate
the motion estimated at lower levels.

The intuition for this two-pass inference algorithm is thia motion estimates of the lower level
nodes are typically more ambiguous than the motion estertthe higher level nodes because the
higher levels are able to integrate information from larg@mber of nodes at lower levels (although
some information is lost due to the coarse representatianaiion field). Hence the estimates
from the higher-level nodes are usually less noisy and camsbd to give “context” to resolve the
ambiguities of the lower level nodes. From another perggedhis can be thought of as a message-
passing type algorithm which uses a specific schedulingset24].

3 Experiments with random dot kinematograms

3.1 The stimuli and simulation procedures

Random dot kinematogram (RDK) stimuli consist of two imaggnfes withN dots in each frame
[1, 16, 6]. As shown in figure (3), the dots in the first framelaated at random positions. A pro-
portionC'N of dots (the signal dots) are moved coherently to the seaamdd with a translational
motion. The remainingl — C') N dots (the noise dots) are moved to random positions in trenskec
frame. The displacement of signal dots are large betweemth&ames. As a result, the two-frame
RDK stimuli are typically considered as an example of loagge motion. The difficulty of per-
ceiving coherent motion in RDK stimuli is due to the largerespondence uncertainty introduced
by the noise dots as shown in rightmost panel in figure (3).
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Figure 3: The left three panels show coherent stimuli with= 20,C = 0.1, N = 20,C =
0.5 and N = 20,C = 1.0 respectively. The closed and open circles denote dots ifirdteand
second frame respectively. The arrows show the motion aitldots which are moving coherently.
Correspondence noise is illustrated by the rightmost psimelving that a dot in the first frame has
many candidate matches in the second frame.

Barlow and Tripathy [16] used RDK stimuli to investigate hdet density can affect human perfor-
mance in a global motion discrimination task. They found thanan performance (measured by
the coherence threshold) vary little with dot density. Wadd our model on the same task to judge
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Figure 4: Estimated motion fields for random dot kinematowa First row: 50 dots in the
RDK stimulus; Second row: 100 dots in the RDK stimulus; Catuwise, coherence rati6' =
0.0,0.3,0.6,0.9, respectively. The arrows indicate the motion estimateeé#ézh dot.

the global motion direction using RDK motion stimulus as itigut image. We applied our model
to estimate motion fields and used the average velocity ticate the global motion direction (to
the left or to the right). We ran 500 trials for each coheremati® condition. The dot number varies
with N = 40, 80, 100, 200, 400, 800 respectively, corresponding to a wide range of dot dessitie
The model performance was computed for each coherenceadiigpsychometric functions and to
find the coherence threshold at which model performanceezchr75% accuracy.

3.2 The Results

Figure (4) shows examples of the estimated motion field foioua values of dot numbe¥ and
coherence rati@’. The model outputs provide visually coherent motion esmavhen the coher-
ence ratio was greater than 0.3, which is consistent withamuperception. With the increase of
coherence ratio, the estimated motion flow appears to be cobrerent.

To further compare with human performance [16], we examimieether model performance can be
affected by dot density in the RDK display. The right plot gufie (5) shows the model performance
as a function of the coherence ratio. The coherence thréshsihg the criterion of 75% accuracy,
showed that model performance varied little with the inseeaf dot density, which is consistent
with human performance reported in psychophysical exparts16, 6].

4 Experiments with multi-aperture stimuli

4.1 The two types of stimulus

The multiple-aperture stimulus consisted of a dense seqiaifally isolated elements. Two types of
elements were used in our simulations: (i) drifting sinergvgratings with random orientation, and
(ii) plaids which includes two gratings with orthogonalantations. Each element was displayed
through a stationary Gaussian window. Figure (6) shows eleswf these two types of stimuli.

The grating elements are of fori (%, t) = G(& — &, X)F(Z — &; — U;t) whereZ; denotes the
center of the element, arfd(.) represents a grating(z, y) = sin(fxsin(6;)+ fy cos(6;)), where
f is the fixed spatial frequency afidis the orientation of the grating.

The grating stimulus i$(Z, ¢) = Zfil P;(#,t), whereN is the number of elements (which is kept
constant). For th€' N signal gratings, the motiof; was set to a fixed valug For the(1 — C)N
noise gratings, we seét;| = |0| and the direction ofj; was sampled from a uniform distribution.
The grating orientation anglés were sampled from a uniform distribution also.
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Figure 5: Left panel: Figure 2 in [16] showing that the colmeesratio threshold varies very little
with dot density. Right panel: Simulations of our model skaogimilar trend N =40, 80, 100, 200,
400 and 800.

Figure 6: Multi-aperture gratings and plaids. Left colunsample stimuli. Right column: stimuli
with the local drifting velocity of each element indicategdrrows. The stimulus details are shown
in the magnified windows at the upper right corner of each enag

The plaid elements combine two gratings with orthogonamgtions (each grating has the same
speed but can have a different motion direction). This ldadsaid element);(Z,t) = G(¥ —

fi, E){Fl (f —Z; — ’l_)'i’lt) + FQ((E — T — Ui,zt), WhereFl ((E, y) = SZTL(fI sin6; + fy CcOoS 91) and
Fy(z,y) = sin(—fxcos; + fysinb;).

The plaid stimulus id (Z,t) = Zf;l Q;(Z,t). FortheCN signal plaids, the motions ;, 7; » were
set to a fixed’. For the(1 — C)N noise plaids, the directions of 1, 7; » were randomly assigned,
but their magnitudér| was fixed.
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Figure 7: Left two panels: Estimated motion fields of gratmgl plaids stimuli. Rightmost panel:
Psychometric functions of gratings and plaids stimuli.

4.2 Simulation procedures and results

The left two panels in Figure (7) show the estimated motiddgiéor the two types of stimulus we
studied with the same coherence ratios 0.7. Plaids stimodiyte more coherent estimated motion
field than grating stimuli, which is understandable. beedahsy have less ambiguous local motion
cues.

We tested our model in an 8-direction discrimination taskdstimating global motion direction
[20]. The model used raw images frames as the input. We ratra@®9for each stimulus type, and
used the direction of the average motion to predict the dlwtadion direction. The prediction accu-
racy — i.e. the number of times our model predicted the comation direction from 8 alternatives
— was calculated at different coherence ratio levels. Tiiisrédnce between gratings and plaids is
shown in the rightmost panel of Figure (7), where the psydattoimfunction of plaids stimuli is
always above that of grating stimuli, indicating betterfpanance. These simulation results of our
model are consistent with the psychophysics experimengin

5 Discussion

In this paper, we proposed a unified single-system framewwakis capable of dealing with both
short-range and long-range motion. It differs from tramitill motion energy models because it does
not use spatiotemporal filtering. Note that it was shown intfi@t motion energy models are not
well suited to the long-range motion stimuli studied in thaper. The local ambiguities of motion
are resolved by a novel hierarchical prior which combineg/sess and smoothness at a range of
different scales. Our model accounts well for human pereeif both short-range and long-range
motion using the two standard stimulus types (RDKs and mgaji

The hierarchical structure of our model is partly motivagcknown properties of cortical organi-
zation. It also has the computational motivation of beinkp db represent prior knowledge about
motion at different scales and to allow efficient computatio
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