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Abstract This paper introduces computer vision from
an information theory perspective. We discuss how vi-
sion can be thought of as a decoding problem where the
goal is to find the most efficient encoding of the visual
scene. This requires probabilistic models which are capa-
ble of capturing the complexity and ambiguities of natu-
ral images. We start by describing classic Markov Ran-
dom Field (MRF) models of images. We stress the im-
portance of having efficient inference and learning algo-
rithms for these models and emphasize those approaches
which use concepts from information theory. Next we in-
troduce more powerful image models that have recently
been developed and which are better able to deal with
the complexities of natural images. These models use
stochastic grammars and hierarchical representations.
They are trained using images from increasingly large
databases. Finally, we described how techniques from
information theory can be used to analyze vision models
and measure the effectiveness of different visual cues.

Keywords computer vision, pattern recognition, in-
formation theory, minimum description length, Markov
random field (MRF) model, stochastic grammars

1 Introduction

Computer Vision and Pattern Recognition are extremely
important research fields with an enormous range of ap-
plications. They are also extremely difficult. This may
seem paradoxical since humans can easily interpret im-
ages and detect spatial patterns. But this apparent ease
is misleading because neuroscience shows that humans
devote a large part of their brain, possibly up to fifty per-
cent of the cortex, to processing images and interpreting
them. The difficulties of these problems has been appre-
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ciated over the last thirty years as researchers have strug-
gled to develop computer algorithms for performing vi-
sion and pattern recognition tasks. Although these prob-
lems are not yet completely solved it is becoming clear
that the final theory will depend heavily on probabilis-
tic techniques and the use of concepts from information
theory.

The connections between information theory and com-
puter vision are deep. Vision can be considered to be a
decoding problem where the encoding of the information
is performed by the physics of the world — by light rays
striking objects and being reflected to cameras or eyes.
Ideal observer theories were pioneered by scientists like
Barlow [1] to compute the amount of information avail-
able in the visual stimuli and to see how efficient humans
are at exploiting it. This leads to a research program
where the goal is to develop probabilistic models which
are capable of capturing the richness of visual stimuli
and hence are efficient at encoding them.

This paper provides an introduction to these proba-
bilistic models and discusses issues such as how to learn
these models from natural stimuli and how to perform
inference (i.e., decode and interpret the image). We will
also describe how concepts, measures, and techniques
from information theory can be applied to vision. For
example, concepts like entropy and conditional entropy
have been used for learning models and designing infer-
ence algorithms. This relates to Amari’s work on in-
formation geometry [2,3] and Xu’s concept of the Ying-
Yang machine [4]. Similarly information theoretic mea-
sures and techniques, like Chernoff information and the
theory of types, have been applied to analyze the perfor-
mance of visual theories. Finally, we provide pointers to
other uses of information theory ideas in the computer
vision literature and draw attention to a recent book [5].

The structure of this paper is as follows. Section 2 dis-
cusses how information theory relates to pattern theory
and Section 3 introduces minimum description length
ideas. Section 4 describes Markov Random Field (MRF)
models for images and Section 5 discusses inference and
learning algorithms for MRFs. Section 6 described re-
cent advanced image models which are better able to
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deal with the complexities of natural images. Finally,
Section 7 reviews how measures and techniques from in-
formation theory can be used to analyze the performance
of vision models.

2 Information theory and pattern theory

Standard information theory [6,7] specifies how to en-
code data which obeys a probability distribution and
encode it so that it can be transmitted and then de-
coded. For computer vision, however, the “encoding” is
performed by light rays which are reflected off objects
in the visual scene and transmitted to our eye or to a
camera. Hence the encoding depends on the reflectance
properties of objects, their spatial locations, and the po-
sitions of the light sources — all of this is out of our con-
trol. Nevertheless, most images have structures which
suggest natural ways to encode them.

For example, consider the images shown in Fig. 1.
Clearly there is an efficient way to represent the left
image (a Kanizsa triangle [8]) in terms of one triangle in
front of a second triangle and three black circles. Stud-
ies show that human observers perceive this interpre-
tation despite the partial occlusions of the circles and
the second triangle. Indeed human observers halluci-
nate that the surface of the triangle is brighter than the
background and perceive sharp boundaries to the first
triangle even at places where there is no direct visual
cues. Note that there is an alternative simple interpre-
tation for this image — three pacman figures aligned
with three partial triangles — but this interpretation is
not natural for human observers. The second image,
the Dalmatian dog [9], initially seems merely to consist
of a large number of randomly positioned dots. Closer
inspection, however, shows that the image consists of
a Dalmatian dog walking on a flat surface, which gives
a more efficient interpretation. The third example is a
more natural image, which be interpreted in terms of its
constituent objects including text and faces.

These three examples suggest that we can achieve a
tremendous amount of data compression by interpret-
ing images in terms of the structure of the visual scene.
They suggest a succession of increasingly more com-
pact and semantically more meaningful interpretations.
Studies of human vision suggest that these representa-
tions may be organized hierarchically in visual areas like
V1, V2, V4 and IT [10]. Indeed, the principles of effi-
cient coding and maximization of information transmis-
sion have been fruitful for obtaining quantitative theories
to explain the behavior of neurons in the early stages
of the visual system. These theories explain linear re-
ceptive field development, and various adaptation and
normalization phenomena observed in these early areas
[10–12].

Fig. 1 Examples that illustrate how images are interpreted to
make descriptions simpler and shorter. The Kanizsa triangle (a)
can be compactly described as two triangles in front of three cir-
cles. Figure (b) is best interpreted as a dog although at first it
appears to be a set of random blobs. The street scene (c) is best
described in terms of objects like faces and text

But how do we represent and exploit these image
structures? Researchers in pattern theory have advo-
cated formulating vision as probabilistic inference on
structured probability representations. This seems both
a natural way in which to deal with the complexities
and ambiguities of image patterns [13] and also fits into
a more unified framework for cognition and artificial
intelligence [14]. But vision is a particularly challeng-
ing problem to formulate in this manner. The com-
plexity of vision seems to require distributions defined
over very complicated structures and requires principles
such as compositionality and the use of graphical mod-
els with variable topology [15,16]. In particular, Zhu and
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Mumford [16] have proposed a framework for modeling
visual patterns using generative models which is illus-
trated by many real world examples.

3 Minimal length encoding

We discuss these models using Leclerc’s perspective
which formulates scene segmentation as an inference
problem in terms of efficient encoding [17]. This ap-
proach is based on the Minimum Description Length
(MDL) principle [18]. The computational goal is to
choose the representation W of the region which best
fits the image data I, or equivalently, which best en-
codes the data. In Bayesian terms, we seek to perform
Maximum a Posteriori (MAP) estimation by maximizing
the a posteriori distribution P (W|I) of the representa-
tion conditioned on the data. By Bayes theorem, we can
express this in terms of the likelihood function P (I|W)
and the prior P (W) as follows:

P (W|I) =
P (I|W)P (W)

P (I)
.

The likelihood function P (I|W) specifies the proba-
bility of observing data I if the true representation is W
and P (W) is the prior probability of the representation
(before the data). For example, in the weak-membrane
model the likelihood function is a simple noise distri-
bution and the prior encodes assumptions that the im-
age is piecewise smooth and the boundaries are spatially
smooth (see the next section for details).

In order to relate MAP estimation to efficient encod-
ing, we take the logarithm of Bayes rule logP (W|I) =
logP (I|W)+ logP (W)− logP (I). P (I) is constant (in-
dependent of W), so MAP estimation corresponds to
minimizing the encoding cost:

− logP (I|W) − logP (W).

We now interpret this in terms of minimal encoding.
By information theory [6,7] the number of bits required
to encode a variable W which has probability distri-
bution P (W) is − logP (W). The term − logP (W)
is the cost of encoding the interpretation W. The
term − logP (I|W) is the cost of encoding the data I
conditioned on interpretation W. This cost will be 0

if the interpretation explains the data perfectly (i.e.,
P (I|W) = 1). But usually the interpretation will only
partially explain the data and so − logP (I|W) is called
the residual (see the detailed example below).

Observe that the encoding depends on our choice of
models P (W|I) and P (W). Different models will lead
to different encoding, as we will describe later.

4 Markov random field models for images

We now present Markov Random Field (MRF) models of
images. These were the first type of probabilistic models
used to describe images and they remain a good start-
ing point into the literature. We will discuss the Potts
model of images and the weak membrane model. The
critical aspects of both models are: i) the representation
which consists of the graph structure of the model and
the state variables, ii) the inference algorithm used to
estimate properties of the model such as the most prob-
able state, and iii) the learning algorithm used to learn
the parameters of the model. In earlier models learn-
ing was often not used and instead models were hand
designed.

Firstly, we discuss the Potts model which is used for
tasks such as image labeling and segmentation [19]. We
will concentrate on the image labeling task where the
goal is to assign a label to every image pixel μ ∈ D,
where D is the image lattice. The input is an image
I, where I = {Iμ : μ ∈ D} specifies the intensity val-
ues Iμ ∈ {0, 255} on the lattice, and the output W is
W = {wμ : μ ∈ D} is a set of image labels wμ ∈ L, see
Fig. 2. The nature of the labels will depend on the prob-
lem. For edge detection, |L| = 2 and the labels l1, l2 will
correspond to ‘edge’ and ‘non-edge’. For labeling the
MSRC dataset [20] |L| = 23 and the labels l1, . . . , l23
include ‘sky’, ‘grass’, and so on. Similar models can be
applied to other vision problems such as binocular stereo
[21,22] (by setting the input to be the images to the left
and right eyes (IL, IR) and setting w to be the disparity
labels).

We can represent the image labeling problem in terms
of a probability distribution defined on a graph G =
(V , E) where the set of nodes V is the set of image pixels
D and the edges E are between neighboring pixels — see

Fig. 2 GRAPHS for different MRF’s. (a) Conventions; (b) basic MRF graph; (c) MRF graph with inputs zµ, where the
z’s represent the filtered image; (d) a weak membrane model with line processes
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Fig. 2. The W = {wμ : μ ∈ V} are random vari-
ables specified at each node of the graph. P (W|I) is
a Gibbs distribution specified by an energy function
E(W, I) which contains unary potentials U(W, I) =∑

μ∈V λ
D ·φ(wμ, I) and pairwise potentials V (W,W) =∑

μν∈E λ
P ·ψμν(wμ, wν). The unary potentials φ(wμ, I)

depend only on the label/disparity at node/pixel μ and
the input image I. In practice, these models act on a fil-
tered image which we represent by {zμ} where the filters
(e.g., Gabor filters) enhance important aspects of the im-
age. The pairwise potentials impose prior assumptions
about the local ‘context’ of the labels and disparities.
These models typically assume that neighboring pixels
will tend to have similar labels/disparities.

The full distribution P (W|I) defined over discrete-
valued random variables W = {wμ : μ ∈ V} defined on
a graph G = (V , E):

P (W|I) =
1

Z(I)
exp

⎧⎨
⎩−

∑
μ∈V

λD · φμ(wμ, I)

−
∑

μν∈E
λP · ψμν(wμ, wν)

⎫⎬
⎭ . (1)

Secondly, we describe the weak membrane model
which has applications to image segmentation and image
denoising. It was proposed independently by Geman and
Geman [19] and Blake and Zisserman [23]. This model
has additional ‘hidden variables’ L, which are used to ex-
plicitly label discontinuities. It is also a generative model
which specifies a likelihood function and a prior proba-
bility (by contrast to conditional random fields which
specify the posterior distribution only).

The input to the weak membrane model is the set of
intensity values I = {Iμ : μ ∈ D} and the output is
W = {wμ : μ ∈ D} defined on a corresponding output
lattice (formally we should specify two different lattices,
say D1 and D2, but this makes the notation too cumber-
some). We define a set of edges E which connect neigh-
bouring pixels on the output lattice and define the set
of line processes L = {lμν : (μ, ν) ∈ De} with lμ ∈ {0, 1}
over these edges, see Fig. 2. The weak membrane is
a generative model so it is specified by two probability
distributions: i) the likelihood function P (I|W), which
specifies how the observed image I is a corrupted version
of the image W, and ii) the prior distribution P (W,L)
which imposes a weak membrane by requiring that neigh-
bouring pixels take similar values except at places where
the line process is activated.

The simplest version of the weak membrane model is
specified by the distributions:

P (I|W) =
∏
μ∈D

√
τ

π
exp{−τ(Iμ − wμ)2},

P (W,L) ∝ exp{−E(W,L)},

with E(W,L) = A
∑

(μ,ν)∈E
(wμ − wν)2(1− lμν)

+B
∑

(μ,ν)∈E
lμν . (2)

In this model the intensity variables Iμ, wμ are
continuous-valued while the line processor variables
lμν ∈ {0, 1}, where lμν = 1 means that there is an (im-
age) edge at μν ∈ E . The likelihood function P (I|W)
assume independent zero-mean Gaussian noise (for other
noise models, like shot noise, see Geiger and Yuille [24]
and Black and Rangarajan [25]). The prior P (W,L) en-
courages neighboring pixels μ, ν to have similar intensity
values wμ ≈ wν except if there is an edge lμν = 1. This
prior imposes piecewise smoothness, or weak smooth-
ness, which is justified by statistical studies of inten-
sities and depth measurements (see Zhu and Mumford
[26], Black and Roth [27]). More advanced variants of
this model will introduce higher order coupling terms
of form lμν lρτ into the energy E(W,L) to encourage
edges to group into longer segments which may form
closed boundaries. We can also re-express this model as
P (W|I) =

∑
L P (W,L|I).

The inference task is to estimate the best interpre-
tation of the input image I. This corresponds to esti-
mating the best “weakly smoothed” image or the image
labels and the edges in the image. This is performed by
specifying an inference algorithm to compute the MAP
estimator:

Ŵ = argmax
W

P (W|I). (3)

The inference task is challenging for both models. We
will describe some of these algorithms in the next section
— choosing those that relate to information theoretic
concepts.

The learning task is to learn the parameters of the
distributions of the models from a set of training ex-
amples {(Ii,Wi) : i = 1, . . . , N}. In early applications
the parameters were set by hand — the weak membrane
model is entirely set by hand. More recently, methods
have been developed to learn the models. These will be
described in Section 5 concentrating on methods that
use information theoretic concepts.

5 Inference and learning for MRFs

A range of algorithms have been proposed but conver-
gence guarantees are rare. Max-flow/min-cut [28] algo-
rithms are guaranteed to converge to the optimal solu-
tion for certain classes of models if the state variables
are binary-valued. If we allow the state variables x to
take continuous values then steepest descent, and re-
lated methods, will also converge to the optimal estimate
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provided the energy function
∑

μ∈V λ
D · φμ(wμ, I) +∑

μν∈E λ
P ·ψμν(wμ, wν) is convex in the state variables

W. Markov Chain Monte Carlo (MCMC) methods are
guaranteed to converge to good estimate of Ŵ, but con-
vergence rates tend to be slow [19]. Other algorithms
that empirically give good results for these types of mod-
els include variational mean field methods [24,29] and
belief propagation [30]. This section will concentrate on
variational and belief propagation algorithms, because
they are formulated in terms of information theoretic
concepts.

The learning task is to learn the model parameters λ
from a set of supervised training examples. The learning
is straightforward if we only consider only the unary po-
tentials, because we can learn the data parameters λD

by methods such as AdaBoost [31] or simply by learning
conditional probability distributions [32]. Discrimina-
tive learning methods [33] have been used to learn the
full distribution, which requires an efficient inference al-
gorithm, so that we can compare the performance of
the algorithm with its current set of parameters to the
groundtruth, and then modify the parameters if neces-
sary. This can be formulated in terms of maximum like-
lihood learning or conditional random fields. In this pa-
per we will restrict ourselves to describing the minimax
entropy method for learning binary, and higher order,
potential terms [34].

5.1 Inference for Potts model

For the Potts model we will describe techniques based
on minimizing free energies [35]. We first describe the
mean field free energy approach [24,29,36,37] and then
describe the Bethe free energy which yields belief prop-
agation [30]. We refer to Wainwright et el. [38] for the
related convex free energies. In this section, for simplic-
ity, we will drop the parameters λ of the potentials and
express them by φ(·) and ψ(·) only.

The basic idea of Mean Field Theory is to approxi-
mate a distribution P (W|I) by a simpler distribution
B(W|I) which is chosen so that it is easy to estimate
(approximately) the MAP estimate of P (·), and any
other estimator, from the approximate distribution B(·).
This requires specifying a class of approximating distri-
butions {B(·)}, a measure of similarity between distri-
butions B(·) and P (·), and an algorithm for finding the
B∗(·) that minimizes the similarity measure. In this pa-
per we restrict the class of approximating distributions
to be factorizable B(W) =

∏
μ∈V bμ(wμ). The measure

of similarity is the mean field free energy which can be
expressed as FMFT(B):

FMFT(B) =
∑

μν∈E

∑
wμ,wν

bμ(wμ)bν(wν)ψμν(wμ, wν)

+
∑
μ∈V

∑
wμ

bμ(wμ)φμ(wμ, I)

+
∑
μ∈V

∑
wμ

bμ(wμ) log bμ(wμ). (4)

The first two terms are the expectation of the energy
E(W, I) with respect to the distribution B(W) and the
third term is the negative entropy of B(W).

The most intuitive derivation of the mean field free
energy is obtained by minimizing the Kullback-Leibler
divergence between the target distribution P (W|I) and
a factorizable trial distribution B(W) [37]. Substituting

P (W) =
1
Z

exp{−E(W, I)} and B(W) =
∏

μ∈V bμ(wμ)

into the Kullback-Leibler divergence KL(B,P ) gives:

KL(B,P ) =
∑
W

B(W)E(W)

+
∑
W

B(W) logB(W) + logZ

= FMFT(B) + logZ. (5)

Hence minimizing FMFT(B) with respect to B gives:
i) the best factorized approximation to P (W), and
ii) a lower bound to the partition function logZ �
minB FMFT(B) which can be useful to assess model ev-
idence [39].

Minimizing the mean field free energy can be per-
formed by steepest descent techniques. The free energy
can have local minima so there is no guarantee of op-
timality. But the approach works well in practice on a
range of vision problems.

The Bethe free energy [40] differs from the MFT
free energy by including pairwise pseudo-marginals
bμν(wμ, wν):

F [b;λ] =
∑
μν

∑
wμ,wν

bμν(wμ, wν)ψμν(wμ, wν)

+
∑

μ

∑
wμ

bμ(wμ)φμ(wμ)

+
∑
μν

∑
wμ,wν

bμν(wμ, wν) log bμν(wμ, wν)

−
∑

μ

(nμ − 1)
∑
wμ

bμ(wμ) log bμ(wμ), (6)

where nμ is the number of neighbours of node μ.
We must also impose consistency and normalization
constraints which we impose by Lagrange multipliers
{λμν(wν)} and {γμ}:

∑
μ,ν

∑
wν

λμν(wν)

⎧⎨
⎩

∑
wμ

bμν(wμ, wν)− bν(wν)

⎫⎬
⎭

+
∑
μ,ν

∑
wμ

λνμ(wμ)

{∑
wν

bμν(wμ, wν)− bμ(wμ)

}
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+
∑

μ

γμ

⎧⎨
⎩

∑
wμ

bμ(wμ)− 1

⎫⎬
⎭ . (7)

The belief propagation algorithm (BP) is defined in
terms of messages mμν(wν) from μ to ν, and is specified
by the sum-product update rule:

mt+1
μν (wν) =

∑
wμ

exp{−ψμν(wμ, wν)− φμ(wμ)}

·
∏
ρ�=ν

mt
ρμ(wμ). (8)

The unary and binary pseudomarginals are related to
the messages by

btμ(wμ) ∝ exp{−φμ(wμ)}
∏
ρ

mt
ρμ(wμ), (9)

btρν(wρ, wν) ∝ exp{−ψρν(wρ, wν)− φρ(wρ)− φν(wν)}
×

∏
τ �=μ

mt
τρ(wρ)

∏
ζ �=ρ

mt
ζν(wν). (10)

It can be shown [30] that fixed points of BP are ex-
trema of the Bethe free energy. Hence BP can be used to
find pseudomarginals {b} that will give good approxima-
tions to the target distribution P (W|I). But the update
rule for BP is not guaranteed to converge to a fixed point
for general graphs and can sometimes oscillate wildly. It
can be partially stabilized by adding a damping term to
Equation (8) — e.g., by multiplying the right hand side
by (1− ε) and adding a term εmt

μν(wν).

5.2 Inference for weak membrane model

We can obtain free energies for the weak membrane
model also. We use pseudo-marginals B(L) for the
line processes L only. This leads to a free energy
FMFT(B,W) specified by

FMFT(B,W) = τ
∑
μ∈V

(wμ − Iμ)2

+A
∑

μν∈E
(1 − bμν)(wμ − wν)2

+B
∑

μν∈E
bμν +

∑
μν∈E
{bμν log bμν

+(1− bμν) log(1 − bμν)}, (11)

where bμν = bμν(lμν = 1) (the derivation uses the fact
that

∑1
lμν=0 bμν(lμν)lμν = bμν). As described below,

this free energy is exact and involves no approximations.
For the weak membrane model the free energy follows

from Neal and Hinton’s variational formulation of the
expectation maximization EM algorithm [41]. The goal
of EM is to estimate W from P (W|I) =

∑
L P (W,L|I)

after treating the L as ‘nuisance variables’ which should
be summed out [39]. This can be expressed [41] in terms
of minimizing the free energy function:

FEM(B,W) = −
∑
L

B(L) logP (W,L|I)

+
∑
L

B(L) logB(L). (12)

The equivalence of minimizing FEM[B,W] and
estimating W∗ = argmaxW P (W|I) can be veri-
fied by re-expressing FEM[B,W] as − logP (W|I) +∑

LB(L) log
B(L)

P (L|W, I)
, from which it follows

that the global minimum occurs at W∗ =
argminW{− logP (W|I)} and B(L) = P (L|W∗, I) (be-
cause the second term is the Kullback-Leibler divergence
which is minimized by setting B(L) = P (L|W, I)).

The EM algorithm minimizes FEM[B,W] with respect
to B and W alternatively, which gives the E-step and
the M-step respectively. For the basic weak membrane
model both steps of the algorithm can be performed sim-
ply. The E-step requires minimizing a quadratic func-
tion, which can be performed by linear algebra, while
the M-step can be computed analytically:

Minimize

⎧⎨
⎩

∑
μ

τ(wμ − Iμ)2 +A
∑

μν∈E
bμν(wμ − wν)2

⎫⎬
⎭ wrt W, (13)

B(L) =
∏

μν∈E
bμν(lμν), bμν =

1
1 + exp{−A(wμ − wν)2 +B} . (14)

The EM algorithm is only guaranteed to converge to
a local minimum of the free energy and so good choices
of initial conditions are needed. A natural initialization
for the weak membrane model is to set W = I, per-
form the E-step, then the M-step, and so on. Observe
that the M-step corresponds to performing a weighted
smoothing of the data I where the smoothing weights
are determined by the current probabilities B(L) for the

edges. The E-step estimates the probabilities B(L) for
the edges given the current estimates for the W.

Notice that the EM free energy does not put any
constraints of the form of the distribution B and
yet the algorithm results in a factorized distribution,
see Equation (14). This results naturally because
the variables that are being summed out — the L
variables — are conditionally independent (i.e., there
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are no terms in the energy E(W, I) which couple
yμν with its neighbors). In addition we can com-
pute P (W|I) =

∑
L P (W,L|I) analytically to obtain

1
Z

exp{−τ ∑
μ∈D(wμ−zμ)2−∑

μν∈E g(wμ−wν)}, where

g(wμ−wν) = − log{exp{−A(wμ−wν)2}+exp{B}}. The
function g(wμ−wν) penalizes wμ−wν quadratically for
small wμ−wν but tends to a finite value asymptotically
for large |wμ − wν |.

Suppose, however, that we consider a modified
weak membrane model which includes interactions be-
tween the line processes — terms in the energy like
C

∑
(μν)×(ρζ)∈Ey

lμν lρζ which encourage lines to be con-
tinuous. It is now impossible either to: a) solve for
B(L) in closed form for the E-step of EM, or b) to com-
pute P (W|L) analytically. Instead we use the mean
field approximation by requiring that B is factorizable
— B(L) =

∏
μν∈E bμν(lμν). This gives a free energy:

FMFT(b,W)

= τ
∑
μ∈V

(wμ − Iμ)2 +A
∑

μν∈E
(1− bμν)(wμ − wν)2

+B
∑

μν∈E
bμν + C

∑
(μν)×(ρζ)∈E

bμνbρζ

+
∑

μν∈E
{bμν log bμν + (1− bμν) log(1− bμν)}. (15)

5.3 Learning: Minimax entropy

Minimax entropy learning [34] is a technique for learning
probability distributions from image statistics. When
applied to natural images it learns distributions similar
to the hand designed distributions in the weak mem-
brane model [26].

Suppose we observe statistics φ(I) = ψ from an im-
age. These statistics can be the histogram responses
of filters applied to the image. The maximum entropy
principle proposes to select the distribution P (I) which
has maximum entropy but with fixed expected value of
the statistics. This leads to an optimization problem —
select P (I) to maximize

−
∑
I

P (I) logP (I) + ν

{∑
I

P (I)− 1

}

+λ ·
{∑

I

P (I)φ(I) −ψ
}
, (16)

where ψ is the observed value of the statistic φ(I) when
evaluated on the data, and ν,λ are Lagrange multipliers.

This maximization leads to a distribution:

P (I|λ) =
1

Z[λ]
eλ·φ(I), (17)

where the parameters λ are chosen to ensure that∑
I P (I|λ)φ(I) = ψ.
Solving this equation for λ is often difficult. It reduces

to minimizing the convex function logZ[λ]− λ · ψ. Al-
gorithms such as steepest descent and generalized itera-
tive scaling (GIS) can do this, but they require estimat-
ing the expectation

∑
I P (I|λ)φ(I) for different values

of λ which can be time consuming. Although stochas-
tic MCMC methods are adequate [34]. It should be
noted that this is equivalent to doing maximum likeli-
hood estimation of the parameters λ assuming that we
have observations {Ii : i = 1, . . . , N}, which we assume
are i.i.d. generated from distribution P (I|λ) and where

ψ =
1
N

∑N
i=1 φ(Ii).

The approach can be extended to selecting from a dic-
tionary of features φa(·) : a ∈ A. We can combine fea-
tures to obtain a distribution:

P (I) =
1

Z[λ1, . . . ,λM ]
exp

{
−

M∑
a=1

λa · φa(I)

}
. (18)

The choice of which features to use can be determined
by standard model selection techniques, see Ref. [39].
Zhu et al. [34] proposed a related criteria to select fea-
tures based on minimum entropy, hence “mini” in min-
imax, and described a greedy procedure for selection.

In vision, the feature statistics are often the histogram
of local filters, such as ∂I/∂x, ∂I/∂y. Let us refer to
these filters as f(Ia) where a is the position in the im-
age, and quantize the filters so that their response takes
values z = 1, . . . ,M . We write the histogram response
as

φ(z; I) =
1
N

N∑
a=1

δf(Ia),z, (19)

where δ is the Kronecker delta. We can then write the
distribution as

P (I|λ) =
1
Z

e
P

z λ(z)·φ(z;I)

=
1
Z

e
P

z λ(z)(1/N)
PN

a=1 δf(Ia),z

=
1
Z

e(1/N)
PN

a=1 λ(f(Ia)). (20)

This is a Markov random field where the local depen-
dencies between different pixel sites a is determined by
the filters f(·).

6 More advanced image models

We now describe more advanced models of images that
have richer representations of images and, in particular,
represent longer range structures. These lead to better
encoding and interpretation of images. In particular, we
will discuss imaging parsing models [16,42,43] and hier-
archical models [44]. By necessity, these models are more
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complex than the MRF models described in the previ-
ous sections and hence they require more computation
for inference and learning.

6.1 Image parsing

The goal of image parsing is to probabilistic models
for image formation which are capable of generating all
the complex visual patterns that occur in natural im-

ages. This is an ambitious and exciting research pro-
gram which, in principle, is capable of solving all vision
problems. The full research program involves stochastic
grammars for images and is described in detail in Ref.
[16]. In this paper, we will restrict ourselves to simpler
models used in Refs. [42,43,45].

The basic idea of image parsing is illustrated in Fig.
3. We assume that regions in the image are generated
by models of objects (e.g., faces, and text) and texture.

Fig. 3 (a) Ideas of image parsing; (b) “moves” for image parsing
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The task of image parsing is to find the most probable
way the image was generated. This requires a sophis-
ticated inference algorithm which is called Data Driven
Markov Chain Monte Carlo (DDMCMC) [42,43] which
searches through alternative interpretations of images by
a series of ‘moves’, see Fig. 3(b).

More formally, we assume that the image domain D
can be decomposed into disjoint regions D =

⋃M
a=1Da,

with Da

⋂Db = ∅ ∀ a �= b and where the number of
regions M is a random variable.

We assume a class of probability models P (IDa |ζa, θa)
for representing the image intensity IDa within each sub-
region Da, where ζa labels the model type and θa labels
its parameters — e.g., ζ could label the region as ‘tex-
ture’ and θ would specify the parameters of the texture
model. Other models include ‘face’ or ‘digits’.

Hence the image is represented by W =
(M, {(Da, ζa, θa) : a = 1, . . . ,M}) and the likelihood
model for the full image is of form:

P (I|M, {Da, ζa, θa}) =
M∏

a=1

P (Ia|ζa, θa). (21)

There is a prior probability on W specified by
P (M)P ({Da}|M)

∏
a P (ζa)P (θa). This specifies priors

on the shapes of regions and on their image properties.
The goal of inference is to estimate

Ŵ = arg maxP (I|M, {Da, ζa, θa})P (M)

·P ({Da}|M)
∏
a

P (ζa)P (θa). (22)

Inference. The inference algorithm has the difficult
task of determining the number of image regions M ,
their shapes and positions {∂Da}, the model types {ζa}
(e.g., face or texture) that generate them, and the pa-
rameters {θa} of the models.

The inference algorithm is illustrated in Fig. 3(b). It
initializes a representation W of the image in terms of
a number of regions, model types, and model param-
eters. Then it allows a set of ‘moves’ which alters the
representation. These consist of: i) smoothly moving the
boundary between two regionsDa andDb, ii) splitting or
merging a region: (Da)↔ (Db, Dc) or (Db, Dc)↔ (Da),
iii) creating or deleting an object region, iv) altering the
type ζa of a region Da, v) changing the parameters θa

of a region Ra.
We formulate a Markov Chain Monte Carlo (MCMC)

algorithm [46] which uses these moves. Observe that
the moves can be decomposed into two types: i) jumps
which cause discrete changes to W, and ii) diffusions
which make continuous changes to W. Firstly, jump
moves include the birth/death of region hypotheses, the
splitting and merging of regions, and changing the model
type of a region (e.g., changing from a texture model to a

text model), creating a face or a letter region. Secondly,
diffusion processes which involve altering the boundary
of a region and changing the parameters of the model
which describes a region.

More formally, Data Driven Markov Chain Monte
Carlo (DDMCMC) is a version of the Metropolis-
Hastings algorithm. It uses data-driven proposal prob-
abilities q(W 	→ W′|I) to make proposals which
can be verified or rejected by the probability models
P (I|W)P (W). Moves are selected by sampling from
q(W 	→ W′|I) and they are accepted with probability
α(W 	→W′):

α(W →W′) = min
(

1,
p(W′|I)
p(W|I) ·

q(W′ →W|I)
q(W→W′|I)

)
.

(23)

DDMCMC satisfies the necessary convergence con-
ditions for an MCMC algorithm and so is guaranteed
to converge to samples from the posterior distribution
P (W|I) ∝ P (I|W)P (W) [42,43]. In practice, the speed
of convergence is determined by the effectiveness of the
proposal probabilities q(W ← W′). Tu and Zhu [42]
describe how the proposals are defined when the region
models are ‘generic’ (i.e., do not include objects). When
the types of models are extended to include objects, such
as faces and textures, then additional proposals are used.
For example, AdaBoost [47] was used to create propos-
als for faces [31] and text [48] where, following Hastie
et al. [49], we interpret the output of AdaBoost as a
conditional probability. Shape context features [50] can
be used to make proposals for specific letters and digits
within text regions. For more details, see Refs. [42,43].
An example of the algorithm showing different stages is
given by Fig. 4.

Learning the distributions P (IDa |τa, γa) is easier once
images have been hand-labelled. For example, we used
generative models of faces and text learnt from active
appearance models [51] and shape models [52].

Results and later work
DDMCMC was successfully applied to image segmen-

tation using ‘generic image models’ by Tu and Zhu [42].
It achieved the best performance on the Berkeley seg-
mentation database [53] when evaluated in 2002. The
work on image parsing with face and object models was
not evaluated on a benchmarked dataset (none were
available at the time) but individual components, e.g.,
the text detection [48] and shape matching (for letter
and digit reading) [52] performed at the state of the art
when evaluated on large datasets.

More recent work following this research program is
described in a review paper by Zhu and Mumford [16].
It includes the primal sketch model [54] which describes
the intensity changes at the boundaries between objects
and regions and the use of generative grammars [55].
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Fig. 4 Results of the algorithm at different stages. (a) Input image; (b) proposals for text and faces illustrated by boxes
(note the incorrect proposals in the bark of the tree and in the vegetation); (c) estimated boundaries of regions; (d) estimated
boundaries and text; (e) detection of faces and text (observe that the incorrect proposals were rejected by the generative
models); (f) a synthesized image which is sampled from the estimated model Ŵ

6.2 Hierarchical models: Image labeling.
Segmentation-recognition templates

Hierarchical models give an alternative way to represent
images, see Fig. 5 and Ref. [44]. They are based on
the compositionality hypothesis that objects and images
have structure at different scales and can be represented
as recursive composition of parts, with the representa-
tional complexity roughly the same at all levels. This

enables us to represent complex structures hierarchically
using hidden variables and avoids the need for dense and
long range sideways connections that flat models would
require. These models use the summarization principle
which requires that the complexity of the representation
is the same at all levels of the hierarchy. This implies
that hat upper levels of the hierarchy specify a coarse, or
‘executive summary’, representation of the object while
the lower level nodes give more fine scale detail. This
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Fig. 5 (a) Structure of a hierarchical image model [44]. The grey circles are the nodes of the hierarchy. The graph
structure is a fixed quadtree so that nodes have four parents; (b) 30 segmentation templates

principle enables efficient representation, inference, and
learning. It has also been applied to modeling objects
[56–58].

We define a hierarchical graph structure (V , E) with
leaf nodes V leaf . The graph has a quadtree structure
so that each node μ ∈ V/V leaf has four child nodes
ν ∈ ch(μ), which defines the edges E . The graph is
organized in layers so that the nodes at each layer cov-
ers the image, see Fig. 5. We define state variables wμ

at each node, where wμ = (sμ, cμ) describes a subregion
of the image. The variable sμ indexes the partition of
the image region into different sub-regions (|S| = 40 and
there are either one, two or three sub-regions), see Fig.
5. The variable cμ specifies labels for all the sub-regions
where each label c ∈ C, where C is a set of pre-defined
labels (|C| = 23 for the Cambridge Microsoft Labeled
Dataset — [20]). We use the notation wch(μ) to denote
the states of all child nodes of μ.

We define a probability distribution P (W|I) =
1
Z

exp{−λ · Φ(W, I)} in terms of potential functions

Φ(W, I) are their parameters λ (which will be learnt).
The potentials are of two types: i) data potentials
φ(wμ, I) which are defined for all nodes and which
are functions of the image I, and ii) prior potentials
ψ(wμ,wch(μ)) which impose statistical relations between
the states of parents and child nodes — i.e., between the
partitions and labels at neighboring levels. We use six
potentials described in detail in Ref. [44]: i) data terms
φ1

μ(wμ, I) which represents image features of regions
(features are color, Gabors, difference of Gaussians,
etc.), ii) data terms φ2

μ(wμ, I) which favors segmentation
templates whose pixels within each partition have sim-
ilar appearances, iii) prior terms ψ3

μ(wμ,wch(μ)) which
encourage consistency between the segmentation tem-
plates and labeling of parent and child nodes, iv) prior
terms ψ4

μ(wμ,wch(μ)) which captures the co-occurrence
of different labels (e.g., a cow is unlikely to be next to
an airplane), v) prior terms ψ5

μ(wμ) which puts proba-
bilities on the segmentation templates sμ, and iv) prior

terms φ6
μ(wμ) which capture the co-occurrence of the

labels and the segmentation templates.
The full energy is defined by

λ ·Φ(W, I) =
∑
μ∈V

λ1 · φ1
μ(wμ, I) +

∑
μ∈V

λ2 · φ2
μ(wμ, I)

+
∑

μ∈V/V leaf

λ3 · ψ3
μ(wμ,wch(μ))

+
∑

μ∈V/V leaf

λ4 · ψ4
μ(wμ,wch(μ))

+
∑
μ∈V

λ5 · ψ5
μ(wμ)

+
∑
μ∈V

λ6 · φ6
μ(wμ). (24)

The inference task is to estimate Ŵ =
argmaxP (W|I) to determine the best interpretation
of the input image. The graph structure of the RCM
contains no closed loops and hence inference can be
done by dynamic programming. Because the state space
wμ = (sμ, cμ) is large we prune to keep a fixed propor-
tion of state based on their energies, see Ref. [44] for
details.

The learning task is to determine the parameters
λ from a set of training images with groundtruth
{(Iμ,Wμ) : i = 1, . . . , N}. Note that groundtruth for
standard datasets is specified only at the leaf nodes,
but it is straightforward to approximate the state of the
higher levels nodes from this information, see Ref. [44].
We used the structure perceptron algorithm [59]. This is
a discriminative learning method which avoid the need to
compute the normalization constants Z(λ) of the proba-
bility distributions, unlike standard maximum likelihood
methods, and is arguably more effective for discrimina-
tive problems.

Formally the algorithm is specified by the update
rules:

λt+1 = λt −Φ(Wμ, Iμ) + Φ(W∗(Iμ,λ), Iμ), (25)
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where i indexes the example from the training dataset
which is randomly selected by the algorithm at the it-
eration time t, and W∗(Iμ,λ) = arg minλ · Φ(W, Iμ)
is the best estimate provided by the inference algorithm
(with current settings of λ).

Structure perceptron has the desirable property, em-
pirically verified for these applications, that many of the
weights remain close to zero (with weights initialized at
zero). Therefore it acts like a selection process which se-
lects which potentials to use from a dictionary by award-
ing them large weights.

Datasets and Results
We tested the RCM on the Microsoft dataset [20]. We

show example results in Fig. 6 and report good perfor-
mance compared to state of the art methods, see Ref.
[44] for more details.

7 Analyzing models

This section shows alternative ways that concepts from
information theory have been used in computer vision.
We will concentrate on measures for evaluating and an-
alyzing visual algorithms. This material is drawn from
Refs. [32,60–64].

First we introduce the set of models that we will an-
alyze. These are based on deformable models of objects
and, to simplify the analysis, we require that the models
have no closed loops. Then we will describe how infor-
mation theoretic measures and techniques can be used
to analyze their performance.

7.1 Background: Deformable templates

The models that we analyze in this section are special
cases of the deformable template models used to repre-

sent objects. Deformable template models have an ex-
tensive history in computer vision [65,66]. They can be
represented in terms of flat probabilistic models [50,67–
71] as we now describe. The formulation is again de-
scribed on a graph G = (V , E) with state variables W
defined on the nodes V , where the state wμ of node μ rep-
resents the position (and possibly orientation) of a point,
or part, of the object. The unary potentials λD ·φ(wμ, I)
specify how points/parts of the object relate to the im-
age — e.g., some points on the boundary of objects may
correspond to edges in the image intensity, while others
may be modeled by interest points such as corners [68].
The edges E specify which points/parts of the object are
directly related and the binary potentials λP ·φ(wμ, wν)
model the spatial relations — e.g., capturing the overall
shape of the object.

This can be expressed by a probability distribution:

P (w|I) =
1

Z(I)
exp

⎧⎨
⎩−

∑
μ∈V

λD · φμ(wμ, I)

−
∑

μν∈E
λP · ψμν(wμ, wν)

⎫⎬
⎭ , (26)

where the main differences are the state variables wμ at
the nodes and the graph structure, see Fig. 7.

Inference is different for these type of models. Firstly,
the state variables can typically take a far larger set of
values. For example, the set of possible positions in an
image is very large. Secondly, the types of graph struc-
ture are different. If the object has a chain-like structure
— i.e., without closed loops — then dynamic program-
ming can be to perform inference and detect the object
independent [68] but pruning is necessary to ensure that
the algorithm converges quickly. The computations re-
quired by dynamic programming can be sped up using

Fig. 6 Parse results on MSRC dataset. The correspondence between the color and the object class is defined as follows.
The colors indicate the labels of 21 object classes as in the MSRC dataset [20]. The columns (except the fourth “accuracy”
column) show the input images, ground truth, the labels obtained by HIM and the boosting classifier, respectively. The
“accuracy” column shows the global accuracy obtained by HIM (left) and the boosting classifier (right)



Alan YUILLE. An information theory perspective on computational vision 341

Fig. 7 A deformable template model of a hand without closed
loops (a) and with closed loops (b)

various techniques [70]. By choosing more complex im-
age features, such as shape context [50], it is possible to
perform good local matches by ignoring the binary terms
and then get better matches by use of the Hungarian
algorithm. If there are good estimates of the initial con-
figuration, then variational methods can be effective for
inference [69]. See Ref. [52] for how shape context and
variational methods can be combined effectively. But,
once again, the inference algorithms become far less ef-
fective if we start introducing longer range edges to cap-
ture the spatial regularities of objects.

Learning is possible for these models provided
groundtruth data has been specified. It remains
straightforward to learn the unary parameters if
groundtruth data is specified. Learning the binary pa-
rameters is more complicated. In practice, many of the
original models were hand specified although stochastic
sampling can be performed to validate the model param-
eters — e.g., to determine if the samples from the object
look like real examples of the object [68]. But stochas-
tic sampling is only efficient for certain types of graph
structure (e.g., it was straightforward for Coughlan
et al. [68] because of their use of models without closed
loops). More advanced learning methods are only prac-
tical if there is an efficient inference algorithm.

7.2 Analysis and evaluation

7.2.1 Curve model

Suppose we have a model of a deformable shape without
closed loops which might, for example, represent a road
[67] or the boundary of an object [68]. The model can
be formulated as a graph of ordered nodes μ ∈ V with
edges (μ, μ + 1) ∈ E . The state variables wμ = (Wμ)
can denote position �x (more and orientation θ. The in-
put is an image I, where I = {Iμ : μ ∈ D} specifies the
intensity values Iμ ∈ {0, 255} on the lattice. We apply
filters (linear or non-linear) to obtain a filtered image
{zμ : μ ∈ D}.

We assume a model for generating the data:

P ({zμ}|{wν}) =
∏

μ∈{Wν}
P (zμ|s1)

∏
μ/∈{Wν}

P (zμ|s2),

(27)
PG({wν}) = PG(w0)

∏
μ∈V

PG(wν+1|wν), (28)

where we assume that the features response are drawn
from a distribution P (zμ|s1) if point μ lies on the model,
and from P (zμ|s2) otherwise. For example, we could
consider that the model represents the boundary of the
object, set zμ to be an edge filter (e.g., zμ = |∇I(μ)|
could be the intensity gradient), and that the distribu-
tion will be different for points on the boundary of the
object versus points that do not lie on the boundary.
For another example, Geman and Jedynak [67] model a
road and define a filter which responds preferentially to
road segments and which hence the responses on and off
a road are drawn from different distributions.

7.2.2 Evaluating cues

Now we analyze how effective the features cues are for
detecting the curve ignoring the geometry for the mo-
ment. The cues are modeled by P (z|s1) and P (z|s2)
and we assume priors P (s1) and P (s2) for the frequency
of the cues (but we ignore the geometry P ({wν})).

We can evaluate the cues by calculating the Bayes risk
for classifying a measurement z as s1 or s2. The Bayes
decision rule is to decide s1 if P (s1|z) < P (s2|z) and s2
otherwise. The Bayes risk is given by

E∗ =
∫

min{p(s1|z), p(s2|z)}p(z)dz

=
∫

min{p(s1)p(z|s1), p(s2)p(z|s2)}dz. (29)

We can bound this by observing that min(a, b) �
atb1−t for all t ∈ [0, 1], which gives

E∗ � p(s1)tp(s2)1−t exp{−Jt},
with Jt = − log

∫
p(z|s1)tp(z|s2)1−tdz. (30)

There are two important special cases obtained by set-
ting t = 1/2 and picking tC = argmaxt∈[0,1] Jt respec-
tively:

E∗ � p(s1)1/2p(s2)1/2e−B(p(z|s1),p(z|s2)),

Bhattacharyya,

E∗ � p(s1)tCp(s2)1−tC e−C(p(z|s1),p(z|s2)),

Chernoff,

(31)

where B(p(z|s1), p(z|s2)) and C(p(z|s1), p(z|s2)) are the
Bhattacharyya bound and the Chernoff information re-
spectively, given by

B(p(z|s1), p(z|s2)) = − log
∫
p(z|s1)1/2p(z|s2)1/2dz,
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C(p(z|s1), p(z|s2))
= − log min

t∈[0,1]

∫
p(z|s1)tp(z|s2)1−tdz

= − log
∫
p(z|s1)tCp(z|s2)1−tC dz.

(32)

7.2.3 Evaluating groups of cues

Now suppose we have to decide if a group of N pixels
are either all from s1 or all from s2. We consider two
related tasks. The first task is given a set of samples
{zi : i = 1, . . . , N} which are all from P (z|s1) or from
P (z|s2) and the task is determine whether they comes
from s1 or s2. This is clearly easier than classifying a
single measurement z because we now have N samples.
It can be shown, see Refs. [7,72], that the classification
error scales as

exp−NC(P (·|s1),P (·|s2)), where C(P (·|s1), P (·|s2))
is the Chernoff Information. (33)

The input to the second task is two sets of samples
{z1} and {z2} where one is from P (z|s1) and the other
P (z|s2), but we do not know which. The classification
error scales as

exp−NB(P (·|s1),P (·|s2)), where B(P (·|s1), P (·|s2))
is the Bhattacharyya bound. (34)

Konishi et al. [72] give many examples of using these
measures for classifying the effectiveness of different edge
cues.

7.2.4 Detecting a target curve

We next consider the tougher problem of detecting a tar-
get curve in an image. This can be formulated using the
likelihood and prior specified in Equations (27), (28) and
reduces to finding the set of {wν} that maximizes the
reward function R({wν}) ∝ log{P (zμ|{wν})PG({wν})},
which can be expressed as (ignoring terms independent
of {wν})

R({wν}) =
∑

μ∈{Wν}
log

P (zμ|s1)
P (zμ|s2) + logP (w0)

+
∑
μ∈V

logPG(wν+1|wν). (35)

For simplicity, we drop the logP (w0) term (either by
assuming that the initial position w0 is known — as for
Geman and Jedynak [67] or it is specified by a uniform
distribution as in Ref. [68].

To determine the difficulty of the detection task, we
can first evaluate the expected reward if we correctly

detect the position of the curve. This assumes that the
data {zν} are sampled from the distribution P (z|s1) and
the positions {wν} are sampled from PG(wν+1|wν). This
can be compared to the expected reward for curves which
lie off the true position of the curve. Their data values
{zν} are sampled from P (z|s2) and their positions {wν}
are sampled from a default (e.g., uniform) distribution
U(wν+1|wν). The expected rewards for both cases are
given by

〈R({wν})〉s1 = ND(P (·|s1), P (·|s2))−NH(PG),

〈R({wν})〉s2 = −ND(P (·|s2), P (·|s1)) (36)

+N
∑
w

U(w) logPG(w).

From this we see that expected reward on the true
position of the curve is much bigger than the expected
reward of any curve in this image. The difference is
N{D(P (·|s1), P (·|s2))+D(P (·|s2), P (·|s1))+D(PG|U)+
D(U |PG)}. But this analysis ignores the fact that there
are exponentially ‘false curves’ in the image and only
one target curve.

7.2.5 Order parameters

A series of papers [60–64] analyzed the difficulty of de-
tecting curves in images taking into account the expo-
nential number of false targets. The analysis used Sanov
Theorem [7] and related techniques to estimate the prob-
ability of rare events — i.e., that a “false curve” would
have larger reward than the target curve. The analysis
made certain simplifying assumptions (e.g., the target
curves do not intersect) which were checked by computer
simulations [64].

The analysis showed that the performance depended
on an order parameter K provided the length N of the
target curve was sufficiently large. The value of K is
given by

K = D(P (·|s1), P (·|s2)) +D(PG|U)−H(U), (37)

where H(U) is the entropy of the uniform distribution.
If K < 0 then it will be impossible to detect the tar-

get curve since, with high probability, there will be a
false curve whose reward is higher than that of the tar-
get curve. In fact, the Bayes risk for detecting the target
curve will tend to 0 as N 	→ ∞ only if K > 0, see Ref.
[64].

Further analysis [60] shows that the speed of A* infer-
ence algorithms for detecting the target curve (provided
it is detectable) will also depend on the order parame-
ter K. The intuition is simple — the amount of time
that the inference algorithm wastes while searching for
the target curve depends on how easy it is to confuse
the target curve with random curves in the background,
which depends on K. Overall, the expected convergence
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rate of A* and related algorithms is O(N) with a con-
stant that depends on K (and which decreases as K gets
increasingly negative).

7.2.6 High-low: Value of information

The analysis above assumed that we performed inference
using the models that generated the data. But what
happens if we try to perform inference using a simpler
approximate model? This situation can happen because,
of realistic problems, we will not know the ‘true model’
but can only approximate it. In addition, there may be
computational advantages to using a simpler model for
inference because it may give a more efficient algorithm.

We now analyze the value of information lost by using
a weaker prior model. More precisely, in place of the
correct geometric model PG(·) we replace it by a weaker
model PH(·). This defines two different rewards RG and
RH :

RG({wμ}) =
∑

μ

log
P (zμ|s1)
P (zμ|s2) +

∑
μ

log
PG(wμ)
U(wμ)

,

(38)
RH({wμ}) =

∑
μ

log
P (zμ|s1)
P (zμ|s2) +

∑
μ

log
PH(wμ)
U(wμ)

.

The optimal Bayesian strategy to search for the road
would be to use the correct model PG(·) and hence eval-
uate curves based on the reward RG. But how much
do we lose by using the weaker model PH(·) and reward
RH? There may be significant computational savings
by performing inference using a weak first order Markov
model PH when the real prior is a second order Markov
model PG.

The earlier order parameter analysis can be extended
to deal with the case when we perform inference using
the weaker model [63,64]. We compute an order param-
eter KH for the weaker model which are, by necessity,
smaller than the order parameterK of the correct model.
Since the Bayes risk depends on K (in the limit of large
N) this means that there will situations where we the
weaker model is able to detect the target curve but also
cases where the correct model can detect the target while
the weak model cannot:

K > KH > 0, weak model sufficient for detection,

K > 0 > KH , correct model required,
(39)

0 > K > KH , impossible to detect target by

any model.

There is a particularly important special case which
arises if PH satisfies the condition:∑

W

PG(W) logPH(W) =
∑
W

PH(W) logPH(W). (40)

We call this the Amari condition because it arises
within Amari’s theory of information geometry [2].
It corresponds to PH being the projection of PG

onto an exponential sub-manifold. This relates
to minimax entropy theory as follows. Suppose

we learn a distribution PH(W) =
1

Z[λ1]
exp{λ1 ·

φ1(W)} where
∑

W φ1(W)PH(W) = ψ1. Now
consider a distribution PG(W) which depends on
two sufficient potentials φ1(W) and φ2(W) — i.e.,

PG(W) =
1

Z[ν1,ν2]
exp{ν1 · φ1(W) + ν2 · φ2(W)}

— with condition that
∑

W φ1(W)PG(W) = ψ1 and∑
W φ2(W)PG(W) = ψ2. It can easily be checked that

the Amari condition, Equation (40), is satisfied. Hence
the Amari condition will be satisfied if PH is obtained
using the maximum entropy principle using a subset of
the constraints used to determine PG.

In this special case, the order parameter increases by
D(PH ||PG) if we use the weaker model PH for inference.
This helps clarify the value of using additional potentials
in minimax entropy learning.

8 Discussion

This paper has given an introduction to computer vi-
sion from an information theory perspective. We have
described probabilistic models for images and how they
can be used for encoding. We have stressed the neces-
sity of having efficient inference and learning algorithms
for these models and emphasized approaches that use
concepts from information theory. We emphasize that
natural images are extremely complex and that progress
in computer vision comes from having richer and more
realistic image models. In particular, the classical MRF
models of images are being replaced by more advanced
models that involve stochastic grammars and hierar-
chies. Finally, we described how techniques from infor-
mation theory can be used to analyze vision models and
measure the effectiveness of different visual cues.

We stress that this article has only given a brief intro-
duction to this exciting area on the boundary of com-
puter vision and information theory. A recent book [5]
gives far more details about many of the topics covered
here and describes others that we have not had space for.
For example, mutual information [73] has been used as a
measure for finding the correspondence between two im-
ages. This is particularly useful for applications in med-
ical images where the task is to match images that were
taken under different parameter settings which causes
non-linear transformations to the images. The inten-
sities of corresponding points in the images may differ
greatly but mutual information is largely invariant to
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these transformations and so can yield good matching.
Recent work has lead to greater understanding of why
this measure is so effective [74].

Finally, it has long been argued [75,76] that vision
is an active process which involves exploring the real
world. Visual systems — human or robotic — can move
in the world to obtain additional information. Soatto
[77] has recently argued that this requires modifying
and enhancing information theoretic concepts in order
to deal with this dynamic aspect of vision.
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