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I. SECTION DRAFT

This chapter describes methods for estimating the marginals and maximum a posteriori (MAP) estimates
of probability distributions defined over graphs by approximate methods including Mean Field Theory
(MFT), variational methods, and belief propagation. These methods typically formulate this problem in
terms of minimizing a free energy function of pseudomarginals. They differ by the design of the free
energy and the choice of algorithm to minimize it. These algorithms can often be interpreted in terms of
message passing. In many cases, the free energy has a dual formulation and the algorithms are defined
over the dual variables (e.g., the messages in belief propagation). The quality of performance depends
on the types of free energies used – specifically how well they approximate the log partition function of
the probability distribution – and whether there are suitable algorithms for finding their minima. We start
in section (II) by introducing two types of Markov Field models that are often used in computer vision.
We proceed to define MFT/variational methods in section (III), whose free energies are lower bounds of
the log partition function, and describe how inference can be done by expectation-maximization, steepest
descent, or discrete iterative algorithms. The following section (IV) describes message passing algorithms,
such as belief propagation and its generalizations, which can be related to free energy functions (and dual
variables). Finally in section (V) we describe how these methods relate to Markov Chain Monte Carlo
(MCMC) approaches, which gives a different way to think of these methods and which can lead to novel
algorithms.

II. TWO MODELS

We start by presenting two important probabilistic vision models which will be used to motivate the
algorithms described in the rest of the section.

The first type of model is formulated as a standard Markov Random Field (MRF) with input z and output
x. We will describe two vision applications for this model. The first application is image labeling where
z = {zi : i ∈ D} specifies the intensity values zi ∈ {0, 255} on the image lattice D and x = {xi : i ∈ D}
is a set of image labels xi ∈ L, see figure (1). The nature of the labels will depend on the problem.
For edge detection, |L| = 2 and the labels l1, l2 will correspond to ’edge’ and ’non-edge’. For labeling
the MSRC dataset [36] |L| = 23 and the labels l1, ..., l23 include ’sky’, ’grass’, and so on. A second
application is binocular stereo, see figure (2), where the input is the input images to the left and right
cameras, z = (zL, zR), and the output is a set of disparities x which specify the relative displacements
between corresponding pixels in the two images and hence determine the depth, see figure (2) (!!cite:
stereo chapter).

Fig. 1. GRAPHS for different MRF’s. Conventions (far left), basic MRF graph (middle left), MRF graph with inputs zi

(middle right), and graph with lines processors yij (far right).

We can model these two applications by a posterior probability distribution P (x|z) and hence is a
conditional random field [24]. This distribution is defined on a graph G = (V , E) where the set of nodes V
is the set of image pixels D and the edges E are between neighbouring pixels – see figure (1). The x = {xi :
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i ∈ V} are random variables specified at each node of the graph. P (x|z) is a Gibbs distribution specified
by an energy function E(x, z) which contains unary potentials U(x, z) =

∑
i∈V φ(xi, z) and pairwise

potentials V (x,x) =
∑

ij∈E ψij(xi, xj). The unary potentials φ(xi, z) depend only on the label/disparity
at node/pixel i and the dependence on the input z will depend on the application: (I) For the labeling
application φ(xi, z) = g(z)i, where g(.) is a non-linear filter, which can be obtained by an algorithm like
AdaBoost [42], and evaluated in a local image window surrounding pixel i. (II) For binocular stereo, we
can set φ(xi, z

L, zR) = |f(zL)i− f(zR)i+xi
|, where f(.) is a vector-value filter and |.| is the L1-norm, so

that φ(.) takes small values at the disparities xi for which the filter responses are similar on the two images.
The pairwise potentials impose prior assumptions about the local ’context’ of the labels and disparities.
These models typically assume that neighboring pixels will tend to have similar labels/disparities – see
figure (2).

Fig. 2. Stereo. The geometry of stereo (left). A point P in 3-D space is projected onto points PL, PR in the left and right
images. The projection is specified by the focal points OL, OR and the directions of gaze of the cameras (the camera geometry).
The geometry of stereo enforces that points in the plane specified by P, OL, OR must be projected onto corresponding lines
EL, ER in the two images (the epipolar line constraint). If we can find the correspondence between the points on epipolar
lines then we can use trigonometry to estimate their depth, which is (roughly) inversely proportional to the disparity, which
is the relative displacement of the two images. Finding the correspondence is usually ill-posed unless and requires making
assumptions about the spatial smoothness of the disparity (and hence of the depth). Current models impose weak smoothness
priors on the disparity (center). Earlier models assumed that the disparity was independent across epipolar lines which lead to
similar graphic models (right) where inference could be done by dynamic programming.

In summary, the first type of model is specified by a distribution P (x|z) defined over discrete-valued
random variables x = {xi : i ∈ V} defined on a graph G = (V , E):

P (x|z) =
1

Z(z)
exp{−

∑
i∈V

φi(xi, z)−
∑
ij∈E

ψij(xi, xj)}. (1)

The goal will be to estimate properties of the distribution such as the MAP estimator and the marginals
(which relate to each other, as discussed in subsection (III-D):

x∗ = arg max
x

P (x|z), the MAP estimate,

pi(xi) =
∑

x/i

P (x|z), ∀i ∈ V the marginals. (2)

The second type of model has applications to image segmentation, image denoising, and depth smooth-
ing. It is called the weak membrane model and it was proposed independently by Geman and Geman
[16] and Blake and Zisserman [5]). This model has additional ’hidden variables’ y, which are used to
explicitly label discontinuities. It is also a generative model which specifies a likelihood function and a
prior probability (by contrast to conditional random fields which specify the posterior distribution only).
This type of model can be extended by using more sophisticated hidden variables to perform tasks such
as long range motion correspondence [47], object alignment [7], and the detection of particle tracks in
high energy physics experiments [28].

The input to the weak membrane model is the set of intensity (or depth) values z = {zi : i ∈ D} and
the output is x = {xi : i ∈ D} defined on a corresponding output lattice (formally we should specify
two different lattices, say D1 and D2, but this makes the notation too cumbersome). We define a set
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of edges E which connect neighbouring pixels on the output lattice and define the set of line processes
y = {yj : j ∈ De} with yij ∈ {0, 1} over these edges, see figure (1). The weak membrane is a generative
model so it is specified by two probability distributions: (i) the likelihood function P (z|x), which specifies
how the observed image z is a corrupted version of the image x, and (ii) the prior distribution P (x,y)
which imposes a weak membrane by requiring that neighbouring pixels take similar values except at
places where the line process is activated.

The simplest version of the weak membrane model is specified by the distributions:

P (z|x) =
∏
i∈D

√
τ

π
exp{−τ(zi − xi)

2}, P (x,y) ∝ exp{−E(x,y)},

with E(x,y) = A
∑

(i,j)∈E
(xi − xj)

2(1− yij) + B
∑

(i,j)∈E
yij. (3)

In this model the intensity variables xi, zi are continuous-valued while the line processor variables yij ∈
{0, 1}, where yij = 1 means that there is an (image) edge at ij ∈ Ex. The likelihood function P (z|x)
assume independent zero-mean Gaussian noise (for other noise models, like shot noise, see Geiger and
Yuille [14] and Black and Rangarajan [3]). The prior P (x,y) encourages neighboring pixels i, j to have
similar intensity values xi ≈ xj except if there is an edge yij = 1. This prior imposes piecewise smoothness,
or weak smoothness, which is justified by statistical studies of intensities and depth measurements (see
Zhu and Mumford [52], Black and Roth [4]). More advanced variants of this model will introduce higher
order coupling terms of form yijykl into the energy E(x,y) to encourage edges to group into longer
segments which may form closed boundaries.

The weak membrane model leads to a particularly hard inference problem since it requires estimating
continuous and discrete variables, x and y , from P (x,y|z) ∝ P (z|x)P (x,y).

III. MEAN FIELD THEORY AND VARIATIONAL METHODS

Mean field theory (MRT), also known as variational methods, offers a strategy to design inference
algorithms for MRF models. The approach has several advantages: (I) It takes optimization problems
defined over discrete variables and converts them into problems defined in terms of continuous variables.
This enables us to compute gradients of the energy and use optimization techniques that depend on them
such as steepest descent. In particular, we can take hybrid problems defined in terms of both discrete and
continuous variables, like the weak membrane, and convert them into continuous optimization problems.
(II) We can use ’deterministic annealing’ methods to develop ’continuation methods’ where we define
a one-parameter family of optimization problems indexed by a temperature parameter T . We can solve
the problems for large values of T (for which the optimization is simple) and track the solutions to low
values of T (where the optimization is hard), see section (III-D). (III) We can show that MFT gives a
fast deterministic approximation to Markov Chain Monte Carlo (MCMC) stochastic sampling methods,
as described in section (V), and hence can be more efficient that stochastic sampling. (IV) MFT methods
can give bounds for quantities such as the partition function log Z which are useful for model selection
problems, as described in [2].

A. Mean Field Free Energies
The basic idea of MFT is to approximate a distribution P (x|z) by a simpler distribution B∗(x|z) which

is chosen so that it is easy to estimate the MAP estimate of P (.), and any other estimator, from the
approximate distribution B∗(.). This requires specifying a class of approximating distributions {B(.)}, a
measure of similarity between distributions B(.) and P (.), and an algorithm for finding the B∗(.) that
minimizes the similarity measure.

In this chapter, the class of approximating distributions are chosen to be factorizable so that B(x) =∏
i∈V bi(xi), where the b = {bi(xi)} are pseudo-marginals which obey bi(xi) ≥ 0, ∀i, xi and

∑
xi

bi(xi) =
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1, ∀i. This means that the MAP estimate of x = (x1, ..., xN) can be approximated by xi = arg maxxi
b∗(xi)

once we have determined B∗(x). But note that MFT can be extended to ’structured mean field theory,
which allows more structure to the {B(.)}, see [2]. The similarity measure is specified by the Kullback-
Leibler divergence KL(B,P ) =

∑
x B(x) log B(x)

P (x)
which has the properties that KL(B, P ) ≥ 0 with

equality only if B(.) = P (.). It can be shown, see section (III-B), that this is equivalent to a mean field
free energy F =

∑
x B(x)E(x)−∑

x B(x) log B(x).
For the first type of model we define the mean field free energy FMFT(b) by:

FMFT(b) =
∑
ij∈E

∑
xi,xj

bi(xi)bj(xj)ψij(xi, xj)

+
∑
i∈V

∑
xi

bi(xi)φi(xi, z) +
∑
i∈V

∑
xi

bi(xi) log bi(xi). (4)

The first two terms are the expectation of the energy E(x, z) with respect to the distribution b(x) and
the third term is the negative entropy of b(x). If the labels can take only two values – i.e. xi ∈ {0, 1}
– then the entropy can be written as

∑
i∈V{bi log bi + (1− bi) log(1− bi)} where bi = bi(xi = 1). If the

labels take a set of values l = 1, .., N , then we can express the entropy as
∑

i∈V
∑M

l=1 bil log bil where
bil = bi(xi = l) and hence the {bil} satisfy the constraint

∑M
l=1 bil = 1, ∀i.

For the second (weak membrane) model we use pseudo-marginals b(y) for the line processes y only.
This leads to a free energy FMFT(b,x) specified by:

FMFT(b,x) = τ
∑
i∈V

(xi − zi)
2 + A

∑
ij∈E

(1− bij)(xi − xj)
2

+B
∑
ij∈E

bij +
∑
ij∈E

{bij log bij + (1− bij) log(1− bij)}, (5)

where bij = bij(yij = 1) (the derivation uses the fact that
∑1

yij=0 bij(yij)yij = bij). As described below,
this free energy is exact and involves no approximations.

B. Mean Field Free Energy and Variational Bounds
We now describe in more detail the justifications for the mean field free energies. For the first type

of models the simplest derivations are based on the Kullback-Leibler divergence which was introduced
into the machine learning literature by Saul and Jordan [35]. But the mean field free energies can also be
derived by related statistics physics techniques [29] and there were early applications to neural networks
[18], vision [23] and machine learning [31].

Substituting P (x) = 1
Z

exp{−E(x)} and B(x) =
∏

i∈V bi(xi) into the Kullback-Leibler divergence
KL(B, P ) gives:

KL(B,P ) =
∑
x

B(x)E(x) +
∑
x

B(x) log B(x) + log Z = FMFT(B) + log Z. (6)

Hence minimizing FMFT(B) with respect to B gives: (i) the best factorized approximation to P (x),
and (ii) a lower bound to the partition function log Z ≥ minB FMFT(B) which can be useful to assess
model evidence [2].

For the weak membrane model the free energy follows from Neal and Hinton’s variational formulation
of the expectation maximization EM algorithm [27]. The goal of EM is to estimate x from P (x|z) =∑

y P (x,y|z) after treating the y as ’nuisance variables’ which should be summed out [2]. This can be
expressed [27] in terms of minimizing the free energy function:
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FEM(B,x) = −
∑
y

B(y) log P (x,y|z) +
∑
y

B(y) log B(y). (7)

The equivalence of minimizing FEM[B,x] and estimating x∗ = arg maxx P (x|z) can be verified by
re-expressing FEM[B,x] as − log P (x|z) +

∑
y B(y) log B(y)

P (y|x,z)
, from which it follows that the global

minimum occurs at x∗ = arg minx{− log P (x|z)} and B(y) = P (y|x∗, z) (because the second term is
the Kullback-Leibler divergence which is minimized by setting B(y) = P (y|x, z).

The EM algorithm minimizes FEM[B,x] with respect to B and x alternatively, which gives the E-
step and the M-step respectively. For the basic weak membrane model both steps of the algorithm can
be performed simply. The E-step requires minimizing a quadratic function, which can be performed by
linear algebra, while the M-step can be computed analytically:

Minimize wrt x {
∑

i

τ(xi − zi)
2 + A

∑

(i,j)∈E

bij(xi − xj)
2, (8)

B(y) =
∏

(i,j)∈E

bij(yij) bij =
1

1 + exp{−A(xi − xj)2 + B} . (9)

The EM algorithm is only guaranteed to converge to a local minimum of the free energy and so
good choices of initial conditions are needed. A natural initialization for the weak membrane model is
to set x = z, perform the E-step, then the M-step, and so on. Observe that the M-step corresponds
to performing a weighted smoothing of the data z where the smoothing weights are determined by the
current probabilities B(y) for the edges. The E-step estimates the probabilities B(y) for the edges given
the current estimates for the x.

Notice that the EM free energy does not put any constraints of the form of the distribution B and
yet the algorithm results in a factorized distribution, see equation (9). This results naturally because
the variables that are being summed out – the y variables – are conditionally independent (i.e. there
are no terms in the energy E(x, z) which couple yij with its neighbors). In addition we can compute
P (x|z) =

∑
y P (x,y|z) analytically to obtain 1

Z
exp{−τ

∑
i∈mD(xi − zi)

2 −∑
ij∈mE g(xi − xj)}, where

g(xi−xj) = − log{exp{−A(xi−xj)
2}+exp{B}}. The function g(xi−xj) penalizes xi−xj quadratically

for small xi − xj but tends to a finite value asymptotically for large |xi − xj|.
Suppose, however, that we consider a modified weak membrane model which includes interactions

between the line processes – terms in the energy like C
∑

(ij)×(kl)∈Ey
yijykl which encourage lines to be

continuous. It is now impossible either to: (a) solve for B(y) in closed form for the E-step of EM, or
(b) to compute P (x|y) analytically. Instead we use the mean field approximation by requiring that B is
factorizable – B(y) =

∏
ij∈E bij(yij). This gives a free energy:

FMFT(b,x) = τ
∑
i∈V

(xi − zi)
2 + A

∑
ij∈E

(1− bij)(xi − xj)
2

+B
∑
ij∈E

bij + C
∑

(ij)×(kl)∈Ey

bijbkl +
∑
ij∈E

{bij log bij + (1− bij) log(1− bij). (10)

.

C. Minimizing the Free Energy by Steepest Descent and its Variants
The mean field free energies are functions of continuous variables (since discrete variables have been

replaced by continuous probability distributions) which enables us to compute gradients of the free energy.
This allows us to use steepest descent algorithms and its many variants. Suppose we take the MFT free



6

energy from equation (4), restrict xi ∈ {0, 1}, set bi = bi(xi = 1), then basic steepest descent can be
written as:

dbi

dt
= −∂FMFT

∂bi

, (11)

= 2
∑

j

∑
xj

ψij(xi, xj)bj + φi(xi)− {bi log bi + (1− bi) log(1− bi)}.

The MFT free energy decreases monotonically because dFMFT

dt
=

∑
i

∂FMFT

∂bi

dbi

dt
= −∑

i{∂FMFT

∂bi
}2 (note

that the energy decreases very slowly for small gradients – because the square of a small number is very
small). The negative entropy term {bi log bi + (1− bi) log(1− bi)} is guaranteed to keep the values of bi

within the range [0, 1] (since the gradient of the negative entropy equals log b1/(1 − bi) which becomes
infinitely large as bi 7→ 0 and bi 7→ 1).

In practice, we must replace equation (11) by a discrete approximation of form bt+1
i = bt

i −∆∂FMFT

∂bi
,

where bt
i is the state at time t. But the choice of the step size ∆ is critical. If it is too large then the

algorithm will fail to converge but if it is too small then the algorithm will converge very slowly. We refer
to Press et al [32] for a detailed discussion of variants of steepest descent and their numerical stability and
convergence properties. A simple variant, which has often been used for mean field theory applications
to vision [23],[46] is to multiply the free energy gradient ∂FMFT

∂bi
in equation (11) by a positive function

(ensuring that the free energy decreases monotonically). A typical choice of function is bi(1− bi) which,
interestingly, gives dynamics which are identical to models of artificial neural networks [18].

There is a related class of discrete iterative algorithms which can be expressed in form bt+1 = f(bt) for
some function f(.). They have two advantages over steepest descent algorithms: (i) they are guaranteed
to decrease the free energy monotonically (i.e. FMFT (bt+1) ≤ FMFT (bt)), and (ii) they are non-local so
that bt+1 may be distant from bt which can enable to escape some of the local minima which can trap
steepest descent. Algorithms of this type can be derived by using closely principles such as variational
bounding [34],[21], majorization [9], and CCCP [51]. It can be shown that many existing discrete iterative
algorithms (e.g., EM, generalized iterative scaling, Sinhkorn’s algorithm) can be derived using the CCCP
principle [51]. For a recent discussion and entry point into this literature see [37].

D. Temperature and Deterministic annealing
So far we have concentrated on using MFT to estimate the marginal distributions. We now describe how

MFT can attempt to estimate the most probable states of the probability distribution x∗ = arg maxx P (x).
The strategy is to introduce a temperature parameter T and a family of probability distributions related
to P (x). (Refer to chapter by Weiss!!).

More precisely, we define a one-parameters family of distributions ∝ {P (x)}1/T where T is a tem-
perature parameter (the constant of proportionality is the normalization constant). This is equivalent to
specifying Gibbs distributions P (x; T ) = 1

Z(T )
exp{−E(x)/T}, where the default distribution P (x) occurs

at T = 1. The key observation is that as T 7→ 0, the distribution gets strongly peaked about the state
x∗ = arg minx E(x) with lowest energy (or states if there are two or more global minima). Conversely,
at T 7→ ∞ all states will become equally likely and P (x; T ) will tend to the uniform distribution.

Introducing this temperature parameter modifies the free energies by multiplying the entropy term by
T . For example, we modify equation (4) to be

FMFT()
¯
=

∑
ij∈E

∑
xi,xj

bi(xi)bj(xj)ψij(xi, xj)

+
∑
i∈V

∑
xi

bi(xi)φi(xi, z) + T
∑
i∈V

∑
xi

bi(xi) log bi(xi). (12)
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Fig. 3. The probability distribution P (x; T ) gets sharply peaked as T 7→ 0 and tends to a uniform distribution for large T
(left). The mean field free energy F is convex for large T and becomes less smooth as T decreases (right). This motivates
simulated annealing and deterministic annealing, which is related to graduated non-convexity. For some models, there are phase
transitions where the minima of the free energy change drastically at a critical temperature Tc.

Observe that for large T , the convex entropy term will dominate the free energy causing it to become
convex. But for small T , the remaining terms dominate. In general, we expect that the landscape of the free
energy will become smoothed as T increases and in some cases it is possible to compute a temperature Tc

above which the free energy has an obvious solution [12]. This motivates a continuation approach known
as deterministic annealing which involves minimizing the free energy at large temperatures and using
this to provide initial conditions for minimizing the free energies at smaller temperatures. In practice,
the best results often require introducing temperature dependence into the parameters [12]. At sufficiently
small temperatures the global minima of the free energy can approach the MAP estimates but technical
conditions need to be enforced, see [48].

Deterministic annealing was motivated by simulated annealing [22] performs stochastic sampling, see
section (V) from the distribution P (x; T ) gradually reducing T , so that eventually the samples come
form P (x : T = 0) and hence correspond to the global minimum x = arg minx E(x). This approach is
guaranteed to converge [16] but the theoretically guaranteed rate of convergence is impractically slow and
so, in practice, rates are chosen heuristically. Deterministic annealing is also related to the continuation
techniques described in Blake and Zisserman [5] to obtain solutions to the weak membrane model.

IV. BETHE FREE ENERGY AND BELIEF PROPAGATION

We now present a different approach to estimating (approximate) marginals and MAPs of an MRF.
This is called belief propagation BP. It was originally proposed as a method for doing inference on trees
(e.g. graphs without closed loops) [30] for which it is guaranteed to converge to the correct solution (and
is related to dynamic programming). But empirical studies showed that belief propagation will often yield
good approximate results on graphs which do have closed loops [26].

To illustrate the advantages of belief propagation, consider the binocular stereo problem which can be
addressed by using the first type of model. For binocular stereo there is the epipolar line constraint which
means that, provided we know the camera geometry, we can reduce the problem to one-dimensional
matching, see figure (2). We impose weak smoothness in this dimension only and then use dynamic
programming to solve the problem [15]. But a better approach is to impose weak smoothness in both
directions which can be solved (approximately) using belief propagation [39], see figure (2).

Surprisingly the fixed points of belief propagation algorithms correspond to the extreme of the Bethe
free energy [44]. This free energy, see equation (18), appears better than the mean field theory free energy
because it includes pairwise pseudo-marginal distributions and reduces to the MFT free energy if these are
replaced by the product of unary marginals. But, except for graphs without closed loops (or a single closed
loop), there are no theoretical results showing that the Bethe free energy yields a better approximation
than mean field theory. There is also no guarantee that BP will converge for general graphs and it can
oscillate widely.
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A. Message Passing
BP is defined in terms of messages mij(xj) from i to j, and is specified by the sum-product update

rule:
mt+1

ij (xj) =
∑
xi

exp{−ψij(xi, xj)− φi(xi)}
∏

k 6=j

mt
ki(xi). (13)

The unary and binary pseudomarginals are related to the messages by:

bt
i(xi) ∝ exp{−φi(xi)}

∏

k

mt
kj(xj), (14)

bt
kj(xk, xj) ∝ exp{−ψkj(xk, xj)− φk(xk)− φj(xj)}

×
∏

τ 6=j

mt
τk(xk)

∏

l 6=k

mt
lj(xj). (15)

The update rule for BP is not guaranteed to converge to a fixed point for general graphs and can
sometimes oscillate wildly. It can be partially stabilized by adding a damping term to equation (13). For
example, by multiplying the right hand side by (1− ε) and adding a term εmt

ij(xj).
To understand the converge of BP observe that the pseudo-marginals b satisfy the admissibility con-

straint:
∏

ij bij(xi, xj)∏
i bi(xi)ni−1

∝ exp{−
∑
ij

ψij(xi, xj)−
∑

i

φ(xi)} ∝ P (x), (16)

where ni is the number of edges that connect to node i. This means that the algorithm re-parameterizes
the distribution from an initial specification in terms of the φ, ψ to one in terms of the pseudo-marginals
b. For a tree, this re-parameterization is exact (i.e. the pseudo-marginals become the true marginals of the
distribution – e.g., we can represent a one-dimensional distribution by P (x) = 1

Z
{−∑N−1

i=1 ψ(xi, xi+1)−∑N
i=1 φi(xi)} or by

∏N−1
i=1 p(xi, xi+1)/

∏N−1
i=2 p(xi).

Fig. 4. Message passing (left) is guaranteed to converge to the correct solution on graphs without closed loops (center) but
only gives good approximations on graphs with a limited number of closed loops (right).

It follows from the message updating equations (13,15) that at convergence, the b’s satisfy the consis-
tency constraints:

∑
xj

bij(xi, xj) = bi(xi),
∑
xi

bij(xi, xj) = bj(xj). (17)

This follows from the fixed point conditions on the messages – mkj(xj) =
∑

xk
exp{−φk(xk)} exp{−ψjk(xj, xk)}∏

l 6=j mlk(xk) ∀k, j, xj .
In general, the admissibility and consistency constraints characterize the fixed points of belief propa-

gation. This has an elegant interpretation within the framework of information geometry [19].
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B. The Bethe Free Energy
The Bethe free energy [11] differs from the MFT free energy by including pairwise pseudo-marginals

bij(xi, xj):

F [b; λ] =
∑
ij

∑
xi,xj

bij(xi, xj)ψij(xi, xj) +
∑

i

∑
xi

bi(xi)φi(xi)

+
∑
ij

∑
xi,xj

bij(xi, xj) log bij(xi, xj)−
∑

i

(ni − 1)
∑
xi

bi(xi) log bi(xi), (18)

But we must also impose consistency and normalization constraints which we impose by lagrange
multipliers {λij(xj)} and {γi}:

∑
i,j

∑
xj

λij(xj){
∑
xi

bij(xi, xj)− bj(xj)}

+
∑
i,j

∑
xi

λji(xi){
∑
xj

bij(xi, xj)− bi(xi)}+
∑

i

γi{
∑
xi

bi(xi)− 1}. (19)

It is straightforward to verify that the extreme of the Bethe free energy also obey the admissibility and
consistency constraints. Hence the fixed points of belief propagation correspond to extrema of the Bethe
free energy.

If the goal of belief propagation is to minimize the Bethe Free Energy then why not use direct methods
like steepest descent or discrete iterative algorithms instead? One disadvantage is these methods require
working with pseudomarginals that have higher dimensions than the messages (contrast bij(xi, xj) with
mij(xj)). Discrete iterative algorithms have been proposed [50],[17] which are more stable than belief
propagation and which can reach lower values of the Bethe Free Energy. But these DIA must have
an inner loop to deal with the consistency constraints and hence take longer to converge than belief
propagation. The difference between these direct algorithms and belief propagation can also be given an
elegant geometric interpretation in terms of information geometry [19].

C. Where do the messages come from? The dual formulation.
Where do the messages in belief propagation come from? At first glance, they do not appear directly

in the Bethe free energy. But observe that the consistency constraints are imposed by lagrange multipliers
λij(xj) which have the same dimensions as the messages.

We can think of the Bethe free energy as specifying a primal problem defined over primal variables b
and dual variables λ. The goal is to minimize F [b; λ] with respect to the primal variables and maximize it
with respect to the dual variables. There corresponds a dual problem which can be obtained by minimizing
F [b; λ] with respect to b to get solutions b(λ) and substituting them back to obtain F̂d[λ] = F [b(λ); λ].
Extrema of the dual problem correspond to extrema of the primal problem (and vice versa).

It is straightforward to show that minimizing F with respect to the b’s give the equations:

bt
i(xi) ∝ exp{−1/(ni − 1){γi −

∑
j

λji(xi)− φi(xi)}}, (20)

bt
ij(xi, xj) ∝ exp{−ψij(xi, xj)− λt

ij(xj)− λt
ji(xi)}. (21)

Observe the similarity between these equations and those specified by belief propagation, see equa-
tions (13). They become identical if we identify the messages with a function of the λ’s:

λji(xi) = −
∑

k∈N(i)/j

log mki(xi). (22)
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There are, however, two limitations of the Bethe free energy. Firstly it does not provide a bound of the
partition function (unlike MFT) and so it is not possible to using bounding arguments to claim that Bethe
is ’better’ than MFT (i.e. it is not guaranteed to give a tighter bound). Secondly, Bethe is non-convex
(except on trees) which has unfortunate consequences for the dual problem – the maximum of the dual
is not guaranteed to correspond to the minimum of the primal. Both problems can be avoided by an
alternative approach, described in Weiss’s chapter!! which gives convex upper bounds on the partition
function and specifies convergent (single-loop) algorithms.

V. STOCHASTIC INFERENCE

Stochastic sampling methods – markov chain monte carlo (MCMC) – can also be applied to obtain
samples from an MRF which can be used to estimate states. For example, Geman and Geman [16] used
simulated annealing – MCMC with changing temperature – to perform inference on the weak smoothness
model. As we describe, stochastic sampling is closely related to MFT and BP. Indeed both can be derived
as deterministic approximations to MCMC.

A. MCMC
MCMC is a stochastic method for obtaining samples from a probability distribution P (x). It requires

choosing a transition kernel K(x|x′) which obeys the fixed point condition P (x) =
∑

x′ K(x|x′)P (x′).
In practice, the kernel is usually chosen to satisfy the stronger detailed balance condition P (x)K(x′|x) =
K(x|x′)P (x′) (the fixed point condition is recovered by taking

∑
x′). In addition the kernel must satisfy

additional conditions K(x|x′) ≥ 0,
∑

x K(x|x′) = 1 ∀x′, and for any pair of states x,x′ it must be
possible to find a trajectory {xi : i = 0, .., N} such that x = x0, x′ = xN , and K(xi+1|xi) > 0 (i.e. there
is a non-zero probability of moving between any two states by a finite number of transitions).

This defines a random sequence x0,x1, ....,xn where x0 is specified and xi+1 is sampled from K(xi+1|xi).
It can be shown that xn will tend to a sample from P (x) as n 7→ ∞, independent of the initial state
x0, and the convergence rate is exponential in the magnitude of the second largest eigenvalue of K(.|.).
Unfortunately this eigenvalue can almost never be calculated and, in practice, tests must be used to
determine if the MCMC has converged to a sample from P (x), see [25].

We now introduce the two most popular types of transition kernels K(x|x′) – the Gibbs sampler and
Metropolis-Hastings. Both satisfy the detailed balance condition and are straightforward to sample from
(i.e. they do not depend on quantities which are hard to compute such as the normalization constant Z of
P (x)). To specify these kernels compactly we use the notation that r denotes a set of graph nodes with
state xr, and /r denotes the remaining graph nodes with state x/r. For example, for the image labeling
problem with MRF given by equation (1), r can label a point i on the image lattice, xr would be the label
xi of that lattice point, and x/r would be the labels of all the other pixels – x/r = {xj : j ∈ V j 6= i}.
But it is important to realize that these kernels can be directed extended to cases where r represents a set
of points on the image lattice – for example, two neighboring points i, j where ij ∈ E and xr is xi, xj .

The Gibbs sampler is one of the most popular MCMCs, partly because it is so simple. It has transition
kernel K(x|x′) =

∑
r ρ(r)Kr(x|x′), where ρ(r) is a distribution on the lattice sites r ∈ V . The default

choice for ρ(.) is the uniform distribution but other choices may be better depending on the specific
application. The Kr(x|x′) are specified by:

Kr(x|x′) = P (xr|x′N(r))δx/r,x′
/r

, (23)

where δa,b is the delta function (i.e. δa,b = 1 for a = b and = 0 otherwise). P (xr|x′N(r)) is the conditional
distribution which, as we illustrate below, takes a simple form for MRFs which makes it easy to sample
from. Each Kr(.|.) satisfies the detailed balance condition and hence so does K(.|.) by linearity. Note
that we require ρ(r) > 0 for all r, otherwise we will not be able to move between any pair of states x,x′

in a finite number of moves.



11

The Gibbs sampler proceeds by first picking a lattice site(s) at random from ρ(.) and then sampling
the state xr of the site from the conditional distribution P (xr|x′N(r)). The conditional distribution will
take a simple form for MRFs and so sampling from it is usually straightforward. For example, consider
the binary-values case with xi ∈ {0, 1} and with potentials ψij(xi, xj) = ψijxixj and φi(xi) = φixi. The
MFT update (using DIA) and the Gibbs sampler are respectively given by:

bt+1
i =

1

1 + exp{2 ∑
j ψijbt

j + φi} ,

xt+1
i is sampled from P (xi|x/i) =

1

1 + exp{xi(
∑

j ψijxj + φi)} . (24)

Equation (24) shows that the updates for Gibbs sampling are similar to the updates for MFT. In fact a
classic result, described in [1], shows that MFT can be obtained by taking the expectation of the update
for the Gibbs sampler. Surprisingly belief propagation can also be derived as the expectation of a more
sophisticated variant of the Gibbs sampler which updates pairs of states simultaneously – where r denotes
neighboring lattice sites i, j – for details see [33].

The Metropolis-Hastings sampler is the most general transition kernel that satisfies the detailed balance
conditions. It is of form:

K(x|x′) = q(x|x′) min{1, p(x)q(x′|x)

p(x′)q(x|x′)}, for x 6= x′. (25)

Here q(x|x′) is a proposal probability (which depends on the application and usually takes a simple
form). The sampler proceeds by selecting a possible transition x′ 7→ x from the proposal probability q(x|x′)
and accepting this transitions with probability min{1, p(x)q(x′|x)

p(x′)q(x|x′)}. A key advantage of this approach is
that it only involves evaluating the ratios of the probabilities P (x) and P (x′) which are typically simple
quantities to compute (see the examples below).

In many cases, the proposal probability q(.|.) is selected to be a uniform distribution over a set of
possible states. For example, for the first type of model we let the proposal probability choose a site
i at a new state value x′i at random (from uniform distributions) which proposes a new state x′. We
always accept this proposal if E(x′) ≤ E(x) and we accept it with probability exp{E(x) − E(x′)}
if E(x′) > E(x). Hence each iteration of the algorithm usually decreases the energy but there is also
the possibility of going uphill in energy space, which means it can escape the local minima which can
trap steepest descent methods. But it must be realized that an MCMC algorithm converges to samples
from the distribution P (x) and not to a fixed states, unless we perform annealing by sampling from the
distribution 1

Z[T ]
P (x)1/T and letting T tend to zero. As discussed in section (III-D), annealing rates must

be determined by trial and error since the theoretical bounds are too slow.
In general, MCMC can be slow unless problem specific knowledge is used. Gibbs sampling is pop-

ular because it very simple and easy to program but can only exploit a limited amount of knowledge
abut the application being addressed. Most practical applications use Metropolis-Hastings with proposal
probabilities which exploit knowledge of the problem. In computer vision, data driven Markov Chain
Monte Carlo (DDMCMC) [40][41] shows how effective proposal probabilities can be, but this required
sophisticated proposal probabilities and is beyond the scope of this chapter. For a detailed introduction to
MCMC methods see [25].

VI. DISCUSSION

This chapter described mean field theory and belief propagation techniques for performing inference ”of
marginals” on MRF models. We discussed how these method could be formulated in terms of minimizing
free energies, such as mean field free energies and the Bethe free energies. See [44] for extensions to
the Kikuchi free energy and the chapter by Weiss!! for convex free energies. We describe a range of
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algorithms that can be used to perform minimization. This includes steepest descent, discrete iterative
algorithms, and message passing. We showed how belief propagation could be described as dynamics
in the dual space of the primal problem specified by the Bethe free energy. We introduce a temperature
parameter which enables inference methods to obtain MAP estimates and also motivates continuation
methods, such as deterministic annealing. We briefly describe stochastic MCMC methods, such as Gibbs
sampling and Metropolis-Hastings, and show that mean field algorithms and belief propagation can both
be thought of as deterministic approximations to Gibbs sampling.

There have been many extensions to the basic methods described in this chapter. We refer to [2]
for an entry into the literature on structured mean field methods, expectation maximization, and the
trade-offs between these approaches. Other recent variants of mean field theory methods are described
in [33]. Recently CCCP algorithms have been shown to be useful for learning latent structural SVMs
with latent variables [45]. Work by Felzenszwalb and Huttenlocher [13] shows how belief propagation
methods can be made extremely fast by taking advantage of properties of the potentials and the multi-
scale properties of many vision problems. Researchers in the UAI community have discovered ways to
derive generalizations of BP starting from the perspective of efficient exact inference [8]. Convex free
energies introduced by Wainwright et al [43] have nicer theoretical properties that the Bethe free energy
and have led to alternatives to BP, such as TRW and provably convergent algorithms– see Weiss chapter!!
Stochastic sampling techniques such as MCMC remains a very active area of research, see [25] for an
advanced introduction to techniques such as particle filtering which have had important applications to
tracking [6]. The relationship between sampling techniques and deterministic methods is an interesting
area of research and there are successful algorithms which combine both aspects. For example, there are
recent nonparametric approaches which combine particle filters with belief propagation to do inference
on graphical models where the variables are continuous valued [38][20]. It is unclear, however, whether
the deterministic methods described in this chapter can be extended to perform the types of inference that
advanced techniques like data driven MCMC can perform [40][41].
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