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Abstract We propose a family of convergent double-loop algorithms which
minimize the TRW free energy. These algorithms are based on the concave con-
vex procedure (CCCP) so we call them TRW-CCCP. Our formulation includes
many free parameters which specify an infinite number of decompositions of the
TRW free energy into convex and concave parts. TRW-CCCP is guaranteed to
converge to the global minima for any settings of these free parameters, includ-
ing adaptive settings if they satisfy conditions defined in this paper. We show
that the values of these free parameters control the speed of convergence of the
the inner and outer loops in TRW-CCCP. We performed experiments on a two-
dimensional Ising model observing that TRW-CCCP converges to the global
minimum of the TRW free energy and that the convergence rate depends on the
parameter settings. We compare with the original message passing algorithm
(TRW-BP) by varying the difficulty of the problem (by adjusting the energy
function) and the number of iterations in the inner loop of TRW-CCCP. We
show that on difficult problems TRW-CCCP converges faster than TRW-BP (in
terms of total number of iterations) if few inner loop iterations are used.
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§1 Introduction
Probabilistic inference – computing a set of marginals and/or the most proba-

ble assignment (MAP estimate) given a large-scale graphical model – has many appli-

cations in computer vision1, 2), protein folding3), genetic analysis4), and neural science
5). If the graphical models are defined over singly-connected graphs (i.e. trees), then

the marginals can be efficiently and exactly computed by belief propagation (BP) al-

gorithms. But exact and efficient algorithms do not exist in general when the models

are defined over graphs with cycles. This motivated researchers to explore approximate

algorithms for graphs with cycles, favoring algorithms which are as accurate as possible

and are guaranteed to converge.

Variational inference algorithms for marginals are obtained via two steps; (1)

selecting a free energy which is a function of pseudo-marginals, and (2) designing an

optimization algorithms to minimize it. The pseudo-marginals which minimize the free

energy yield the approximate marginals. Several convergent algorithms have been ob-

tained for minimizing the Bethe free energy6, 7). But the Bethe free energy, and the

Kikuchi generalization, typically have multiple local minima and so even convergent

algorithms are not guaranteed to find the global minimum. By contrast, the Tree-

reweighted (TRW) free energy8), is constructed as a convex upper bounds of the log

partition function. This implies that there is a single minimum and so any conver-

gent algorithm is guaranteed to find it. But the original message passing algorithm

(TRW-BP) 8) is not guaranteed to be convergent although it often converges efficiently

in practice. This has lead to the recent development of convergent algorithms for free-

energies. Recent examples include Globerson and Jaakkola’s TRW-GP and Meltzeret

al.’s sum-TRW-S which we describe in the discussion section (6).

In this paper, we propose a family of convergent double-loop algorithms to

minimize the TRW free energy. They are designed following the convex concave pro-

cedure (CCCP) and include many free parameters which affect the updates in the inner

and outer loops, and hence control the speed of convergence. These TRW-CCCP algo-

rithms are guaranteed to monotonically decrease the TRW free energy and hence are

guaranteed to converge to the global minimum. We implement TRW-CCCP for the

Ising spin model, explore the convergence rates as a function of the free parameters

and give comparisons to alternative methods. Another motivation for exploring CCCP

algorithms is because of their recent use for learning latent Support Vector Machine
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(SVM) models9).

This paper is organized as follows. We briefly introduce the TRW free energy

and our notation in section (2) and then present a family of CCCP in section (3). TRW-

CCCP algorithms are proposed in section (4) and experiments and discussion follow in

sections (5) and (6), respectively.

§2 TRW Free Energy
Let G = (V, E) be an undirected graph consisting of the vertex setV associ-

ated with discrete-valued random variablesx = {x1, . . . , xn} and an edge setE . We

consider pairwise Markov Random Fields (MRFs) defined over graphG, given by

p(x; θ) = exp





∑

i∈V
θi(xi) +

∑

ij∈E
θij(xi, xj)− Φ(θ)



 ,

where we useθ to denote the set of all parameters{{θi}, {θij}} and Φ(θ) is the

normalizing constant (referred to as the log partition function or negative free en-

ergy). The marginal distribution over a subsetα of the vertex setV is specified by

pα(xα) =
∑

x\xα

p(x; θ) (but this computation is impractical for loopy graphs). Through-

out this paper, we will denote the set of true marginals byp = {pα(xα)} and will focus

on the singleton and pairwise marginalsp = {{pi(xi)}, {pij(xi, xj)}}. We address the

inference task which is to compute, or approximate, the true marginalsp for an MRF

defined over a graphG with cycles.
The task of computing the marginalsp can be re-expressed as a search prob-

lem within the local polytope10), which is the collection of all candidates for the true

marginals – namely the set of beliefsb = {bα(xα)} defined over cliques which satisfy

the consistency constraints between marginals. In the pairwise setting we consider in

this paper, the local polytopeL(G) is defined by

L(G) =

8
>>><
>>>:

b ≥ 0

˛̨
˛̨
˛̨
˛̨
˛

X
xi

bi(xi) = 1, ∀i ∈ V
X
xj

bij(xi, xj) = bi(xi),
X
xi

bij(xi, xj) = bj(xj),
∀xi,

∀xj ,
∀ij ∈ E .

9
>>>=
>>>;

We search over the polytope by defining a free energyL(G). The beliefs which mini-

mize the free energy yield approximations to the marginalsb∗ ' p. The free energies

have the following form;

F (b) = −b · θ − S(b),
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where

−b · θ =
∑

i∈V
〈θi(xi)〉bi

+
∑

ij∈E
〈θij(xi, xj)〉bij

.

Here−b · θ is the linear term which is the expected energy of the MRF andS(b) is the

entropy term. The choice of the entropy term determines the approximation used in the

free energy and, in particular, whether the free energy is convex. The entropyS(b) is

usually chosen so that it is computational tractable.

We introduce the TRW entropy following the original derivation8). Let T be a

spanning tree on the graphG andT be the set of all spanning trees. Then the entropy

of each spanning treeT ∈ T is given by

ST (b) =
∑

i∈V
Si(bi)−

∑

ij∈T

Iij(bij)

whereIij(bij) is the mutual information measured using the pairwise beliefsbij(xi, xj).
The tree entropyST (b) is convex inb over the local polytopeL(G). Now define a prob-

ability distributionρ(T ) over the spanning trees satisfyingρ(T ) ≥ 0 and
∑

T∈T
ρ(T ) =

1. The TRW entropy is given by the weighted linear combination of such tree entropies;

STRW (b) =
∑

T∈T
ρ(T )ST (b) =

∑

i∈V
Si(bi)−

∑

ij∈E
ρijIij(bij)

whereρij is the edge appearance probability ofij ∈ E , meaning the probability that

the edgeij ∈ E appears in the spanning trees (obtained from the distributionρ(T ) over

spanning trees). The TRW entropySTRW (b) is convex over the local polytopeL(G),
since it is a linear combination of convex terms.

More precisely, letρe = {ρij} denote the set of edge appearance probabilities

andv(T ) ∈ {0, 1}|E| be an indicator variable such that[v(T )]ij = 1, ij ∈ T , and

otherwise0. Then, the edge appearance vectorρe is obtained from the distribution

ρ(T ) over the set of spanning tree polytope;

T(G) =

{
ρe ∈ R|E||ρe =

∑

T∈T
ρ(T )v(T )

}
.

We chooseρ(T ) to ensure that all elements of the edge appearance vectorρe are strictly

positive8).
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Then the TRW entropy can be rewritten over the local polytopeL(G) as

S̄TRW (b) =
∑

i∈V
ciSi(bi) +

∑

ij∈E
cijSij(bij) (1)

wherecij = ρij andci = 1 −
∑

j∈Ni

ρij (Ni is the set of neighboring nodes of nodei).

This is of similar form to the Bethe-approximation entropySBethe(b), which can be

obtained by settingρe = 1 (which is not in the spanning tree polytope1 /∈ T(G) and

hence is not guaranteed to be convex if the graph is loopy). In the subsequent sections,

we give convergent algorithms to minimize the following TRW free energy;

FTRW (b) = −b · θ − S̄TRW (b). (2)

§3 CCCP
We now introduce CCCP (the Concave-Convex Procedure)6, 11), which is an

optimization procedure that can monotonically decrease any objective functionF (b),
provided it can be expressed as the difference between two convex functionsf0

vex(b)
andg0

vex(b). Once the function has been expressed asF (b) = f0
vex(b)− g0

vex(b), the

variablesb are updated by satisfying∂f0
vex(bt+1) = ∂g0

vex(bt) where∂ is the gradient

with respect tob. In other words, the variablesb are updated so that the tangent vectors

are the same for both convex functions. CCCP was applied to the Bethe and the more

general Kikuchi free energies6) yielding algorithms, Bethe-CCCP and Kikuchi-CCCP,

which are guaranteed to converge to local minima of the free energies.

We point out that there are an infinite number of ways to express a function

F (b) into convex and concave functions. This can be seen by changing the decompo-

sitionF (b) = f0
vex(b)− g0

vex(b) to a new decomposition by adding a convex function

hvex(b) to f0
vex(b) and subtracting it fromg0

vex(b) (i.e.,F (b) = f0
vex(b)+hvex(b)−

(g0
vex(b) + hvex(b))).

Taking into account the infinite number of decompositions, we can restate the

CCCP framework in reference6, 11). Let Fvex be the set of all convex functions and

Dec(F ) be the set of all pairs of two convex functions such that the difference of the

two convex functions is equal to the objectiveF (b), that is,

Dec(F ) =
{
(fvex, gvex) ∈ F2

vex | fvex(b)− gvex(b) = F (b)
}

.

Then, the following theorem holds for CCCP.
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Fig. 1 Illustration of the geometrical meaning of CCCP for an infinite number of decompositions. An

objective functionF (b) can be monotonically minimized by a series of decompositions{(f t
vex, gt

vex) ∈
Dec(F )}. For each time stept, variablesb are updated so that the two tangent vectors of the two convex

functions are the same.

Theorem 3.1

Given a decomposition of an objective functionF (b) into convex and concave func-

tions,(fvex, gvex) ∈ Dec(F ), the iterative algorithm

∂fvex(bt+1) = ∂gvex(bt) (3)

is guaranteed to monotonically decrease the objective functionF (b).

More generally, the following theorem holds.

Theorem 3.2

Given a series of decompositions of an objective functionF (b) into convex and concave

functions,{(f t
vex, gt

vex) ∈ Dec(F )}, the iterative algorithm

∂f t
vex(bt+1) = ∂gt

vex(bt) (4)

is guaranteed to monotonically decrease the objective functionF (b).

The intuitive meaning of the CCCP framework is illustrated in Fig. 1. Iterative algo-

rithms (3) and (4) give a family of CCCP algorithms induced by an objective function

F (b). If we denote the specific CCCP algorithm under a decomposition(f0
vex, g0

vex) by

CCCP(F ; f0
vex, g0

vex) then the family of CCCP algorithms is given by the collection:

CCCP(F ) = {CCCP(F ; fvex, gvex) | (fvex, gvex) ∈ Dec(F )} . (5)

This means that a CCCP algorithm derived under decomposition(f0
vex, g0

vex)
can be modified to give an infinite number of convergent algorithms.

Many existing algorithms in machine learning and neural networks can be in-

terpreted in terms of CCCP11). This includes Expectation-Maximization (EM), Leg-

endre minimization, Generalized Iterative Scaling, and Sinkhorn’s algorithm. Even
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steepest descent can be derived in this manner. We note that all of these algorithms can

be modified by using alternatives CCCP decompositions.

§4 A family of CCCP to TRW Free Energy
We derive a family of CCCP algorithms to minimize the TRW free energy (2)

by expressing it as the difference of two convex free energies.

Let fvex be a convex free energy which has the form of

fvex(b;u) = −b · θ −
∑

i∈V
uiSi(bi)−

∑

ij∈E
uijSij(bij), (6)

whereu = ({ui}.{uij}) is a free vector to ensure thatfvex(b;u) is convex. In what

follows we useu · S to denote the linear combination of entropies in (6). LetF̃vex be

the set of all convex free energies given by

F̃vex = {fvex | fvex(b;u) ∈ Fvex}
andU be the corresponding set of all the free vectorsu. A sufficient condition foru

is such that all parameters are strictly positive (u > 0). We then decompose the TRW

free energy as∗1

FTRW (b) = −b · θ + fvex(b;u)− gvex(b;u), (7)

where the two convex free energiesfvex(b;u), gvex(b;u) ∈ F̃vex are parameterized

by

fvex(b;u) = −b · θ − ũ · S
gvex(b;u) = −b · θ − u · S.

Hereũ denotes̃u = c + u andc = {{ci}, {cij}} is the coefficient vector given in eq.

(1). A set of free vectorsu which give an infinite number of decompositions (7) are:

UCCCP =
{
u ∈ R|V|+|E| | u ∈ U , ũ ∈ U

}
. (8)

CCCP algorithms applied to the TRW free energy under eq. (7) are guaranteed to

converge for anyu ∈ UCCCP. A sufficient condition is such thatu > 0 andũ > 0, that

is, u > 0 andu > −c.

The resulting TRW-CCCP algorithms are shown in Fig. 2. TRW-CCCP are

comprised of double-loop (outer loop + inner loop). The updates in both the inner and

∗1 Here we restricted ourselves to an infinite number of decompositions in the set of all convex free energies
F̃vex and not in the set of all convex functionsFvex (F̃vex ⊂ Fvex). Algorithms are easily derived
under such the class of decompositions. Other family of decompositions (e.g. polynomials), following
the new CCCP (Section 3 ), could be possible.
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outer loops depend on a free vectoru (i.e., there is a family of updates of inner and outer

loops). In every outer loop, the inner loop needs to be iterated until convergence. The

inner loop corresponds to solving for a set of beliefs that satisfy the local consistency

constraints. Such beliefs can be computed by the unique fixed-point of the inner loop

for any setting of the vectoru ∈ UCCCP. The outer loop, in every iteration, corresponds

to solving for a set of beliefs that satisfies the CCCP update rule (4). The outer loop is

guaranteed to decrease the TRW free energy in any setting of the vectoru ∈ UCCCP.

The family of the algorithms can be controlled by the setting of the free vector, which

yields the difference in the speed of convergence, how fast the inner and outer loops

reach their fixed-points. Experiments are shown in Section 5.

Note that TRW-CCCP in figure 2 is specified by a set of parameters
({

ũi

ũi + ũij

}
,

{
ũij

ũi + ũij

}
,

{
ũi

ui

}
,

{
ũij

uij

})
. (9)

Interestingly, the algorithm can be defined even whenu → ∞. For example, consider

a partial-homogeneous case such thatui = u1 for i ∈ V anduij = u2 for ij ∈ E , i.e.,

all free parametersu can be specified by two parameters(u1, u2). Let u1, u2 satisfy

u2 = αu1 with a positive real valueα > 0. By letting parameteru1 →∞, TRW-CCCP

algorithm ”converges” to the specific algorithm specified by
(

ũi

ũi + ũij
,

ũij

ũi + ũij
,
ũi

ui
,
ũij

uij

)
→

(
1

1 + α
,

α

1 + α
, 1, 1

)
. (10)

CCCP framework itself (see Theorem 3.1,3.2) is not defined whenu → ∞. However,

resulting algorithm TRW-CCCP is defined even in such the case. This results from

parameterization of decompositions of an objective function.

§5 Experiments
We now show numerical results of TRW-CCCP. We experimented with a Ising

spin model on a two dimensional grid8, 12, 13). MRFs are given by

p(x; θ) ∝ exp





∑

i∈V
θixi +

∑

ij∈E
θijxixj



 (11)

wherex ∈ {+1,−1}n. We considered a uniform distribution over two spanning forests

(all horizontal and all vertical chains) for the distribution over spanning treesρ(T ). We

considered the partial homogeneous case for free parametersũ, u such that(ũ1, u2) =
(ũ, 0) using the notation in the last section, i.e.,ũi = ũ for i ∈ V anduij = 0 for
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ij ∈ E . In this case, a sufficient condition forũ is ũ > max{0, {ci}} = 0. We used the

same free parameters(ũ1, u2) = (ũ, 0) over the algorithms.

In our experiments, TRW-CCCP always converged and computed the same

pseudo-marginalsb∗, independent of the setting of parameterũ in the rangẽu > 0.

The converged values were also the same as those of TRW-BP. This means that TRW-

CCCP computed the global minimum of the TRW free energy (because if TRW-BP

converges then it converges to the minimum of the TRW free energy). Fig. 3 shows

numerical results of TRW-CCCP for parameter settings ofũ. The TRW free energies all

monotonically decreased with each step of the outer loop. The effect of the parameterũ

(thusu) on TRW-CCCP was as follows; when the parameter valueu is small, (̃u ≈ 0),

convergence requires a large number of steps of inner loop within each outer loop, but

only a small number of steps of the outer loop. Conversely, if the parameter valueu is

large (̃u À 0), then we need a smaller number of steps of the inner loop within each

outer loop, but a large number of steps of outer loop. Hence there exists a trade-off for

parameteru between the inner and outer loops. The effect of the free parametersu on

TRW-CCCP can also be analytically explained. This is clearer if we look at the TRW-

CCCP algorithms when represented in terms of Lagrange multipliers, see the Appendix.

If the parametersu are large, then each step of the outer loop only causes small changes

to the beliefs – i.e.b(t+1) ' b(t). This means that TRW-CCCP works as a localized

algorithm, which needs more steps of the outer loop to reach the minimum of TRW free

energy but less steps of the inner loop within each outer loop (Fig. 3). Conversely, when

the parametersu are small, the beliefs can change during one iteration of the outer loop

which requires more steps of the inner loop to impose the constraints, see Fig. 3. Thus,

the free parameters work like a set of step sizes in the TRW-CCCP and control to what

extent TRW-CCCP is localized. But the TRW free energy is monotonically decreased

for any settings of the step sizes chosen inUCCCP.

Our experiments, see Fig. 3 (lower panel) showed that TRW-CCCP could

converge faster than TRW-BP in terms of total number of iterations provided: (i) the

energy function had large random weights (leading to greater frustration) and (ii) we

used a small number of iterations of the inner loop. Theoretical convergence of TRW-

CCCP requires that the inner loops converge for each step of the outer loop, but in

practice this requirement seemed unnecessary. For easier problems with small weights,

and presumably less frustration, TRW-BP generally converged faster than TRW-CCCP.

§6 Discussion & Conclusion
This paper presented a framework of a family of CCCP by considering an in-
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finite number of decompositions and introducing theu variables. We illustrated CCCP

in Fig. 1 and stress that many discrete iterative algorithms can be expressed in terms

of CCCP for specific decompositions. It is interesting to consider what new algorithms

we can obtain by exploring the space of decompositions and see how the convergence

properties depend on the settings of the parameteru.

In particular, we developed a new set of convergent CCCP algorithms which

are guaranteed to find the global minimum of the TRW free energy. The algorithms

include many free parameters (u ∈ R|V|+|E|) which could be altered to change the con-

vergence rate. We implemented the TRW-CCCP algorithms, showed that it converged

to the global minimum of the TRW free energy and showed that different settings of

u affected the number of iterations required of the inner and outer loops. In particular,

smaller settings ofu made TRW-CCCP highly non-local, while still reducing the TRW

free energy monotonically.

We compared the speed of TRW-CCCP with alternative algorithms such as

Wainwright’s TRW-BP8) and Meltzer’s convergent sum-TRW-S13). Our experiments

showed that TRW-CCCP was slower if the size of the weights was small and the in-

ner loop was run with strict convergence conditions. But TRW-CCCP converged faster

(in terms of numbers of iterations) than TRW-BP for problems with large weights and

by relaxing the convergence requirement on the inner loops. This suggests that TRW-

CCCP may be useful in this difficult energy function regime. We note that the conver-

gence of sum-TRW-S13) requires performing the updates in a specific order which may

be restrictive on large-scale graphs. By contrast, TRW-CCCP is very flexible and has a

large range of parameter settings which can be used.

A convergent single loop algorithm (TRW-GP) was recently proposed by Glober-

sonet al where the dynamics took place in dual space12). The updates of TRW-GP are

based on gradient descent with a small step size. In practice its convergence is reported

to be slower than TRW-BP, but we did not implement it and compare with TRW-CCCP.

We note that TRW-CCCP can be local or non-local, depending onu, while TRW-GP is

constrained to be local in the dual space.

Finally, we point out that we can obtain Yuille’s Bethe-CCCP algorithm6) from

TRW-CCCP by settingρe = 1 (in 2) and settingu = cmax−cB in UCCCP, wherecB is

the over-counting vector of the Bethe approximation andcmax is the maximum vector.

Heskes7) double-loop algorithm to minimize the general Kikuchi free energies can also

be obtained in a similar manner. The algorithm exploits tighter upper bounds, expecting

that tighter bounds yield faster algorithm. Our algorithm explicitly expresses a family

of upper bounds with free parameters.
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§7 Appendix
We show a family of CCCP algorithms applied to the TRW free energy (TRW-

CCCP), where the outer and inner loops are expressed in terms of beliefs and Lagrange
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multipliers. The Lagrangian of the TRW free energy is given by∗2

LTRW (b; η, ν) = FTRW (b) +
∑

ij∈E

∑
xi

ηij,i(xi)


∑

xj

bij(xi, xj)− bi(xi)




+
∑

ij∈E

∑
xj

ηij,j(xj)

(∑
xi

bij(xi, xj)− bj(xj)

)

+
∑

i∈V
vi

(∑
xi

bi(xi)− 1

)
+

∑

ij∈E
vij


 ∑

xi,xj

bij(xi, xj)− 1


.

The following theorem then holds for the minimization of the Lagrangian.

Theorem 7.1

(Outer loop) For any parametersu taken from the setUCCCP in eq. (8), the following

belief updates are guaranteed to monotonically decrease the TRW free energy if the

multipliersη andν are chosen to ensure that beliefs satisfy the consistency constraints:

b
(t+1)
i (xi) =

[
b
(t)
i (xi)

]ui
ũi exp

{
1
ũi

( ∑

k∈Ni

ηik,i(xi)− ϕi − vi

)
− ci

ũi

}

b
(t+1)
ij (xi, xj) =

[
b
(t)
ij (xi, xj)

]uij
ũij exp

{
− 1

ũij
(ηij,i(xi) + ηij,j(xj) + ϕij + vij)− cij

ũij

}
,

whereũi andũij are given byũi = ui + ci andũij = uij + cij .Hereci andcij are

coefficients of the singleton and pairwise entropiesSi(bi) andSij(bij), respectively,

and given bycij = ρij andci = 1−
∑

j∈Ni

ρij .

Theorem 7.2

The multipliersη andν, which ensure that beliefs satisfy the consistency constraints,

∗2 The setting of constraints here is redundant and either of multipliersνi or νij can be removed.
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are given by the unique fixed-point of the following inner loop;

η
(τ+1)
ij,i (xi) = η

(τ)
ij,i(xi) +

ũiũij

ũi + ũij
ln

∑
xj

b
(t+1)
ij (xi, xj)

b
(t+1)
i (xi)

v
(τ+1)
i = v

(τ)
i + ũi ln

∑
xi

b
(t+1)
i (xi)

v
(τ+1)
ij = v

(τ)
ij + ũij ln

∑
xi,xj

b
(t+1)
ij (xi, xj),

where free parametersu take the same values as the setting in outer loop. The fixed-

point is guaranteed to be reached by serial updates (In each step, one multiplier is

chosen and updated while the other multipliers are fixed.).
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Algorithm 1 TRW-CCCP; A family of CCCP to minimize the TRW free energy.

1. Initialization: b(1)
α (xα) = b(0)

α (xα) ∝ exp
[
θα(xα)

cα

]
α ∈ V ∪ E

2. Choose a free vectoru in the setUCCCP.

3. Inner loop:

bi(xi) ∝
[

bij(xi)
bi(xi)

] ũij
ũi+ũij

bi(xi)

bij(xi, xj) ∝
[

bij(xi)
bi(xi)

]− ũi
ũi+ũij

bij(xi, xj) ij ∈ E

4. Outer loop:

b(t+2)
α (xα) ∝

[
b
(t+1)
α (xα)

b
(t)
α (xα)

]uα
ũα

b(t+1)
α (xα) α ∈ V ∪ E

5. Output: A set of approximate marginalsb∗(' p) when outer loop converges.

Otherwise, set beliefs tob(t) = b(t+1), b(t+1) = b(t+2) and go to2.

Fig. 2 TRW-CCCP in which all updates are expressed in terms of beliefs. For another representation using

Lagrange multipliers, see Appendix. In step1. two beliefs (b(0) andb(1)) are initialized and all beliefs

bα(xα) are set with the corresponding potentialsθα(xα) and entropy coefficientscα.2. A free vectoru,

whose value affects the subsequent updates in outer and inner loops, is taken from the setUCCCP given in

eq. (8). 3. In the inner loop, beliefsb(t+1) are iterated with a serial update schedule until convergence

(Given b(0) andb(1), beliefsb(1) are iterated). In the updates, beliefsbij(xi) are given bybij(xi) =
X
xj

bij(xi, xj). Parameters̃ui andũij denoteũi = ui + ci andũij = uij + cij , respectively.4. When

beliefsb(t+1) are judged to converge in the inner loop, beliefs are incremented by one step usingb(t+1)

andb(t) in the outer loop. 5. When the outer loop is judged to converge by a stopping criterion (e.g.,

||b(t+2) − b(t+1)|| < ε), thenb(t+2) is the final result of the approximate marginalsb∗. Otherwise, set

beliefsb(t) = b(t+1), b(t+1) = b(t+2) and go to2. In any setting ofu ∈ UCCCP, including a series of

free vectorsu1,u2, · · · ∈ UCCCP, TRW-CCCP is guaranteed to converge.
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Fig. 3 Numerical results of TRW-CCCP on a two-dimensional Ising model for some settings of the param-

eter ũ (ũ = 0.1, 0.2, 0.5, 1, 2, 5, 10). The upper two figures show a mixed case (10x10 grid) where the

interaction parameters{θij} and the field parameters{θi} are both uniformly sampled from[−1, 1]. The

TRW free energies are all monotonically decreased with each step of the outer loop (upper left figure). The

behavior was the same for the attractive cases. The upper right figure shows the number of steps of the inner

loop within each outer loop. All results are averaged over 20 samples. In this experiments, we put a strict

criterion on the convergence of the inner loop. We observed an interesting behavior of TRW-CCCP with

respect to parameter̃u (thusu); small values of the parameteru lead to a large number of steps of inner

loop within each outer loop but only a small number of steps of outer loop are needed until convergence.

Conversely, large values of parameteru lead to a small number of steps of the inner loop, within each outer

loop, and more steps of the outer loop. The lower two figures show a mixed case (5x5 grid), where the

parameters{θij} and{θi} are sampled from[−30, 30] and correspond to a more frustrated, and more dif-

ficult, system. The vertical axes show the difference between beliefs at neighboring iteration steps (given by
X

i∈V

X
xi

(b
(t+1)
i (xi)− b

(t)
i (xi))

2). The number of steps of the inner loop was fixed to 1 and 2 in the lower

left and right figures, respectively. Observe that TRW-CCCP converges faster than TRW-BP on these harder

problems in terms of total number of iterations.


