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Abstract. Convolutional neural networks (CNNs), especially fully con-
volutional networks, have been widely applied to automatic medical
image segmentation problems, e.g., multi-organ segmentation. Existing
CNN-based segmentation methods mainly focus on looking for increas-
ingly powerful network architectures, but pay less attention to data sam-
pling strategies for training networks more effectively. In this paper, we
present a simple but effective sample selection method for training multi-
organ segmentation networks. Sample selection exhibits an exploitation-
exploration strategy, i.e., exploiting hard samples and exploring less fre-
quently visited samples. Based on the fact that very hard samples might
have annotation errors, we propose a new sample selection policy, named
Relaxed Upper Confident Bound (RUCB). Compared with other sample
selection policies, e.g., Upper Confident Bound (UCB), it exploits a range
of hard samples rather than being stuck with a small set of very hard
ones, which mitigates the influence of annotation errors during training.
We apply this new sample selection policy to training a multi-organ seg-
mentation network on a dataset containing 120 abdominal CT scans and
show that it boosts segmentation performance significantly.

1 Introduction

The field of medical image segmentation has made significant advances riding
on the wave of deep convolutional neural networks (CNNs). Training convolu-
tional deep networks (CNNs), especially fully convolutional networks (FCNs) [6],
to automatically segment organs from medical images, such as CT scans, has
become the dominant method, due to its outstanding segmentation performance.
It also sheds lights to many clinical applications, such as diabetes inspection,
organic cancer diagnosis, and surgical planning.

To approach human expert performance, existing CNN-based segmentation
methods mainly focus on looking for increasingly powerful network architectures,
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Fig. 1. Examples in a abdominal CT scans dataset which have annotations errors. Left:
vein is included in pancreas segmentation; Middle & Right: missing pancreas header.

e.g., from plain networks to residual networks [5,10], from single stage networks
to cascaded networks [13,16], from networks with a single output to networks
with multiple side outputs [8,13]. However, there is much less study of how to
select training samples from a fixed dataset to boost performance.

In the training procedure of current state-of-the-art CNN-based segmenta-
tion methods [4,11,12,17], training samples (2D slices for 2D FCNs and 3D
sub-volumes for 3D FCNs) are randomly selected to iteratively update network
parameters. However, some samples are much harder to segment than others,
e.g., those which contain more organs with indistinct boundaries or with small
sizes. It is known that using hard sample selection, or called bootstrapping?', for
training deep networks yields faster training, higher accuracy, or both [7,14,15].
Hard sample selection strategies for object detection [14] and classification [7,15]
base their selection on the training loss for each sample, but some samples are
hard due to annotation errors, as shown in Fig.1. This problem may not be
significant for the tasks in natural images, but for the tasks in medical images,
such as multi-organ segmentation, which usually require very high accuracy, and
thus the influence of annotation errors is more significant. Our experiments show
that the training losses of samples (such as the samples in Fig. 1) with annotation
errors are very large, and even larger than real hard samples.

To address this problem, we propose a new hard sample selection pol-
icy, named Relaxed Upper Confident Bound (RUCB). Upper Confident Bound
(UCB) [2] is a classic policy to deal with exploitation-exploration trade-offs [1],
e.g., exploiting hard samples and exploring less frequently visited samples for
sample selection. UCB was used for object detection in natural images [3], but
UCB is easy to be stuck with some samples with very large losses, as the selection
procedure goes on. In our RUCB, we relax this policy by selecting hard samples
from a larger range, but with higher probability for harder samples, rather than
only selecting some very hard samples as the selection procedure goes on. RUCB
can escape from being stuck with a small set of very hard samples, which can
mitigate the influence of annotation errors. Experimental results on a dataset
containing 120 abdominal CT scans show that the proposed Relaxed Upper Con-
fident Bound policy boosts multi-organ segmentation performance significantly.

! In this paper, we only consider the bootstrapping procedure that selects samples
from a fixed dataset.
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2 Methodology

Givena 3D CT scan V = (v;,j = 1, ...,|V]|), the goal of multi-organ segmentation
is to predict the label of all voxels in the CT scan Y = (¢;,§ = 1,..., |V|), where
7; € {0,1,...,|L|} denotes the predicted label for each voxel vj, i.e., if v; is
predicted as a background voxel, then §; = 0; and if v; is predicted as an organ
in the organ space £, then §; = 1, ..., |£|. In this section, we first review the basics
of the Upper Confident Bound policy [2], then elaborate our proposed Relaxed
Upper Confident Bound policy on sample selection for multi-organ segmentation.

2.1 Upper Confident Bound (UCB)

The Upper Confident Bound (UCB) [2] policy is widely used to deal with the
exploration versus exploitation dilemma, which arises in the multi-armed bandit
(MAB) problem [9]. In a K-armed bandit problem, each arm k& = 1,...,K is
recorded by an unknown distribution associated with an unknown expectation.
In each trial t = 1,...,7T, a learner takes an action to choose one of K alternatives
g(t) € {1,..., K} and collects a reward xét()t) The objective of this problem is

to maximize the long-run cumulative expected reward Zthl xét()t) But, as the
expectations are unknown, the learner can only make a judgement based on the

record of the past trails.

At trial ¢, the UCB selects the alternative k maximizing ) + 2}:%, where

Tr=> 4, x,(f) /ny is the average reward obtained from the alternative k based
on the previous trails, ac,(f) = 0 if z is not chosen in the t-th trail. n; is the
number of times alternative k£ has been selected so far and n is the total number
of trail done. The first term is the exploitation term, whose value is higher if the
expected reward is larger; and the second term is the exploration term, which
grows with the total number of actions that have been taken but shrinks with
the number of times this particular action has been tried. At the beginning of
the process, the exploration term dominates the selection, but as the selection
procedure goes on, the one with the best expected reward will be chosen.

2.2 Relaxed Upper Confident Bound (RUCB) Boostrapping

Fully convolutional networks (FCNs) [6] are the most popular model for multi-
organ segmentation. In a typical training procedure of an FCN, a sample (e.g., a
2D slice) is randomly selected in each iteration to calculate the model error and
update model parameters. To train this FCN more effectively, a better strategy
is to use hard sample selection, rather than random sample selection. As sample
selection exhibits an exploitation-exploration trade-off, i.e., exploiting hard sam-
ples and exploring less frequently visited samples, we can directly apply UCB
to select samples, where the reward of a sample is defined as the network loss
function w.r.t. it. However, as the selection procedure goes on, only a small set of
samples with the very large reward will be selected for next iteration according
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to UCB. The selected sample may not be a proper hard sample, but a sample
with annotation errors, which inevitably exist in medical image data as well
as other image data. Next, we introduce our Relaxed Upper Confident Bound
(RUCB) policy to address this issue.

Procedure. We consider that training an FCN for multi-organ segmentation,
where the input images are 2D slices from axial directions. Given a training set
={(L;,Y;)}M,, where I, and Y; denote a 2D slice and its corresponding label
map, and M is the number of the 2D slices, like the MAB problem, each slice
I, is set to be associated with the number of times it was selected n; and the
average reward obtained through the training .J;. After training an initial FCN
with randomly sampling slices from the training set, it is boostrapped several
times by sampling hard and less frequently visited slices. In the sample selection
procedure, rewards are assigned to each training slice once, then the next slice to
train FCN is chosen by the proposed RUCB. The reward of this slice is fed into
RUCB and the statistics in RUCB are updated. This process is then repeated
to select another slice based on the updated statistics, until a max-iteration N
is reached. Statistics are reset to 0 before beginning a new boostrapping phase
since slices that are chosen in previous rounds may no longer be informative.

Relaxed Upper Confident Bound. We denote the corresponding label map
of the input 2D slice I; € REF>*W as Y, = {y; ;}j=1... mxw. If I; is selected to
update the FCN in the ¢-th iteration, the reward obtained for I; is computed by

(1) R E (1)
Ji(©) =~ W S>> 1y =0logpl),| (1)
j=1 1=0

where pgt) ; is the probability that the label of the j-th pixel in the input slice is

[, and pz G is parameterized by the network parameter . If I; is not selected

to update the FCN in the ¢-th iteration, ._71-(15)(('-)) = 0. After n iterations, the

next slice to be selected by UCB is the one maximizing jl-(")

t
V=L, 7 @)/n.
Preliminary experiments show that reward defined above is usually around
[0,0.35]. The exploration term dominates the exploitation term. We thus nor-
malize the reward to make a balance between exploitation and exploration by

7(n)

7(n) : g J;

Ji ) =mind B, 5 = ¢, (2)
{ 22%1J§">/M}

where the min operation ensures that the score lies in [0, §]. Then the UCB score
for I, is calculated as

++/2Inn/n;, where

R )
g = jm 4 [Hn 3)

Uz
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Algorithm 1. Relaxed Upper Confident Bound

Input : FCN parameter ®, input training slices {I; }i=1,...,0m;
parameters « and 3, max number of iterations T
Output: FCN parameter ©;

1 total number of times slices are selected n < 0;

2 number of times slice Iy, ..., I, are selected ni,....,nm, < 0;
3 running index i «+ 0, j1(1>, cery 1ng) «— 05

4 repeat

5 i<—i+1,ni_<—ni+1,n<—n+1;

6 Compute Ji(’) by Eq. 1;

7 | T =0 T s

8 until n = M;

©

Vi, compute ji(M) by Eq. 2, compute ng) by Eq. 3;
w= Zﬁl ql(M)/M, o= std(qEM)); iteration t « 0;

-
(=]

11 repeat

12 t—t+1, a~U0,a);

13| K=30 1" > ptao));

14 randomly select a slice I; from the set {L|¢\™ € Dx ({¢\™}X)};
15 ni—mn,+1,n—n+1;

16 Compute Ji(t) by Eq. 1, ® «— argmine \71.(”(@);

| =, T s

18 Vi, compute J; by Eq. 2, compute ngn) by Eq. 3;

19 until t = T}

As the selection procedure goes on, the exploitation term of Eq.3 will dom-
inate the selection, i.e., only some very hard samples will be selected. But,
these hard samples may have annotation errors. In order to alleviate the influ-
ence of annotation errors, we propose to introduce more randomness in UCB
scores to relax the largest loss policy. After training an initial FCN with ran-
domly sampling slices from the training set, we assign an initial UCB score
qZ(M) = ji(M) + +/2In M/1 to each slice I; in the training set. Assume the UCB
scores of all samples follow a normal distribution N (u,0). Hard samples are
regarded as slices whose initial UCB scores are larger than p. Note that initial
UCB scores are only decided by the exploitation term. In each iteration of our
bootstrapping procedure, we count the number of samples that lie in the range
[+ a- std(qi(M)), +00], denoted by K, where « is drawn from a uniform distri-
bution [0, a] (a = 3 in our experiment), then a sample is selected randomly from
the set {Ii\qgn) € DK({qZ(n)}fVil)} to update the FCN, where Dk (-) denote the
K largest values in a set. Here we count the number of hard samples according
to a dynamic range, because we do not know the exact range of hard samples.
This dynamic region enables our bootstrapping to select hard samples from a
larger range with higher probability for harder samples, rather than only select-
ing some very hard samples. We name our sample selection policy Relaxed Upper
Confident Bound (RUCB), as we choose hard samples in a larger range, which
introduces more variance to the hard samples. The training procedure for RUCB
is summarized in Algorithm 1.
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3 Experimental Results

3.1 Experimental Setup

Dataset: We evaluated our algorithm on 120 abdominal CT scans of normal
cases under IRB (Institutional Review Board) approved protocol. CT scans
are contrast enhanced images in portal venous phase, obtained by Siemens
SOMATOM Sensation64 and Definition CT scanners, composed of (319-1051)
slices of (512 x 512) images, and have voxel spatial resolution of ([0.523—0.977] x
[0.523 — 0.977] x 0.5) mm?>. Sixteen organs (including aorta, celiac AA, colon,
duodenum, gallbladder, interior vena cava, left kidney, right kidney, liver, pan-
creas, superior mesenteric artery, small bowel, spleen, stomach, and large veins)
were segmented by four full-time radiologists, and confirmed by an expert. This
dataset is a high quality dataset, but a small portion of error is inevitable, as
shown in Fig. 1. Following the standard corss-validation strategy, we randomly
partition the dataset into four complementary folds, each of which contains 30
CT scans. All experiments are conducted by four-fold cross-validation, i.e., train-
ing the models on three folds and testing them on the remaining one, until four
rounds of cross-validation are performed using different partitions.

Evaluation Metric: The performance of multi-organ segmentation is evaluated
in terms of Dice-Sgrensen similarity coefficient (DSC) over the whole CT scan.
We report the average DSC score together with the standard deviation over all
testing cases.

Implementation Details: We use FCN-8s model [6] pre-trained on PascalVOC
in caffe toolbox. The learning rate is fixed to be 1x10~% and all the networks are
trained for 80K iterations by SGD. The same parameter setting is used for all
sampling strategies. Three boostrapping phases are conducted, at 20,000, 40,000
and 60,000 respectively, i.e., the max number of iterations for each boostrapping
phase is T' = 20,000. We set 8 = 2, since \/2lnn/n; is in the range of [3.0, 5.0]
in boostrapping phases.

3.2 Evaluation of RUCB

We evaluate the performance of the proposed sampling algorithm (RUCB) with
other competitors. Three sampling strategies considered for comparisons are (1)
uniform sampling (Uniform); (2) online hard example mining (OHEM) [14]; and
(3) using UCB policy (i.e., select the slice with the largest UCB score during
each iteration) in boostrapping.

Table 1 summarizes the results for 16 organs. Experiments show that images
with wrong annotations are with large rewards, even larger than real hard sam-
ples after training an initial FCN. The proposed RUCB outperforms over all
baseline algorithms in terms of average DSC. We see that RUCB achieves much
better performance for organs such as Adrenal gland (from 29.33% to 36.76%),
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Table 1. DSC (%) of sixteen segmented organs (mean =+ standard deviation).

Organs Uniform OHEM UCB RUCB (ours)
Aorta 81.53 £ 4.50 | 77.49 £5.90 |81.02 £ 4.50 |81.03 £+ 4.40
Adrenal gland | 29.33 + 16.26 | 31.44 £+ 16.71 | 33.75 £ 16.26 | 36.76 £+ 17.28
Celiac AA 34.49 £ 12.92 | 33.34 £ 13.86 | 35.89 £ 12.92| 38.45 £+ 12.53
Colon 77.51 £7.89 | 73.20 £8.94 | 76.40 £ 7.89 |77.56 £ 8.65
Duodenum 63.39 £ 12.62 | 59.68 + 12.32 | 63.10 £ 12.62 | 64.86 £+ 12.18
Gallbladder 79.43 £ 23.77 | 77.82 £ 23.58 | 79.10 £ 23.77 | 79.68 £+ 23.46
IvC 78.75 £ 6.54 | 73.73 £8.59 | 77.10 £ 6.54 |78.57 £ 6.69
Left kidney 95.35 &£ 2.53 | 94.24 £ 8.95 |95.53 £ 2.53 |95.57 £ 2.29
Right kidney |94.48 +£9.49 |94.23 £ 9.19 |94.39 £ 9.49 |95.40 £ 3.62
Liver 96.03 £ 1.70 |90.43 £+ 4.74 |95.68 £ 1.70 |96.00 £+ 1.28
Pancreas 77.86 £ 9.92 | 75.32 £ 10.42 | 78.25 £ 9.92 | 78.48 £+ 9.86
SMA 45.36 + 14.36 | 47.18 £+ 12.75 | 44.63 £ 14.36 | 49.59 + 13.62
Small bowel 72.35 £ 13.30|67.44 £ 13.22 | 72.16 + 13.30 | 72.88 £ 13.98
Spleen 95.32 £ 2.17 |94.56 &+ 2.41 |95.16 £ 2.17 |95.09 £+ 2.44
Stomach 90.62 £+ 6.51 |86.37 £ 8.53 |90.70 £ 6.51 |90.92 £ 5.62
Veins 64.95 & 19.96 | 60.87 £ 19.02 | 62.70 £ 19.96 | 65.13 £ 20.15
AVG 73.55 £ 10.28 | 71.08 £ 11.20 | 73.47 £ 10.52 | 74.75 £+ 9.88

Celiac AA (34.49% to 38.45%), Duodenum (63.39% to 64.86%), Right kidney
(94.48% t0 95.40%), Pancreas (77.86% to 78.48%) and SMA (45.36% to 49.59%),
compared with Uniform. Most of the organs listed above are small organs which
are difficult to segment, even for radiologists, and thus they may have more
annotation errors.

OHEM performs worse than Uniform, suggesting that directly sampling
among slices with largest average rewards during boostrapping phase cannot
help to train a better FCN. UCB obtains even slightly worse DSC compared
with Uniform, as it only focuses on some hard examples which may have errors.

To better understand UCB and RUCB, some of the hard samples selected
more frequently are shown in Fig. 2. Some slices selected by UCB contain obvious
errors such as Colon annotation for the first one. Slices selected by RUCB are
very hard to segment since it contains many organs including very small ones.

Parameter Analysis. « is an important hyper-parameter for our RUCB. We
vary it in the following range: a € {0, 1, 2, 3}, to see how the performance of some
organs changes. The DSCs of Adrenal gland and Celiac AA are 35.36 +17.49 and
38.07+£12.75, 32.27+16.25 and 36.97+12.92, 34.424+17.17 and 36.68 +13.73,
32.65+17.26 and 37.09 +12.15, respectively. Using a fixed «, the performance
decreases. We also test the results when K is a constant number, i.e., K = 5000.
The DSC of Adrenal gland and Celiac AA are 33.55+17.02 and 36.80 +12.91.
Compared with UCB, the results further verify that relaxing the UCB score can
boost the performance.
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Aorta CeliacAA  Duodenum Ive Kidney R Pancreas Small Bowel Stomach
Adrenal Gland Colon Gallbladder Kidney L Liver SMA Spleen Veins

Fig. 2. Visualization of samples selected frequently by left: UCB and right: RUCB.
Ground-truth annotations are marked in different colors.

4 Conclusion

We proposed Relaxed Upper Confident Bound policy for sample selection
in training multi-organ segmentation networks, in which the exploitation-
exploration trade-off is reflected on one hand by the necessity for trying all
samples to train a basic classifier, and on the other hand by the demand of assem-
bling hard samples to improve the classifier. It exploits a range of hard samples
rather than being stuck with a small set of very hard samples, which mitigates
the influence of annotation errors during training. Experimental results showed
the effectiveness of the proposed RUCB sample selection policy. Our method
can be also used for training 3D patch-based networks, and with other modality
medical images.
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