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Abstract

Recent development of adversarial attacks has proven
that ensemble-based methods outperform traditional, non-
ensemble ones in black-box attack. However, these methods
generally require a family of diverse models, and ensem-
bling them together afterward, both of which are compu-
tationally expensive. In this paper, we propose Ghost Net-
works to generate transferable adversarial examples. The
critical principle of ghost networks is to apply feature-level
perturbations to an existing model to potentially create a
huge set of diverse models. After that, models are sub-
sequently fused by longitudinal ensemble. Compared to
traditional ensemble methods, our work significantly im-
proves the transferability of adversarial examples, and in
the meantime, requires almost no extra time and memory
consumption. By reproducing the NeurIPS 2017 adversar-
ial competition, our method outperforms the No.1 attack
submission by a large margin, demonstrating its effective-
ness and efficiency. The code will be publicly available.

1. Introduction

In recent years, Convolutional Neural Networks (CNNs)
have advanced performance in various vision tasks. How-
ever, it has been observed that attacking CNNs by adding
human imperceptible perturbations to input images can
cause networks to make incorrect predictions [24]. These
perturbed images are termed as adversarial examples.

Two attack settings are later developed, i.e., white-box
attack and black-box attack. In white-box attack, attackers
can fully access the model [4, 13]. By contrast, in black-
box attack, the target model is invisible to attackers. A typi-
cal solution is to generate adversarial examples with strong
transferability (the same input remain malicious for differ-
ent models [24]). Meanwhile, defense techniques based on
randomization [15, 29], input transformation [8], and train-
ing [17, 25] are also studied.

Focusing on the transferability, many attempts have been
made, such as attacking a substitute model [19] or an en-
semble of multiple substitute models [6, 16, 31]. In partic-
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Figure 1. An illustration of the capacity of the proposed ghost net-
works in learning transferable adversarial examples.

ular, the ensemble-based attacks obtain much better perfor-
mance than the non-ensemble ones, and thus has attracted
many attentions. Almost all top-ranked entries in competi-
tions use ensemble-based attacks [14].

However, the ensemble-based attacks suffer from expen-
sive computational overhead, making it difficult to generate
transferable adversarial examples efficiently. First, in order
to acquire good (i.e., low test error) and diverse (i.e., con-
verge at different local minima) models, people usually in-
dependently train them from scratch. Second, to lever-
age their complementarity, existing methods adopt an inten-
sive aggregation way to fuse the outputs of those networks
(e.g., logits). These two points limit the number of ensem-
bled models in practice, e.g., attacking methods in compe-
titions (like [14]) generally ensemble at most only ten net-
works.

How to generate strong transferable adversarial exam-
ples without additional cost remains a challenging task.
[1, 20, 28] suggest that re-training networks can achieve
high transferability. [2, 5, 7] propose query-based meth-
ods to attack black-box model without substitute models,
which require extensive information from the target model.
In conclusion, acquiring and integrating information from
various models is the key to achieving better transferability.
However, most works are inefficient and inadequate to learn
adversarial examples with strong transferability.

In this paper, we propose a highly efficient alternative
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called Ghost Networks to address this issue. As shown in
Fig. 1, the basic principle is to generate a vast number of
virtual models built on a base network (a network trained
from scratch). The word “virtual” means that these ghost
networks are not stored or trained. Instead, they are gener-
ated by imposing erosion on certain intermediate structures
of the base network on-the-fly. However, with an increasing
number of models we have, a standard ensemble [16] would
be problematic owing to its complexity. Accordingly, we
propose Longitudinal Ensemble, a specific method for ghost
networks, which conducts an implicit ensemble during at-
tack iterations. Consequently, adversarial examples can be
generated without sacrificing computational efficiency.

Extensive experimental results demonstrate our method
improves the transferability of adversarial examples, acting
as a computationally cheap plug-in. In particular, by re-
producing NeurIPS 2017 adversarial competition [14], our
work outperforms the No.1 attack submission by a large
margin, demonstrating its effectiveness and efficiency.

2. Backgrounds
This section introduces two iteration-based methods, It-

erative Fast Gradient Sign Method (I-FGSM) [13] and Mo-
mentum I-FGSM (MI-FGSM) [6]. I-FGSM initializes an
adversarial example Iadv

0 = I and iteratively updates it by

Iadv
n+1 = ClipεI

{
Iadv
n + αsign

(
∇IL(Iadv

n , ytrue; θ)
)}

, (1)

where L is the loss function of a network with parameter
θ. The clip function ClipεI ensures the generated adversar-
ial example within the ε-ball of the original image I with
ground-truth ytrue. n is the iteration number, and α is the
step size. Based on I-FGSM, MI-FGSM integrates the mo-
mentum decay term µ into the attack process to stabilize
update directions and escape from poor local maxima.

3. Ghost Networks
The goal of this work is to learn transferable adversarial

examples. Given an image I , we want to find an adversarial
example Iadv = I + r, which is visually similar to I after
adding adversarial noise ‖r‖∞ < ε but fools the classifier.

Without additional cost, we generate a huge number of
ghost networks from a single trained model for later attack
by applying feature-level perturbations to non-residual and
residual based networks in Sec. 3.1 and Sec. 3.2, respec-
tively. These ghost networks are efficiently emsembled by
our customized method, logitudinal ensemble, see Sec. 3.3.

3.1. Dropout Erosion

Revisit Dropout. Dropout [21] is one of the most popular
techniques in deep learning. Let xl be the activation in the
lth layer, at the training time, the output yl after a dropout

layer can be defined as

yl = rl ∗ xl, rl ∼ Bernoulli(p), (2)

where ∗ denotes an element-wise product and Bernoulli(p)
denotes the Bernoulli distribution with the probability p of
elements in rl being 1.
Perturb Dropout. Dropout provides an efficient way of ap-
proximately combining different neural network architec-
tures and thereby prevents overfitting. Inspired by this, we
propose to generate ghost networks by inserting the dropout
layer. To make ghost networks as diverse as possible, we
densely apply dropout to every block throughout the base
network, rather than simply enable default dropout lay-
ers [3]. Form our preliminary experiments, the latter cannot
provide transferability. Therefore, diversity is not limited to
high-level features but applied to all feature levels.

Let fl be the function between the ith and (i + 1)th

layer, i.e., xl+1 = fl(xl), then the output of fl after ap-
plying dropout erosion, i.e., gl(xl), is

gl(xl) = fl
(rl ∗ xl

1− Λ

)
, rl ∼ Bernoulli(1− Λ), (3)

where Λ = 1−p, and p has the same meaning as in Eq. (2),
indicating the probability that xl is preserved. To keep the
expected input of fl(·) consistent after erosion, the activa-
tion of xl should be divided by 1− Λ.

During the inference, the output feature after (L− 1)-th
dropout layer (L > l) is

xL = gL−1 ◦ gL−2 ◦ gL−3 ◦ · · · ◦ gl(xl). (4)

◦ denotes composite function, i.e., g ◦ f(x) = g (f(x)).
By combining Eq. (3) and Eq. (4), we observe that when

Λ = 0 (means p = 1), all elements in rl equal to 1. In
this case, we do not impose any perturbations to the base
network. When Λ gradually increases to 1 (p decreases to
0), the ratio of elements dropped out is Λ. In other words,
(1− Λ) of elements can be back-propagated. Hence, larger
Λ implies a heavier erosion on the base network. Therefore,
we define Λ to be the magnitude of erosion.

When perturbing dropout layers, the gradient in back-
propagation can be written as

∂xL
∂xl

=
∏

l≤i<L

(
ri

1− Λ
∗ ∂

∂xi
fi

(
ri ∗ xi
1− Λ

))
. (5)

As shown in Eq. (5), deeper networks with larger L are in-
fluenced more easily according to the product rule. Sec. 4.2
will experimentally analyze the impact of Λ.
Generate Ghost Network. The generation of ghost net-
works via perturbing dropout layer proceeds in three steps:
1) randomly sample a parameter set from the Bernoulli dis-
tribution r = {r1, r2..., rl, ..., rL}; 2) apply Eq. (3) to the
base network with the parameter set r and get the per-
turbed network; 3) repeat step 1) and 2) to independently
sample r for N times and obtain a pool of ghost networks
M = {M1,M2, ...,MN} which can be used for attacks.
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Figure 2. An illustration of skip connection (a, Eq. (6)) and skip
connection erosion (b, Eq. (7)).

3.2. Skip Connection Erosion

Revisit Skip Connection. [9] propose skip connections in
CNNs, which makes it feasible to train very deep neural
networks. The residual block is defined by

xl+1 = xl + F (xl,Wl), (6)

where xl and xl+1 are the input and output of the l-th block.
F (·) denotes the residual function with the weights Wl.
Perturb Skip Connection. We propose to perturb skip con-
nections to generate ghost networks. Specifically, the net-
work weights are first learned using identity skip connec-
tions, then switched to the randomized skip connection (see
Fig. 2). To this end, we apply randomized modulating scalar
λl to the l-th residual block by

xl+1 = λlxl + F (xl,Wl), (7)

where λl is drawn from the uniform distribution U [1 −
Λ, 1 + Λ]. One may have observed several similar formu-
lations on skip connection to improve the classification per-
formance, e.g., the gated inference in [26] and lesion study
in [27]. However, our work focuses on attacking the model
with a randomized perturbation on skip connection, i.e., the
model is not trained via Eq. (7).

During inference, the output after (L− 1)th layer is

xL = (

L−1∏
i=l

λi)xl +

L−1∑
i=l

(

L−1∏
j=i+1

λj)F (xi,Wi). (8)

The gradient in back-propagation is then written as

∂xL
∂xl

= (

L−1∏
i=l

λi) +

L−1∑
i=l

(

L−1∏
j=i+1

λj)
∂F (xi,Wi)

∂xl
. (9)

Similar to the analysis in Sec. 3.1, we conclude from Eq. (8)
and Eq. (9) that a larger Λ will have a greater influence on
the base network and deeper networks are easily influenced.
Generate Ghost Network. This step is similar to that via
perturbing the dropout layer. The only difference is we need
to sample a set of modulating scalars λ = {λ1, λ2, ..., λL}.
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Figure 3. The illustration of the standard ensemble (a) and the pro-
posed longitudinal ensemble (b).

3.3. Longitudinal Ensemble

The existing iteration-based ensemble-attack approach
requires averaging the outputs (e.g., logits) of different net-
works [16]. However, this standard ensemble is inefficient
when we can readily obtain a huge candidate pool of quali-
fied models by using Ghost Networks.

To remedy this, we propose longitudinal ensemble, a
specially designed fusion method for Ghost Networks,
which constructs an implicit ensemble of the ghost net-
works by randomizing the perturbations during itera-
tions of adversarial attacks. Suppose we have a base
model B, which can generate a pool of networks M =
{M1,M2, ...,MN}, where N is the model number. The
critical step of longitudinal ensemble is that at the j-th iter-
ation, we attack the ghost network Mj only. In comparison,
for each iteration, standard ensemble methods require fus-
ing gradients of all the models in the model poolM , leading
to high computational cost. We illustrate the difference be-
tween two ensemble methods in Fig. 3.

The longitudinal ensemble shares the same prior as [16]
that if an adversarial example is generated by attacking mul-
tiple networks, it is more likely to transfer to other net-
works. However, longitudinal ensemble method removes
duplicated computations by sampling only one model from
the pool rather than using all models in each iteration.

There are three noteworthy comments here. First, ghost
networks are never stored or trained, reducing both addi-
tional time and space cost. Second, it is evident from Fig. 3
that attackers can combine [16] and longitudinal ensemble
of ghost networks. Finally, it is easy to extend longitudinal
ensemble to multi-model attack by treating each base model
as a branch (details are in experimental evaluations).

4. Experiments

In this section, we give a comprehensive experimental
evaluation of the proposed Ghost Networks. In order to
distinguish models trained from scratch and the ghost net-
works, we call the former one base network/model in the
rest of this paper. We provide additional experimental re-
sults in the appendix.



Methods
Settings Res-50 Res-101 Res-152 IncRes-v2 Inc-v3 Inc-v4

CC
MT #S #L I- MI- I- MI- I- MI- I- MI- I- MI- I- MI-

Exp. S1 Base 1 1 16.3 29.4 17.8 31.3 16.7 29.6 8.3 20.0 5.3 13.7 7.3 18.4 1
Exp. S2 Ghost 1 1 8.4 17.4 6.1 19.9 6.4 17.9 5.7 15.2 1.7 5.6 1.9 7.2 1
Exp. S3 Ghost 1 10 23.4 39.4 23.7 40.1 21.1 38.0 11.2 26.8 6.3 17.6 10.0 22.4 1
Exp. S4 Ghost 10 1 28.8 44.5 29.9 43.2 25.6 41.9 13.1 30.4 6.3 17.9 9.3 25.6 10
Exp. S5 Ghost 10 10 35.9 50.6 35.9 51.4 60.1 64.9 14.6 33.3 12.3 28.3 19.4 37.4 10

Table 1. The average black-box attack rate (%) comparison of different methods over two iterative methods, “I-” for I-FGSM and “MI-” for
MI-FGSM. MT denotes model type, and #S (or #L) denotes the number of models for standard (or longitudinal) ensemble in each iteration
(branch). CC denotes the computational cost, which is a relative value and we set the CC of Exp. S1 as 1. We marked all highest attack
success rate under the same CC in boldface.
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Figure 4. The top-1 accuracy of dropout erosion (a) and skip con-
nection erosion (b) with different magnitude Λ.

4.1. Experimental Setup

Base Networks. 9 base models are used in our experiments,
including 6 normally trained models, i.e., Resnet v2-{50,
101, 152} (Res-{50, 101, 152}) [10], Inception {v3, v4}
(Inc-{v3, v4}) [22, 23] and Inception Resnet v2 (IncRes-
v2) [23], and 3 adversarially-trained models [25] , i.e., Inc-
v3ens3, Inc-v3ens4 and IncRes-v2ens.
Datasets. Following [30], we select 5000 images from the
ILSVRC 2012 validation set, which can be correctly classi-
fied by all the 9 base models.
Attacking Methods. We employ two iteration-based attack
methods mentioned in Sec. 2 to evaluate the adversarial ro-
bustness, i.e., I-FGSM and MI-FGSM.
Parameter Specification. If not specified otherwise, we
follow the default settings in [13], i.e., step size α = 1 and
the total iteration number N = min(ε + 4, 1.25ε). We set
the maximum perturbation ε = 8 (N = 10 in this case). For
MI-FGSM, the decay factor µ is set to be 1 as in [6].

4.2. Analysis of Ghost Networks

In order to learn adversarial examples with good trans-
ferability, there are generally two requirements for the in-
trinsic models – models should have low test error rates and
be diverse. We experiment with the whole ILSVRC 2012
validation set to show the ghost networks’ qualification.
Descriptive Capacity. To measure the descriptive capacity
of the ghost networks, we plot the relationship between the
magnitude of erosion Λ and top-1 classification accuracy.

We apply dropout erosion in Sec. 3.1 to non-residual
networks (Inc-{v3, v4}) and skip connection erosion in
Sec. 3.2 to residual networks (Res-{50, 101, 152} and
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Figure 5. The illustration of the mean diversity (×10−2) of any
pair of networks over the ILSVRC 2012 validation set.The higher
value indicates larger diversity.

IncRes-v2). Fig. 4 (a) and (b) present the accuracy curves
of the dropout and skip connection erosion, respectively.

The classification accuracies of different models are neg-
atively correlated to the magnitude of erosion Λ as expected.
By choosing the performance drop approximately equal to
10% as a threshold, we can determine the value of Λ in-
dividually for each network. Specifically, in our following
experiments, Λs are 0.006, 0.012, 0.22, 0.16, 0.12 and 0.08
for Inc-{v3, v4}, Res-{50, 101 ,152}, and IncRes-v2 re-
spectively. As emphasized throughout this paper, it is ex-
tremely cheap to generate a huge number of ghost networks
that still preserve relative low error rates.
Model Diversity. To measure diversity, we use Res-50 as
the backbone model. We denote the base Res-50 described
in Sec. 4.1 as Res-50-A, and independently train two addi-
tional models with the same architecture, denoted as Res-
50-{B, C}. Meanwhile, we apply skip connection erosion
to Res-50-A, then obtain three ghost networks denoted as
Res-50S-{A, B, C} respectively.

We employ the Jensen-Shannon Divergence (JSD) as the
evaluation metric for model diversity. Concretely, we com-
pute the pairwise similarity of the output probability distri-
bution for each pair of networks as in [11]. Given an image,
X and Y denotes the softmax outputs of two networks, then

JSD(X‖Y ) =
1

2
D(X‖Z) +

1

2
D(Y ‖Z), (10)

where Z is the average of X and Y , i.e., Z = (X + Y )/2.
D(·) is the Kullback-Leibler divergence.

In Fig. 5, we report the averaged JSD for all pairs of
networks over the ILSVRC 2012 validation set. As can be



Methods
Black-box Attack White-box Attack

TsAIL iyswim Anil Thomas Average Inc-v3 adv IncRes-v2 ens Inc-v3 Average

No.1 Submission 13.60 43.20 43.90 33.57 94.40 93.00 97.30 94.90
No.1 Submission+ours 14.80 52.28 51.68 39.59 97.62 96.00 95.48 96.37

Table 2. The attack rate (%) comparison in the NeurIPS 2017 Adversarial Challenge.

drawn, the diversity among ghost networks is comparable or
even more significant than independently trained networks.

Based on the analysis above, we can see that ghost net-
works can provide accurate yet diverse descriptions of the
data manifold, which is beneficial to learn transferable ad-
versarial examples as we will experimentally prove below.

4.3. Single-model Attack

Firstly, we evaluate the ghost networks in single-model
attack, where attackers can only access one base model B
trained from scratch. We design five experimental compar-
isons. The setting, performance and properties are shown
in Table 1. The difference among five experiments is the
type of model to attack, the number of models ensembled by
standard ensemble [16] in each iteration, and by longitudi-
nal ensemble in each branch of [16]. For example, Exp. S5
combines two ensemble methods, that is, we do a standard
ensemble of 10 models for each iteration and a longitudinal
ensemble of 10 models for each standard ensemble branch.
Therefore, Exp. S5 intrinsically ensembles 100 models.

We attack 6 normally-trained networks and test on all the
9 networks (include 3 adversarially-trained networks). The
attack rate is shown in Table 1. To save space, we report the
average attack rate for black-box models. All the individual
cases are shown in the appendix.

As can be drawn from Table 1, a single ghost network is
worse than the base network (Exp. S2 vs. Exp. S1), due to
the inferior descriptive power of ghost networks. However,
by leveraging the longitudinal ensemble, our work achieves
a higher attack rate in most settings (Exp. S3 vs. Exp. S1).

This observation firmly demonstrates the effectiveness of
ghost networks in learning transferable adversarial exam-
ples. It should be mentioned that the computational cost of
Exp. S3 remains the same as Exp. S1 since 1) the 10 ghost
networks used in Exp. S3 are not trained but eroded from
the base model and used on-the-fly, and 2) multiple ghost
networks are fused via the longitudinal ensemble.

The proposed ghost networks can also be fused via
the standard ensemble method, as shown in Exp. S4, and
achieve a higher attack rate at the sacrifice of computational
efficiency. This observation inspires us to combine two en-
semble methods (Exp. S5). As we can see, Exp. S5 consis-
tently beats all the compared methods in all the black-box
settings. Of course, Exp. S5 is as computational expensive
as Exp. S4. However, the overhead stems from the standard
ensemble rather than longitudinal ensemble.

Note that in all the experiments presented in Table 1,
we use only one individual base model. Even in the case

of Exp. S3, all the to-be-fused models are ghost networks.
However, the generated ghost networks are never stored or
trained, meaning no extra space complexity. Therefore, the
benefit of ghost networks is obvious. Especially when com-
paring Exp. S5 and Exp. S1, ghost networks can achieve a
substantial improvement in black-box attack.

Based on the experimental results above, we arrive at a
similar conclusion as [16]: the number of intrinsic models
is essential to improve the transferability of adversarial ex-
amples. However, a different conclusion is that it is less
necessary to train different models independently. Instead,
ghost networks is a computationally cheap alternative en-
abling good performance. When the number of intrinsic
models increases, the attack rate will increase.

4.4. NeurIPS 2017 Adversarial Challenge

Then, we evaluate our method in a benchmark test of the
NeurIPS 2017 Adversarial Challenge [14], a typical multi-
model attack setting. For evaluation, we use the top-3 de-
fense submissions (black-box models), i.e., TsAIL, iyswim
and Anil Thomas, and three official baselines (white-box
models), i.e., Inc-v3adv, IncRes-v2ens and Inc-v3.

Our settings are exactly the same with the No.1 attack
submission [6], but replace each clean trained model to a
ghost model in each attack iteration, which incurs almost
neither extra computational cost nor additional memory us-
age. The results are summarized in Table 2. Consistent with
previous experiments, we observe that by using ghost net-
works, the performance of the No. 1 submission can be sig-
nificantly improved, especially with black-box attack. This
suggests that our method generalize well to other defenses.

5. Conclusion

This paper focuses on learning transferable adversarial
examples for adversarial attacks. We propose, for the first
time, to exploit network erosion to generate a kind of virtual
models called ghost networks. Ghost networks, together
with the coupled longitudinal ensemble strategy, requiring
almost no additional time and space consumption, is an ef-
fective tool to improve existing methods in learning trans-
ferable adversarial examples. Extensive experiments have
firmly demonstrated the efficacy of ghost networks. Mean-
while, one can potentially densely erode other typical layers
(e.g., batch norm [12] and relu [18]) through a neural net-
work. We suppose these methods could improve the trans-
ferability as well, and leave these issues as future work.
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A. Detail Results
Due to the space limitation, the comparison of performance under the setting of single-model attack has to be simplified in

the main manuscript. The goal of this section is to present a detailed comparison rather than the average values in the Table. 1.
Therefore, in Fig. 6, Fig. 7, Fig.8, Fig.9, Fig. 10 and Fig. 11, we present the comparison of attack rates of adversarial examples
generated by a single base model (Res-50, Res-101, Res-152, IncRes-v2, Inc-v3 and Inc-v4 for each figure).
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Figure 6. The attack rate comparison when attacking Res-50, and testing on all the base models.
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(b) MI-FGSM
Figure 7. The attack rate comparison when attacking Res-101, and testing on all the base models.

Res-5
0

Res-1
01

Res-1
52

IncRes-v
2

Inc-v3
Inc-v4

Inc-v3 ens3

IncRes-v
2 ens

Inc-v3 ens4

0

0.2

0.4

0.6

0.8

1

A
tt

ac
k 

R
at

e

Exp. S1
Exp. S2
Exp. S3
Exp. S4
Exp. S5

(a) I-FGSM

Res-5
0

Res-1
01

Res-1
52

IncRes-v
2

Inc-v3
Inc-v4

Inc-v3 ens3

IncRes-v
2 ens

Inc-v3 ens4

0

0.2

0.4

0.6

0.8

1

A
tt

ac
k 

R
at

e

Exp. S1
Exp. S2
Exp. S3
Exp. S4
Exp. S5

(b) MI-FGSM
Figure 8. The attack rate comparison when attacking Res-152, and testing on all the base models.
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(b) MI-FGSM
Figure 9. The attack rate comparison when attacking IncRes-v2, and testing on all the base models.
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(b) MI-FGSM
Figure 10. The attack rate comparison when attacking Inc-v3, and testing on all the base models.
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Figure 11. The attack rate comparison when attacking Inc-v4 with, and testing on all the base models.


