
Adversarial Examples for Edge Detection:
They Exist, and They Transfer

Christian Cosgrove Alan L. Yuille
Department of Computer Science, The Johns Hopkins University

Baltimore, MD 21218 USA
ccosgro2@jhu.edu alan.l.yuille@gmail.com

Abstract

Convolutional neural networks have recently advanced
the state of the art in many tasks including edge and ob-
ject boundary detection. However, in this paper, we demon-
strate that these edge detectors inherit a troubling property
of neural networks: they can be fooled by adversarial exam-
ples. We show that adding small perturbations to an image
causes HED [42], a CNN-based edge detection model, to
fail to locate edges, to detect nonexistent edges, and even
to hallucinate arbitrary configurations of edges. More im-
portantly, we find that these adversarial examples blindly
transfer to other CNN-based vision models. In particular,
attacks on edge detection result in significant drops in ac-
curacy in models trained to perform unrelated, high-level
tasks like image classification and semantic segmentation.

1. Introduction

Edge and contour detection have long played a major
role in computer vision. First studied as a low-level function
of biological vision [21, 35], the notion that edge detection
can be used to filter out irrelevant lighting and texture in-
formation and extract shape information from images dates
back to early work in the field [18, 22, 6]. Edge detection
has been used as a pre-processing step in many classical vi-
sion algorithms [9, 44, 34, 4].

The history of edge detection is substantial, and a wide
variety of techniques have been developed. Early ap-
proaches used hand-crafted features [22, 6]. Later, data-
driven methods like [23, 9] emerged, in which some set
of model parameters is automatically tuned on a training
dataset in order to reduce false positives. Most recently,
convolutional neural networks (CNNs) have been applied
to the edge detection problem [36, 42, 5, 28]. One ma-
jor success of this line of research is Holistically-Nested
Edge Detection (HED), a CNN model that achieves near-
human edge detection accuracy on standard datasets [42].

“bighorn sheep” “Indian elephant”

Figure 1: Adding a small perturbation (right) to an image
causes a state-of-the-art edge detection model to produce a
contrived pattern. The same perturbation causes a VGG16
model to misclassify the image (changing the predicted
class label from “bighorn sheep” to “Indian elephant”). We
set ytarget to achieve the edge pattern above. Here, ε = 8.

This approach has attracted attention for its competitive per-
formance, architectural simplicity, and computational effi-
ciency.

In recent years, automatic feature learning by CNNs has
replaced explicit edge detection for higher-level vision tasks
like image classification. However, it is well known that
CNNs learn edge-like features implicitly [24]. The Gabor-
like filters learned by the earliest layers of CNNs emerge

+

↓ ↓



regardless of which dataset or task they are trained on [43].
In this sense, edge detection is a universal visual task that
continues to underlie modern vision systems, albeit implic-
itly.

Despite CNNs’ marked gains in accuracy over classical
techniques in domains like classification and semantic seg-
mentation, they are vulnerable to adversarial examples. In
a variety of tasks [38, 40], small perturbations that look like
noise to a human can cause the network to produce non-
sensical results. In many cases, an attacker can select this
perturbation to cause the network to produce any desired
output. Worse, some attacks transfer: the same perturba-
tion trained to fool one network sometimes fools similar
networks trained on slightly different datasets.

However, it has not yet been shown whether these adver-
sarial examples are limited to networks trained on “com-
plex” visual tasks like classification and semantic segmen-
tation, or whether even a CNN trained to perform a low-
level task like edge detection is vulnerable. In this paper, we
address this question by investigating the degree to which
HED suffers from adversarial examples. Adapting exist-
ing methods to HED, we find that it is indeed vulnerable
to a particular class of adversarial attacks. Altogether, the
following results add yet another example to the list of do-
mains where deep neural networks can be fooled.

Just as edge detection is a universal component of many
methods in computer vision, we find that adversarial ex-
amples for edge detection affect other models, too: they
transfer to higher-level tasks. In particular, we show that an
attack on edges can transfer to models regardless of archi-
tecture, training data, and visual task. Without knowing the
parameters of a vision model, we can impair that model’s
accuracy on an image by attacking the edges of the image.
The intuition behind these results should be clear: because
edge detection is used in CNNs for downstream processing,
the CNN will fail to perform higher-level tasks if we can
obfuscate these edges.

2. Related work
Adversarial examples have primarily been studied in the

context of image classification [38, 14, 26]. However, they
have also been found to affect networks for object detec-
tion [40], semantic segmentation [40, 12], and natural lan-
guage processing [1]. Apart from finding new domains in
which adversarial examples exist, much of recent research
has focused on devising generic algorithms for generating
adversarial examples—i.e., how to synthesize them effi-
ciently and how to improve their success rates. The first
work of this kind uses a L-BFGS optimizer to minimize the
size of the perturbation subject to the constraint that the net-
work produces the target output [38]. The prevalent fast
gradient sign method (FGSM) [14] exploits the linearity of
the loss function landscape to generate adversarial exam-

ples with only first-order information and a single pass of
backpropagation. This method has been improved by iter-
ated updates [26] and momentum [10]. The literature on
defending against these adversarial examples is as rich as
the study of the attacks themselves; prominent examples
are defensive distillation [31], input transformations [15],
and adversarial training [38, 29].

While we are the first to develop adversarial attacks for
edge detection models, others have investigated the rela-
tionship between adversarial attacks and edge information.
Harmonic Adversarial Attack Method [17] considers the re-
lationship between edge information and attack quality and
transferability. The goal of this work is to maximize the
smoothness of the perturbation so that the high-frequency
statistics of the image change as little as possible.

Black-box attacks and transferability have been the sub-
ject of extensive study since [38]. In the black-box setting,
the attacker does not have access to the model parameters
and architecture; however, the model can be queried to gen-
erate an attack. An attack transfers if it affects a different
model without access to parameters, architecture, or input-
output pairs. One approach to generating black-box adver-
sarial examples is to attack a surrogate model trained to
mimic outputs from the target model [30]. Another is to
train a separate network to generate perturbations [32, 3].
Finally, other work studies the transferability of attacks on
intermediate layers [19].

3. Methods

3.1. Holistically-Nested Edge Detection [42]

Like many recent models for semantic segmentation,
HED uses a fully-convolutional architecture [42]. This
means that all of the network’s parameters consist of con-
volution kernels; for this reason, the model is agnostic to
input size. HED’s convolutional layers are derived from
a pretrained VGG16 [37] model and are fine-tuned on the
Berkeley Segmentation Data Set (BSDS500) [2]. A multi-
scale architecture and deep supervision are two crucial as-
pects of the HED method. In particular, HED outputs edge
predictions from five different layers of the network, each
corresponding to a different scale. During training, each of
these side outputs is encouraged to match the ground-truth
edge map [42].

In this paper, we show that despite HED’s impressive
performance on in-distribution images, this model is easily
fooled by adversarial examples. Just like neural network
training, the choice of loss function strongly affects the re-
sults of an adversarial attack. This is because adversarial
attacks are formulated as an optimization problem in the
space of images; like learning, generating adversarial exam-
ples also uses backpropagation to compute gradients of the
loss. Our attack methods optimize a similar cross-entropy



loss to that of HED, except for one crucial difference. Con-
sider the loss for side output m:

`m(X, ytrue; θ) = −1

2

X
i : ytrue

i =1

log(ŷmi )

−1

2

X
i : ytrue

i =0

log(1− ŷmi ).

(1)

Here, ŷmi denotes the ith pixel of side output m, which
is a function of X and θ. Unlike HED, we do not weigh
edges (ytrue

i = 1) more strongly than non-edges (ytrue
i =

0). Instead, the positive and negative classes are penal-
ized equally. This enables additional types of attacks. In
particular, in the class-balanced formulation of HED, using
ytrue = 1 causes the first term to vanish, since it is propor-
tional to the number of non-edges in the ground truth ytrue.
This prevents the attack from generating new edges in the
image, making so-called edge activation attacks impossible.
Thus, we use a 1:1 class weighting for all attacks.

Like HED, the overall loss is a linear combination of in-
dividual side output losses and a multi-scale fusion term:

L(X, ytrue; θ) =
X
m

αm`
m(X, ytrue; θ)

−1

2

X
i : ytrue

i =1

log(ŷfuse
i )− 1

2

X
i : ytrue

i =0

log(1− ŷfuse
i ),

(2)

where ŷfuse
i = sigmoid(

P
m hmŷ

m
i ). At test time, the final

edge prediction is a weighted average of the side outputs
and ŷfuse [42].

3.2. Generating adversarial examples

In this paper, we apply attacks in the family of fast gra-
dient sign methods (FGSM). These are some of the most
studied attack methods [14, 26, 25, 10], and they require
relatively little computation when compared with methods
like L-BFGS [14]. In the following section, we describe a
few relevant examples of fast gradient sign methods, adopt-
ing the notation of [41].

The original FGSM [14] generates an adversarial pertur-
bation using the gradient of the loss

Xadv = X + ε sign(∇XL(X, ytrue; θ)), (3)

where ytrue is the ground-truth edge map. FGSM can
be extended to the iterative fast gradient sign method (I-
FGSM) [26] and the momentum iterative fast gradient sign
method (MI-FGSM) [10], the latter of which uses the up-
date rule

gn+1 = µgn +
∇XL(Xadv

n , ytrue; θ)

‖∇XL(Xadv
n , ytrue; θ)‖1

(4)

Xadv
n+1 = ClipεX

�
Xadv
n + α sign(gn+1)

�
, (5)

where ε ≥


X −Xadv




∞ measures the size of the pertur-

bation and the momentum µ and step size α are attack pa-
rameters. In this paper, all attacks are based on MI-FGSM.

In transferability studies, [41] showed that introducing
input diversity transformations makes attack perturbations
more likely to transfer across architectures. Like data aug-
mentation, the input image X is randomly resized during
the optimization process. Following this approach, we test
M-DI2-FGSM, a modified version of MI-FGSM, in our
transfer experiments. This replaces the update in Eq. 4 with

gn+1 = µgn +
∇XL(T (Xadv

n ), ytrue; θ)

‖∇XL(T (Xadv
n ), ytrue; θ)‖1

(6)

where

T (X) =

(
resize(X) with probability 1/2

X otherwise
(7)

The transformation function resize(X) first down-scales
the image to a rectangle with random dimensions (w, h)—
where w, h ∼ Uniform(0, 300)—then randomly pads the
boundaries of the image with black pixels to restore it to its
original size.

After perturbing the image, it is possible that pixel inten-
sities of Xadv leave the valid range [0, 255]. To deal with
this, we simply clip pixel intensities to [0, 255] after adding
the perturbation. Although this can destroy some of the per-
turbation, [40] find that the effect is negligible for small ε,
so we adopt this practice.

3.3. Targeted attacks

Up to this point, we have only discussed so-called un-
targeted attacks, which maximize the original training loss.
Adversarial attacks also come in a targeted form that mini-
mizes, rather than maximizes, a modified loss. For example,
targeted MI-FGSM has the update rule

gn+1 = µgn +
∇XL(Xadv

n , ytarget; θ)

‖∇XL(Xadv
n , ytarget; θ)‖1

(8)

Xadv
n+1 = ClipεX

�
Xadv
n − α sign(gn+1)

�
, (9)

where ytarget is the desired output of the network. Note that
ytrue has been changed to ytarget and the sign in front of α is
now negative.

We found that switching from HED’s class-balanced loss
to a 1:1 class weighting as in Eq. 1 makes it harder for some
attacks to suppress edges. To compensate for this, we apply
a morphological thickening operation (radius of 3 pixels) to
the ground-truth labels ytrue before using it in an attack. This
makes certain attacks, namely MI-FGSM and I-MI-FGSM
(see Fig. 2) stronger.




