
4 Nonlinear Regression and Multilayer Perceptron

In nonlinear regression the output variable y is no longer a linear function of the regression
parameters plus additive noise. This means that estimation of the parameters is harder. It
does not reduce to minimizing a convex energy functions – unlike the methods we described
earlier.

The perceptron is an analogy to the neural networks in the brain (over-simplified). It
receives a set of inputs y =

∑d
j=1 ωjxj + ω0, see Figure (3).

Figure 3: Idealized neuron implementing a perceptron.

It has a threshold function which can be hard or soft. The hard one is ζ(a) = 1, if

a > 0, ζ(a) = 0, otherwise. The soft one is y = σ(~ωT~x) = 1/(1 + e~ω
T ~x), where σ(·) is the

sigmoid function.
There are a variety of different algorithms to train a perceptron from labeled examples.
Example: The quadratic error:

E(~ω|~xt, yt) = 1
2(yt − ~ω · ~xt)2,

for which the update rule is ∆ωtj = −∆ ∂E
∂ωj

= +∆(yt~ω · ~xt)~xt. Introducing the sigmoid

function rt = sigmoid(~ωT~xt), we have
E(~ω|~xt, yt) = −

∑
i

{
rti log yti + (1− rti) log(1− yti)

}
, and the update rule is

∆ωtj = −η(rt − yt)xtj , where η is the learning factor. I.e, the update rule is the learning
factor × (desired output – actual output)× input.

10



4.1 Multilayer Perceptrons

Multilayer perceptrons were developed to address the limitations of perceptrons (introduced
in subsection 2.1) – i.e. you can only perform a limited set of classification problems, or
regression problems, using a single perceptron. But you can do far more with multiple
layers where the outputs of the perceptrons at the first layer are input to perceptrons at
the second layer, and so on.

Two ingredients: (I) A standard perceptron has a discrete outcome, sign(~ω ·~x) ∈ {±1}.
It is replaced by a graded, or soft, output zh = σ(~ωh ·~x) = 1/{1 + e−

∑d
j=1(ωhj ·xj+ω0j)}, with

h = 1..H. See figure (4). This makes the output a differentiable function of the weights ~ω.

Figure 4: The sigmoid function of (~ωh · ~x) tends to 0 for small (~a · ~x) and tends to 1 for
large (~a · ~x).

(II) Introduce hidden units, or equivalently, multiple layers, see figure (5).
The output is

yi = ~νTi z =
H∑
h

= νhizh + ν0i.

Other output function can be used, e.g. yi = σ(~νTi ~z).

Figure 5: A multi-layer perceptron with input x’s, hidden units z’s, and outputs y’s.

11



Many levels can be specified. What do the hidden units represent? Many people have
tried to explain them but it is unclear. The number of hidden units is related to the
capacity of the perceptron. Any input-output function can be represented as a multilayer
perceptron with enough hidden units.

12



4.2 Training Multilayer Perceptrons

For training a multilayer perceptron we have to estimate the weights ωhj , νij of the per-
ceptron. First we need an error function. It can be defined as:

E[ω, ν] =
∑
i

{yi −
∑
h

νihσ(
∑
j

ωhjxj)}2

The update terms are the derivatives of the error function with respect to the param-
eters:

∆ωhj = − ∂E

∂ωhj
,

which is computed by the chain rule, and

∆νih = − ∂E

∂νih
,

which is computed directly.
By defining rk = σ(

∑
j ωkjxj), E =

∑
j(yi −

∑
k νikrk)

2, we can write

∂E

∂ωkj
=
∑
r

∂E

∂rk
· ∂rk
∂ωkj

,

where
∂E

∂rk
= −2

∑
j

(yi −
∑
l

νilrl)νik,

∂rk
∂ωkj

= xjσ
′(
∑
j

ωkjxj),

σ′(z) =
d

dz
σ(z) = σ(z){1− σ(z)}.

Hence,

∂E

∂ωhj
= −2

∑
j

(yi −
∑
l

νilrl)νikxkσ(
∑
j

ωkjxj){1− σ(
∑
j

ωkjxj)},

where
∑

j(yi −
∑

l νilrl) is the error at the output layer, νik is the weight k from middle
layer to output layer.

This is called backpropagation The error at the output layer is propagated back to the
nodes at the middle layer

∑
j(yi−

∑
l νilrl) where it is multiplied by the activity rk(1− rk)

at that node, and by the activity xj at the input.

13



4.2.1 Variants

One variant is learning in batch mode, which consists in putting all data into an energy
function – i.e., to sum the errors over all the training data. The weights are updated
according to the equations above, by summing over all the data.

Another variant is to do online learning. In this variant, at each time step you select
an example (xt, yt) at random from a dataset, or from some source that keeps inputting
exmaples, and perform one iteration of steepest descent using only that datapoint. I.e. in
the update equations remove the summation over t. Then you select another datapoint at
random, do another iteration of steepest descent, and so on. This variant is suitable for
problems in which we keep on getting new input over time.

This is called stochastic descent (or Robins-Monroe) and has some nice properties
including better convergence than the batch method described above. This is because
selecting the datapoints at random introduces an element of stochasticity which prevents
the algorithm from getting stuck in a local minimum (although the theorems for this require
multiplying the update – the gradiant – by a terms that decreases slowly over time).

14



4.3 Critical issues

One big issue is the number of hidden units. This is the main design choice since the
number of input and output units is determined by the problem.

Too many hidden units means that the model will have too many parameters – the
weights ω, ν – and so will fail to generalize if there is not enough training data. Conversely,
too few hidden units means restricts the class of input-output functions that the multilayer
perceptron can represent, and hence prevents it from modeling the data correctly. This is
the classic bias-variance dilemma (previous lecture).

A popular strategy is to have a large number of hidden units but to add a regularizer
term that penalizes the strength of the weights, This can be done by adding an additional
energy term:

λ
∑
j,j

ω2
hj +

∑
i,h

ν2ih

This term encourages the weights to be small and maybe even to be zero, unless the
data says otherwise. Using an L1-norm penalty term is even better for this.

Still, the number of hidden units is a question and in practice some of the most effective
multilayer perceptrons are those in which the structure was hand designed (by trial and
error).

15



4.4 Relation to Support Vector Machines

In a perceptron we get yi =
∑

h νihzh at the output and at the hidden layer we get
zh =

∑
j σ(
∑

h ωhjxj) from the input layer.
Support Vector Machines (SVM) can also be represented in this way.

y = sign(
∑
µ

αµyµ~xµ · ~x),

with ~xµ · ~x = zµ the hidden units response, i.e, y = sign(
∑

µ αµyµzµ).
An advantage of SVM is that the number of hidden units is given by the number of

support vectors. {αµ} is specified by minimizing the primal problem, and there is a well
defined algorithm to perform this minimization.

16


