
Local Models for Binocular Stereo (I)

This section shows how these linear filter models of receptive fields can be used
to perform local estimates of binocular stereo and motion. These involve
having filterbanks, or populations of filters, which are tuned to different
properties of the stimuli so that estimates of depth and motion can be
extracted from the population [190].
Recall that we introduced binocular stereo earlier. Depth is estimated by
triangulation provided we can solve the correspondence problem by finding
which points in the left and right eyes correspond to the same point in
three-dimensional space. This reduces to estimating the displacement, or
disparity, between the images in the left and right eyes. This section introduces
the disparity energy model which estimates disparity based on local properties
of the image. Later we will discuss how non-local context can be used to
improve disparity estimation.



Local Models for Binocular Stereo (II)

The disparity energy model is formulated using Gabor filters and has some
claim to biological plausibility [125],[135]. The model assumes that we have a
large set of cells, receiving input from both images, and which are tuned to
different image frequencies and spatial phases.
We give the presentation in one-dimension exploiting the epipolar line
constraint, see figure (9). It assumes that the cell receives input from both left
and right eyes with receptive fields fl(x) = exp{−x2/(2σ2)} cos(ωx + ρl) and
fr (x) = exp{−x2/(2σ2)} cos(ωx + ρr ). These are Gabors where the Gaussian
has variance σ2, tuned to frequency ω and with phases ρl , ρr . The linear
response is:

r =

∫
dx{fl(x)Il(x) + fr (x)Ir (x)}. (10)

This filter is tuned to spatial frequency ω. The filter is most sensitive to the
image component at this frequency. Hence we can represent the image
(approximately) by I (~x) = ρ cos(ωx + θ).



Local Models for Binocular Stereo (III)

Suppose that the right image is a displaced version of the left image
Ir (x) = Il(x + D(x)), where D(x) is the disparity. We assume that the disparity
varies slowly so that we can approximate it locally as a constant D (over the
size of the Gaussian, 2σ), see figure (19)(left). To analyze the model ignore the
Gaussian when calculating r . This gives:

r1 = ρ{cos(θ − ρl) + cos(θ − ρr − ωD)}. (11)

which can be re-expressed (using trigonometry identities) by:
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2

− ωD

2
) cos(

ρl − ρr
2

− ωD

2
). (12)

The response of the cell depends on the disparity but also on image properties
(e.g., image phase θ). So we need a population of cells to detect disparity.



Lcoal Model for Binocular Stereo (IV)

To see this, suppose that we consider quadrature pairs of the two cells tuned to
the same ω. Where one cell has phases ρl , ρr and the other has phases ρ′l , ρ

′
r ,

where (ρl − ρr ) = (ρ′l − ρ′r ) and ρ′l + ρ′r = ρl + ρr + π
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. Then the second cell
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Hence if we square and add the responses of the two cells we obtain:
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This response depends only on the disparity D and the image frequency ω. It
takes largest values when ρl − ρr = ωD. Hence we can estimate D from a
population of quadrature cells tuned to different phases ρl , ρr and frequencies
ω, see figure (19).



Local Model of Binocular Stereo (V)

A neural network for estimating D using a population of neurons consists of
two steps. In step (I) we define a set of disparity cells tuned to disparities
{Di : i = 1, ...,N}. The disparity cell tuned to disparity Di receives input
cos2( ρl−ρr
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2
) from each quadrature pair (ρl , ρr , ω) and sums these inputs

together to compute a vote v(Di ):

v(Di ) =
∑
ρl ,ρr ,ω
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2
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Step (II) uses a winner-take-all network [107] to compute the disparity with the
biggest vote by solving D̂ = arg maxi=1,...,N v(Di ), so that v(D̂) ≥ v(Di ) for
i = 1, ...,N.
There is plenty of evidence that the brain represents information by neural
populations [42],[112]. There has also been much theoretical studies of how
populations of neurons could encode knowledge and perform computations
[134, 106].



Illustration of Local Model of Binocular Stereo
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Figure 19: Left Panel: The disparity D between the images in the two eyes
corresponds to a change of phase if we approximate the intensities by sinusoids, see
text. Right Panel: The local disparity D is encoded by the feature response of cells
tuned to frequencies which obey ρl − ρr = ωD.



Motion Measurement: Spatio-Temporal Filters.

We now discuss how related models can be used to estimate motion for
sequences of images. Spatio-temporal filters are biologically plausible ways to
measure motion which agree with properties of cells in the visual cortex. The
standard model suggests two classes of cells where the first are spatio-temporal
filters which are sensitive to the directions of motion while the second combine
outputs of these filters to estimate the motion itself [3],[57], [150].



Motion Measurement: Figures
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Figure 20: Left Panel: This figure shows the space-time illustration of a signal traveling
with constant velocity I (X , t) = F (X − tv). This means that the intensity I (X , t) is
constant on the lines X − tv = constant. Right Panel: A stimuli moving with velocity
~v will activate spatial-temporal filters ~ω, ωt which lie on the plane ~v · ~ω + ωt = 0.
Hence the velocity can be estimated from the population of activity of the filters.



Motion Measurement (II)

Measuring the motion velocity assumes that locally the intensity can be
modeled as a linear translating pattern, see figure (20)(left panel):

I (~x , t) = F (~x − ~vt). (15)

Differentiating with respect to ~x and t (using ~∇I = ~∇F and ∂I
∂t

= −~v · ~∇F ),
gives the optical flow equation:

~v · ~∇I +
∂I

∂t
= 0. (16)

This enables us to estimate one component of the motion ~v but suffers from
the aperture problem and so is ambiguous.



Motion Measurement (III)

The ambiguity can be resolved by a population of filters
{Gµ(~x , t) : µ = 1, ...,M} indexed by µ (e.g., Gaussians). These filters
introduce local context:

Gµ ∗ I (~x , t) =

∫
Gµ(~x − ~y , t − s)I (~y , s)dsd~y . (17)

Each filter gives a constraint on the velocity,

~v · ~∇Gµ ∗ I +
∂Gµ ∗ I
∂t

= 0. (18)

We get an estimate of the velocity ~v by minimizing the cost:

E(~v) =
M∑
µ=1

(~v · ~∇Gµ ∗ I +
∂Gµ ∗ I
∂t

)2.

This minimization can be done using a similar neural network to that used for
estimating disparity for stereo in the previous section.



Motion Measurement (IV)

We have a set of cells tuned to different velocities {~vi : i = 1, ...,N}. The cell

tuned to velocity ~vi receives input (~v · ~∇Gµ ∗ I + ∂Gµ∗I
∂t

)2 from each filter µ
and sums the responses to obtain E(~vi ). Then we use a variant of

winner-take-all to compute ~̂v = arg mini=1,...,N E(~vi ).



Motion Measurement: the need for spatial and temporal context

This approach assumes that there is enough local information to resolve the
motion ambiguity which may not be the case. For example, for the stimuli in
figure (7) we can only locally estimate one component of the motion because
of the aperture problem. To resolve this ambiguity we need to use more spatial
or temporal context as described in a later section.



Motion Measurement: spatial and temporal context (I)

An alternative way to analyze this problem is by applying fourier analysis to
equation (15).

Î (~ω, ωt) =
1

2π

∫ ∫ ∫
exp{i(~ω · ~x + ωtt)}I (~x , t)d~xdt

Î (~ω, ωt) =
1

2π

∫ ∫ ∫
exp{i(~v · ~x + ωt)t} exp{i~ω · (~x − ~vt)}F (~x − ~vt)d~xdt

Î (~ω, ωt) =
1

2π

∫
exp{i(~v · ~ω + ωt)t}dt

∫ ∫
exp{i~ω · ~x}F (~x)d~x

Î (~ω, ωt) = δ(~v · ~ω + ωt)F̂ (~ω)

Where ~x = ~x − ~vt is a change of variables in the integral.



Motion Measurement: spatial and temporal context (II)

This shows that if we have filters exp{i(~x~ω + ωtt)} tuned to spatial-temporal
frequencies ~ω, ωt then the only filters which respond are those whose
frequencies obey the equation ~v · ~ω + ωt = 0 and hence lie on a plane in
frequency space. Hence we can determine ~v from a population of filters by
observing which filters are activated and finding the best fit plane, see
figure (20)(right panel).



Motion Measurement – Non-Fourier

In practice, we cannot use filters tuned to frequency because these are not
bounded in space and time. But it can be shown [57] that if the filters are
spatio-temporal Gabors then the most active filters are those whose
spatial-temporal tuning is centered on the plane ~v · ~ω + ωt = 0. Hence the
plane in frequency space can be estimated from a population of
spatio-temporal filters and the velocity locally estimated.
This gives a two stage model of motion estimation where the first population
of neurons where each neuron (i.e. filter) is sensitive to the spatio-temporal
frequency of the input image but not directly to the motion. The second
population of neurons extract the motion information from the first population
and hence these neurons are tuned directly to motion. This is consistent with
experimental findings [3],[57], [150]. Similar models arise in related work on the
fly and beetle visual systems [58, 14].


