Bayes decision theory and ideal observers

> Bayes decision theory is a framework for making optimal decisions in the
presence of uncertainty. We represent the input by x € X and the output
by y € Y (e.g., for edge detection x is the filter response f(/), and
y € {£1} indicates if an edge is present or not).

> We assume that there is a probability distribution P(x, y) that generates
the input and output. This can be expressed in terms of a prior P(y) and
a likelihood P(x|y) by the identity P(x,y) = P(x|y)P(y). A decision rule
is expressed as § = a(x). We specify a loss function L(a(x); y), which is
the cost of making decision «(x) if the real decision should be y.

> The risk is specified by R(a) =3°,  P(x,y)L(a(x),y). The Bayes rule is
& = argming R(a). The Bayes risk is ming R(a) = R(&).



Bayes rule (1)

The Bayes rule is the best decision rule you can make (subject to this criterion)
and the Bayes risk is the best performance. Hence Bayes decision theory can
specify the optimal way to estimate y from input x. There are several
important special cases. If the loss function penalizes all errors by the same
amount, i.e., L(a(x),y) = K1 if a(x) # y and L(a(x),y) = Kz if a(x) =y
(with K1 > K3), then the Bayes rule corresponds to the maximum a posteriori
estimator a(x) = arg max P(y|x), where P(y|x) = w is the posterior
distribution of y conditioned on y. If, in addition, the prior is a uniform
distribution, i.e., P(y) = constant, then Bayes rule reduces to the maximum
likelihood estimate a(x) = arg max P(x|y).



Bayes rule (I1)

For binary decision problems y € {£1}, the loss function is usually chosen to
pay no penalty if the correct decision is made (i.e., a(x) =y -1) but has a
penalty F, for false positives, where y = —1 but a(x) =1, and F, for false
negatives, where y = 1 but a(x) = — (it is assumed here that the target is

y =1 and the distracter is y = —1, so a false positive occurs if we decide that
a distracter is a target, and a false negative if we decide that a target is a
distracter). It follows that we can express the Bayes rule in terms of a
log-likelihood ratio test log % > T, where T depends on the prior p(y)
and the loss function L(a(x),y).



Bayes rule (I11)

> More specifically, the Bayes risk is R(a) = >_, p(x) >°, L(a(x),y)p(Y[x).
Then we divide the data (x, y) into four sets: (1) the true positives

{(x,y): s.t. a(x) =y = 1}; (2) the true negatives

{(x,y) : s.t. a(x) =y = —1}; (3) the false positives

{(x,y): st. a(x) =1,y = —1}; and (4) the false negatives

{(x,y) : s.t. a(x) == =1,y = 1}. These four cases correspond to loss

function values L(a(x) =1,y =1) = T,, L(a(x) = -1,y = —1) = T,,
Lla(x) =1,y = —1) = Fp, L(a(x) = =1,y = 1) = F, respectively. Then
the decision rule ar(.) reduces to:

P( | 1) T — F
> The intuition is that the evidence in the log-likelihood must be bigger than
our prior biases while taking into account the penalties paid for different
types of mistakes.

log



Bayes rule (1V)

The results in the previous section on edge detection and texture classification
can be derived from decision theory. The priors P(y) specify the probability
that an image patch contains an edge (empirically P(y = 1) ~ 0.05 and

P(y = —1) =~ 0.95). The loss function should be chosen to specify the cost of
making different types of mistakes. For texture classification, the variable y
takes values in a set ), which is called a multiclass decision. The same theory
applies to tasks for which we need to make a set of related but nonlocal
decisions.



Signal detection theory (I)

We now show that an important special case of signal detection theory (Green
& Swets, 1966) — often used as a framework to model how humans make
decisions when performing visual, auditory, and other tasks — can be obtained
as a special case of Bayes decision theory. We consider the two class case,
where y € {£1}, and suppose that the likelihood functions are specified by
Gaussian distributions, P(x|y) = exp{—(x — py)?/(207)}, which differ

by their means (u1, i—1) and their variances (07,02 ). The Bayes rule can be
expressed in terms of the log-likelihood ratio test:

27ro

G(x) = argmax y{~(x— )/ (207) ~log o1 + (x — ji-1)?/(20% 1) + log o2 = T}



Signal detection theory (II)

» This decision rule requires determining whether the data point x is above
or below a quadratic polynomial curve in x. In the special case when the
standard deviations are identical ¢? = o3 (so we drop the subscripts 1,-1),
the decision is based only on whether the data point x satisfies:

2x(p1 — p1) + (i — p3) < 2To?

> This special case, with 07 = 021, is much studied in signal detection
theory (Green & Swets, 1966). It means that the decision is based on a
single function d’ = % This quantity is used to quantify human

performance for psychophysical tasks.



Ideal observer ()

This motivates the idea of an ideal observer. An observer like this has optimal
performance which requires exploiting the statistical properties of the
distribution P(x,y) of the data. A classic example of ideal observer theory
shows that under certain conditions, photoreceptors in the retina are almost
optimal at detecting the photons that reach them (Barlow, 1962; Pelli, 1990).
This takes into account the probability of the photoreceptors firing x if it
receives a photon, P(x|y = 1), and the probability that the photoreceptor fires
spontaneously, P(x|y = —1).



Ideal observer (II)

Ideal observers can also be defined for other vision tasks (Tjan et al., 1995;
Gold et al,. 2012; Trenti et al., 2010; Geisler, 2011). The difficulty, however, is
judging whether humans are adapted to doing the task. It is possible to define
ideal observers when human performance is much worse than the ideal
observers (Watson et al., 1983). Why can this happen? The task may provide
information for which humans are not adapted (e.g., visual inspection of circuit
boards to find deficits). Also, the ideal observers know the distributions P(x, y)
that, for synthetic stimuli, are those chosen by the scientist performing the
experiment and may have little similarity to the natural statistics of stimuli of
the world, which human vision has probably adapted to.



Receiver operating characteristic curve

> Another important concept is the receiver operating characteristic (ROC)
curve. This allows us to study decisions when we do not want to restrict
ourselves to specific priors and loss functions. Instead, we plot the true
positive rate as a function of the false positive rate by allowing the
decision threshold T to vary. For each value T of the threshold, we have a
decision rule ar(.), which results in a fraction of true positives
> xarx)=1 P(xly =1) and false positives 3.\, P(x|y = —1). This
gives a single point on the ROC curve. We plot the curve by allowing T to
vary. Observe that for very large T (as T +— o0), the true positive and
false positive rates will tend to 0. While as T gets very small (T — —c0),
both rates will tend to 1. Hence the ROC illustrates the trade-off between
the two rates.

> Bayes decision theory can be extended in a straightforward manner if the

output y takes multiple values. In particular, it applies when we have a set
of decision variables defined on each lattice site of an image.



