
Lecture 3.

Prof. Alan Yuille

Summer 2014

Outline

1. Precision and Recall Curves. Receiver Operating Characteristic Curves (ROC). What
to do if we do not fix the loss function?

2. The Curse of Dimensionality. Why human intuitions are missleading in high-dimensional
spaces? Why we rarely have enough dataset in high dimensional spaces, and what
we can do about it.

3. The Bias-Variance Dilemma. The classic statistical perspective on generalization.
How to use cross-validation to check for generalization.

1 Precision/Recall and ROC curves

What if we do not know the loss function? Or if we want a more ”sophisticated” decision
process? For example, we do not want to diagnose patients as ”cancer” or ”not-cancer”.
Instead we want to separate them into groups for further testing.

The basic idea is that decision processes can often be characterized by a function f(x)
and a threshold T . This gives rise to a one-dimensional family of decision rules αT (x),
where αT (x) = 1 if f(x) > T and αT (x) = −1 otherwise. By altering the threshold T
we change the decision rule and, alter the number of true positives and false positives.
For example, suppose the decision function f(x) is the log-likelihood ratio log p(x|y=1)

p(x|y=−1)
then altering T corresponds to changing the prior p(y) and the loss function L(., .). We
can summarize the performance of this family of decision rules αT (x) by plotting how
performance (different for Precision/Recall and ROC) change with T .

Examples: Detecting Cats in the Pascal Object Detection Challenge. The data consists
of 20, 000 images. There are roughly 1, 000 cats. The cats occur in a range of sizes and can
occur anywhere in an image. There can be one or more cats in an image. The positions of
cats and specified by bounding boxes which surround them, see figure 1. So the task is to
determine which of all the possible bounding boxes in the images contain cats. There are

1

roughly 1, 000 bounding boxes in an image. Hence there are 20, 0000, 0000 possible bound-
ing boxes of which only 1, 000 are cats. Hence there are far more ”backgrounds/negatives”
(non-cats) than ”targets/positives” (cats).

1.1 Precision and Recall

Figure 1: The positions of the targets (cats) are specified by bounding boxes. Images can
contain one target, several targets, or none.

The Precision/Recall curve is motivated by detecting ”targets/positives” in the presence
of a much larger number of ”backgrounds/negatives”. Let the dataset X = {(xi, yi) : i =
1, ..., N}. Suppose this has n1 targets and n2 backgrounds: n1 =

∑N
i=1 I(yi = 1) and

n2 =
∑N

i=1 I(yi = −1). Note that I(.) is the indicator function, i.e., I(y = 1) = 1 if y = 1
and I(y = 1) = 0 if y 6= 1.

There is a one-dimensional parameterized decision functions f(x) and decision rules
αT (x). The decision rule is of the form

αT (x) = 1, if f(x) > T and αT (x) = −1, if f(x) < T

Define
mT

1 = true positives = number of targets (cats) detected

mT
2 = false positives = number of backgrounds (non-cats) detected

I.e.

mT
1 =

N∑
i=1

I(αT (xi) = 1)I(yi = 1)

mT
2 =

N∑
i=1

I(αT (xi) = 1)I(yi = −1)

Precision at threshold T is p(y = 1|ŷ = 1) =
mT1

mT1 +mT2
= No. of true positives

No. of true positives + No. of false positives .

Recall at threshold T is p(ŷ = 1|y = 1) =
mT1
n1

= No. of true positives
No. total targets .

2

The Precision-Recall curve has characteristic shape shown in figure 2. The idea is
that at large threshold T the detector will only detect the targets (if the detector is well
designed) but will probably only detect a few of them (because a high threshold means that
most of then will be rejected). But at low threshold, we will probably detect most of the
targets but also (incorrectly) a large number of the distactors. In summary, the precision
will tend to decrease and the recall will increase as we reduce the size of the threshold T .

Figure 2: The precision recall curve.

1.2 Receiver Operating Characteristic Curve

The ROC curve is used in situations where the number of targets and backgrounds is
roughly balanced. Unlike the previous section, we do not assume that the number of
distactors is much bigger than the number of targets. It was originally motivated as a
way of characterizing the properties of a physical device for detecting targets, e.g., a radar
system which has parameters to be tuned. Hence the device outputs a function f(x) of
the input x and a decision αT (x) is made by selecting a threshold T (i.e. T is a tuning
parameter, of course most devices also have other tuning parameters).

The ROC curve usually, but not necessarily, assumes that the decision rule αT (.) is

specified by the log-likelihood ratio test log P (x|y=1)
P (x|y=−1) with threshold T . The ROC curve

plots the true positive ratio as a function of the false positive ratio as the threshold T
varies, see figure 3. The true positive ratio is the ratio of No. of true positives to No. of
total positives, or p(ŷ = 1|y = 1). And the false positive ratio is the ratio of No. of false
positives to No. of total negatives, or p(ŷ = 1|y = −1).

Here ŷ is the decision made by the decision rule α̂T (x). At threshold T , ŷ(x) = 1, if

log p(x|y=1)
p(x|y=−1) > T , then

p(ŷ = 1 | y) =
∑
x

p(ŷ | x)p(x | y)

3

Figure 3: ROC curve. True positives and false negatives as a function of the decision
threshold.

Now: {
p(ŷ = 1 | x) = 1, if log p(x|y=1)

p(x|y=−1) > T

p(ŷ = 1 | x) = 0, otherwise.{
p(ŷ = −1 | x) = 1, if log p(x|y=1)

p(x|y=−1) < T

p(ŷ = −1 | x) = 0, otherwise.

Hence:
p(ŷ = 1|y = 1) =

∑
x: log

p(x|y=1)
p(x|y=−1)

>T

p(x|y = 1)

p(ŷ = 1|y = −1) =
∑

x: log
p(x|y=1)
p(x|y=−1)

>T

p(x|y = −1)

p(ŷ = 1 | y) =
∑
x

p(ŷ = 1 | x)p(x | y) =
∑

x: log
p(x|y=1)
p(x|y=−1)

>T

p(x|y)

The ROC curve plots the number of true positives as a function of the false positives.
Each value of T gives a point on this curve. As the threshold becomes very large, i.e.
T → ∞, the proportions of true positives and false positives tend to zero (because the
threshold is so high that the decision rule decides that there are no positives). Similarly
as the threshold becomes very low, i.e. T → −∞, then the proportion of true and false
positives become equal to one (because the decision rule decides that everything is positive).
The Bayes decision is a specific point on the curve at threshold T ∗ (determined by the prior
and the loss function).

ROC curves are used in Signal Detection Theory to characterize properties of the
human perceptual system – e.g., our ability to hear and see. They have several interesting
properties. For example suppose a human subject is given two stimuli x1 and x2 and told
to decide which is the target and which is the distactor (i.e. the human knows there is one

4

of each), then the best achievable performance is characterized by the area under the ROC
curve (check, this is the right ROC!).

2 The Curse of Dimensionality

Visual illustrations of Machine Learning and Bayes Decision Theory used in textbooks and
lectures are often misleading. The figures are two-dimensional, but the data typically lies
in a much higher-dimensional space. I.e. the observations x often lie in a high-dimensional
space (e.g., 100 dimensions) and not in two-dimensions, as the examples in textbooks (or
these lectures) would suggest.

Our geometrical intuition is based on living in a three-dimensional world and seeing
two-dimensional figures. So our intuition for higher dimensional spaces is often wrong.
This section will give some examples. More seriously, learning probability distributions
in high-dimensional spaces requires an enormous amount of data. This is the curse of
dimensionality (or one aspect of it anyway). This is a major problem for Machine Learning.

2.1 Intuitions of Geometry in High-Dimensions

Our geometric intuitions are often wrong in high-dimensions. It is good to be aware of
this. Here are a few examples.

Example 1
Consider the volume of a sphere of radius r = 1 in D dimension. What fraction of its

volume lies in the region between 1− ε < r < 1?
To investigate this, we calculate the volume Vd(r) of a sphere of radius r in d-dimensional

space. This scales as rd (we use KR to specify the constant). Then we do a Taylor series
expansion of Vd(r) to estimate the volume in the small ring 1− ε ≤ r ≤ 1. This gives

Vd(r) = Kdr
d Vd(1)− Vd(1− ε)

Vd(1)
= 1− (1− ε)D

For larger d, the fraction of the volume in this ring tends to 1 even for small ε (because
(1−ε)d tends to 0 exponentially fast as d increases). So almost all the volume of the sphere
is very close to the boundary! See figure 4.

Example 2
Consider the behaviour of a zero-mean Gaussian distribution in high-dimensions, see

figure 5.

In one-dimension the Gaussian is p(x) = 1√
2πσ

exp
−x2
2σ2 and its probability mass is

peaked near x = 0. In two-dimensions, we express a Gaussian (rotationally symmet-

ric) as p(x1, x2) = 1
2πσ2 exp

−(x21+x
2
2)

2σ2 . This can be re-expressed in polar coordinates, set-

ting r =
√
x21 + x22, to give a distribution p(x1, x2) = p(θ)p(r) where p(θ) = 1/(2π) and

5

Figure 4: The volume of a sphere lies (left) almost entirely at the boundary in high dimen-
sional spaces (right).

Figure 5: Where does the probability mass of a Gaussian? Near the center for low dimen-
sions. But it moves out from the center as the dimension increases.

6

p(r) = r
σ2 exp

−r2
2σ2 . Note that this takes value 0 at the center (where r = 0).

In d-dimensions, we can also express a (rotationally symmetric) Gaussian distribution

is terms of a distribution p(r) which is of form: p(r) = rd−1

kd
exp

−r2
2σ2 , where kd is a constant.

This shows that the probability mass of the Gaussian moves further away from the origin
as d increases. Here we define the probability mass to be the amount of probability in an
infinitesimal ring of size r, see figure 5.

So in high dimensions, most of the probability mass of the Gaussians is concentrate on
a thin shell away from the center of the Gaussian. See figure 6.

Figure 6: For higher dimensions most of the mass of a Gaussian is clustered on a thin shell
away from the center.

2.2 Learning distributions and decision rules is hard in high-dimensions

Example 1
Consider a Gaussian distribution in d dimensions. It is parameterized by its mean µ,

with d degrees of freedom, and its covariance Σ with d(d−1)
2 degrees of freedom. This gives

a total of d(d+1)
2 parameters which need to be estimated/learnt.

This will require k× d(d+1)
2 data examples in order to estimate the parameters accurately

(i..e. dataset X must be roughly this size). The values of k is uncertain – k = 5, k = 10,
bigger values of k will give more accurate estimates of the parameters (see later section of
this lecture).

In this example, the amount of data required grows quadratically with the number of
dimensions d. This implies that learning this distribution in 100-dimensional space will
require of the order of 5× 10, 000 training examples.

Example 2

7

Consider learning a non-parametric distribution, like a histogram. Suppose the his-
togram has B bins per dimension, see figure 7. This has B bins in one-dimension, B2 bins
in two-dimensions, and Bd bins in d-dimensions. We will need k × Bd pieces of data in d
dimensions.

So the amount of data required by this histogram model grows exponentially fast as d
increases. This rapidly becomes impractical. Suppose the number of bins is B = 10. Then
even in ten-dimensions, d = 10, we need k × 1010 data examples.

Example 3
Suppose we want a decision rule that corresponds to a separating hyperplane – e.g.,

α(~x) = 1 if ~a · ~x + b > 0 and α(~x) = −1 otherwise. Then we need to estimate a (d + 1)-
dimensional vector ~a, b. (This ignores the scale issue). Hence we need k × (d + 1) data
examples. This grows linearly with the dimension of the space.

Figure 7: B bins in 1-dimension. B2 bins in two dimensions. BD bins in D dimensions.
Exponential growth in amount of data needed in high dimensions.

2.3 How to deal with the curse of dimensionality?

Firstly, we may get lucky and know that the data is generated by a parameterized model
(like a Gaussian) and there is enough data to learn the parameters.

Secondly, it may be sufficient to learn a simple decision rule – like a separating hy-
perplane – which only involves a limited number of parameters which scales slowly (e.g.,
linearly) with the dimension.

Thirdly, we can apply dimension-reduction techniques. These assume that the data lies
on some low-dimensional surface/manifold in the high dimensional space. See figure (8)

So, the effective dimension of the data may be the dimension of the surface/manifold,
which may be a lot smaller than the dimension of the space. But how to find this surface?

8

Figure 8: In practice, data in high dimensional spaces often lies in a low dimensional
surface. If we know this surface, then we need much less data.

Later in this course we will describe several dimension reduction methods.

3 Estimators, Bias and Variance, and Cross-Validation

The bias variance dilemma was first articulated by Statisticians. It gives an alternative
perspective on generalization (versus memorization) and leads to cross-validation which is
a practical way to test for generalization.

First, we describe statistical estimators. These are used to estimate properties of a
dataset. For example, we may want to estimate the mean and variance of a set of data,
or fit a regression model to the data, or more generally estimate the parameters of a
model. Bayes decision theory gives a criterion for selecting an ”optimal estimator”. But,
historically, statistical estimators were developed by Statisticians who were sceptical about
Bayesian methods (partly because of the difficulty of specifying priors) and so do not
depend

3.1 Statistical Estimators

We want to estimate a continuous quantity θ. The estimator is based on a set X =
{x1, ..., xN} of examples. It is assumed that these are i.i.d. samples from an (unknown)
distribution p(x|θ). Hence the probability of the set P (X) =

∏N
i=1 p(xi|θ).

An estimator of θ is a function g(X) which gives an estimate θ̂ = g(X) of θ. The
estimate is a random variable that depends on the data set X . If we have a different set
of samples from X we would get a different estimate of θ (this will be important when we

9

consider generalization).
For example, to estimate the mean of X (random variable) from dataset X we set

g1(X) = 1
N

∑N
i=1 xi. To estimate the variance of X, we first estimate

∑
x x

2p(x) by the

estimator g2(X) = 1
N

∑N
i=1 x

2
i and then estimate the variance by g2(X)− {g1(X)}2.

3.2 Evaluating an Estimator

To evaluate an estimator g(X) of θ we can measure how much it differs from θ. It is
attractive to use a quadratic error (this simplifies the analysis) such as (g(X) − θ)2, but
this depends on the dataset X . So we need to compute the expected error of the estimator
with respect to p(X):

r(g, θ) = EX [g(X)− θ]2 =

∫
(g(X)− θ)2P (X)dX .

We also compute the bias of the estimator:

bθ(g) = EX [g(X)]− θ.

We say that g(.) is an unbiased estimator of θ if bθ(g) = 0 for all θ. For example, g1(.)
(previous section) is an unbiased estimator of the mean of X. This can be shown because

∑
X
P (X)g1(X) =

1

N

N∑
i=1

∑
X
P (X)xi

=
1

N

N∑
i=1

p(xi)xi =
1

N
×N

∑
x

xp(x) =
∑
x

xp(x).

Now consider how the estimate depends on the dataset. There are many possible
datasets (size N) that can be sampled from p(x): X1 = (x1, ..., xN), X2 = (xN+1, ..., x2N),
X3 = (x2N+1, ..., x3N), and so on. From each dataset we get a different estimate g(X1),
g(X2),, g(Xn) of θ. We can calculate the mean of these estimates – to get a better
estimate of θ – and we can compute the variance of these estimates to see how the estimates
differ from one dataset to another. If the variance is small, then this means that the
estimates are the same for each dataset and hence we have good generalization.

To explore this, we compute the variance of the estimator g1(.) (the estimator of the
mean described at the top of the page) with respect to p(X) and show that it tends to 0
as the size N of the dataset tends to ∞.

V arX (g1) =
1

N2
V arX (

N∑
i=1

xi) =
1

N2

N∑
i=1

V arxi(xi) =
σ2

N
,

where σ2 is the variance of X.

10

Hence the variance of the estimator (with respect to the dataset) tends to 0 as N →
∞ (with fall-off rate 1/N). Note this result is true for any linear estimator. Therefore
the estimator becomes perfectly accurate as N → ∞. We say that g1(.) is a consistent
estimator.

Note that estimators do not have to be perfectly unbiased. The maximum likelihood
estimator of the variance (see next lecture) is (N − 1)/Nσ2 and hence is biased for finite
N (here σ2 is the true variance). But the amount of bias decreases rapidly for large N and
we say the estimator is asymptotically unbiased.

3.3 The Bias Variance Dilemma

Assume the parameter θ of distribution p(x|θ) is a random variable. Then given parameter
θ, the probability of dataset is

p(X|θ) =

N∏
i=1

p(xi|θ)

p(θ) denotes the prior distribution of parameter θ. And p(θ|X) denotes the posterior
distribution of parameter θ given the dataset. Let g(X) be an estimator of θ. We have the
following results.

Result 1. Given dataset X

< (θ − g(X))2 >p(θ|X)=< (θ− < θ >p(θ|X))
2 >p(θ|X) +(< θ >p(θ|X) −g(X))2,

where < . >p(θ|X) is the expectation with respect to p(θ|X).
Proof.

(θ−g(X))2 = (θ− < θ >p(θ|X) + < θ >p(θ|X) −g(X))2 = (θ− < θ >p(θ|X))
2+(< θ >p(θ|X) −g(X))2

−2(θ− < θ >p(θ|X))(< θ >p(θ|X) −g(X)).

Now take the expectation with respect to p(θ|X). The quantity (< θ >p(θ|X) −g(X)) is
independent of θ, the expectation of (θ− < θ >p(θ|X)) is 0. The result follows.

This result states that the expected error (w.r.t. p(θ|X)) has two terms. The first term
is the inherent variance of the process which is independent of the estimator g(.)) and the
second term is the squared error.

Next we study how the expectation of the squared error (< θ >p(θ|X) −g(X))2 depends
on the particular dataset X1, ...,Xm.

Result 2.

< (< θ >p(θ|X) −g(X))2 >p(X)= (< θ >p(θ|X) − < g(X) >p(X))
2+ < (g(X)− < g(X) >p(X))

2 >p(X) .

This expresses the error in terms of the expected squared bias and the variance of the
estimator g(.).

11

Proof.

(< θ >p(θ|X) −g(X))2 = (< θ >p(θ|X) − < g(X) >p(X) + < g(X) >p(X) −g(X))2 =

(< θ >p(θ|X) − < g(X) >p(X))
2 + (< g(X) >p(X) −g(X))2

−2(< θ >p(θ|X) − < g(X) >p(X))(< g(X) >p(X) −g(X).

The result follows by taking the expectation with respect to p(X).
What does this mean? The expected error is the sum of two terms. The first depends

on the bias of the estimator and the second is its variance. To get good generalization we
want the variance to be small. But we also want the bias to be small. In practice, there is
a trade-off between the bias and the variance. A complex classifier can give a good fit to
the dataset and hence have small bias. But it may have large variance because it tends to
over-fit the data and so gives different results on different datasets.

Examples: The bias and variance dilemma is better illustrated using a slightly more
complex setting where the dataset is X = {(xi, yi)}Ni=1. Given any x, we are to predict y.
Suppose the data is generated by y = 2 sin(1− 5x) + ε, where ε is a random sample from a
zero mean Gaussian with variance 1. A more complex models gives better fit to the data
(i.e. to underlying model), see figure 9. Hence we need to have a model which balances
the bias and the variance.

Figure 9: More complex models give better fits to the data – reduce the bias – but small
changes in the dataset may lead to big variations – i.e. large variance.

12

3.4 Cross-validation and Regularization

Cross-validation divides the dataset into two part as training & validation set. Train models
of different complexity and test their error on the validation set. As model complexity
increases, the error on training set decreases. But the error on validation set decreases
then increases, see figure 10.

Figure 10: The training error always decreases as we increase the model complexity, but
the error on the validation set decreases and then increases.

Regularization add a regularization term to penalize the model complexity. This gives
an augmented error function E′ = error on data + λ × model complexity. The λ is
optimized using cross-validation. See also, structured risk minimization (Vapnik).

13

