
Lecture 5

This lecture describes how groups of neurons can perform edge detection, edge
grouping, stereo and motion.
We also introduce weak methods for cue combination.
This lecture include the demos: (4c) Hopfield Network for Binocular Stereo.
(5) Cue Combination.



The Line Process Model (I)

Our first example is the classic line process model [40][12][122] which was
developed as a way to segment images. It has explicit line process variables
which “break” images into regions where the intensity is piecewise smooth. Our
presentation will follow the work of ([85]) who translated it into neural circuits.

The model takes intensity values ~I as input and outputs smoothed intensity
values. But this smoothness is broken at places where the intensity changes are
too high, see figure (28). The model has continuous variables ~J representing

the intensity and binary-valued variables ~l for the line processes (or edges). The
model is formulated as performing maximum a posteriori (MAP) estimation.
The algorithm for estimating MAP is a neural network model which can be
derived from the original Markov Model [40] by mean field theory [36]. Note
that in this model the variables do not have to represent intensity. Instead they
can represent texture, depth, or any other property which is spatially smooth
except at sharp discontinuities.



The Line Process Model (II)

For simplicity we present the weak membrane model in one-dimension. The
input is ~I = {I (x) : x ∈ D}, the estimated, or smoothed, image is
~J = {J(x) : x ∈ D}, and the line processes are denoted by ~l = {l(x) : x ∈ D},
where l(x) ∈ {0, 1}.
The model is specified by a posterior probability distribution:

P( ~J,~l |~I ) =
1

Z
exp{−E [ ~J,~l : ~I ]/T},

where

E [ ~J,~l : ~I ] =
∑
x

(I (x)− J(x))2 +A
∑
x

(J(x + 1)− J(x))2(1− l(x)) +B
∑
x

l(x).



The Line Process Model (III)

The first term ensures that the estimated intensity J(x) is close to the input
intensity I (x). The second encourages the estimated intensity J(x) to be
spatially smooth (e.g., J(x) ≈ J(x + 1)), unless a line process is activated by
setting l(x) = 1. The third pays a penalty for activating a line process. The
result encourages the estimated intensity to be piecewise smooth unless the
input I (x) changes significantly, in which case a line process is switched on and
the smoothness is broken. The parameter T is the variance of the probability
distribution and has a default value T = 1.



The Line Process Model Illustration
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Figure 28: A representation of the Line-process model (far left) compared to a real
neural network (left). On the right we show the original image (upper left), the image
corrupted with noise (upper right) and the image estimated using the line-process
model (bottom).



The Line Process Model and Neural Circuits (I)

This model can be implemented by a neural circuit [85]. The connections
between these neurons is shown in figure (28). To implement this model [85]
proposed a neural net model which is equivalent to doing mean field theory on
the weak membrane MRF (as discussed earlier) by replacing the binary-valued
line process variables l(x) by continuous variables q(x) ∈ [0, 1] (corresponding
roughly to the probability that the line process is switched on).

This gives an algorithm which updates the regional variables ~J and the line
variables ~q in a coupled manner. It is helpful, as before, to introduce a new
variable ~u which relates by q(x) = 1

1+exp{−u(x)/T} and u(x) = T log q(x)
1−q(x)

.



The Line Process Model and Neural Circuits (II)

dJ(x)

dt
= −2(J(x)− I (x))

= −2A{(1− q(x))(J(x)− J(x + 1)) + (1− q(x − 1))(J(x)− J(x − 1))}, (31)

dq(x)

dt
=

1

T
q(x)(1− q(x)){A(J(x + 1)− J(x))2 − B − T log

q(x)

1− q(x)
}, (32)

du(x)

dt
= −u(x) + A(J(x + 1)− J(x))2 − B. (33)

The update rule for the estimated intensity ~J behaves like non-linear diffusion
which smooths the intensity while keeping it similar to input ~I . The diffusion is
modulated by the strength of the edges ~q. The update for the lines ~q is driven
by the differences between the estimated intensity, if this is small then the lines
are not activated.



The Line Process Model and Neural Circuits (III)

This algorithm has a Lyaponov function L( ~J, ~q) (derived using mean field
theory methods) and so will converge to a fixed point, with

L( ~J, ~q) =
∑
x

(I (x)− J(x))2 + A
∑
x

(J(x + 1)− J(x))2(1− q(x)) + B
∑
x

q(x)

+T
∑
x

{q(x) log q(x) + (1− q(x)) log(1− q(x))}. (34)



Relations to Electrophysiology (I)

There is some evidence that a generalization of this models roughly matches
the electrophysiological findings for those types of stimuli shown in figure (33).
The generalization is performed by replacing the intensity variables I (x), J(x)
by a filterbank of Gabor filters so that the weak membrane model enforces
edges at places where the texture properties change [95]. The experiments, and
their relation to the weak membrane models are reviewed in [96]. The initial
responses of the neurons, for the first 80 msec, are consistent with the linear
filter models described earlier. But after 80 msec the activity of the neurons
change and appear to take spatial context into account.
While the weak membrane model is broadly consistent with the perceptual
phenomena of segmentation and “filling-in”, the types of filling-in, their
dynamics, and the neural representations of contours and surface is
complicated [167, 86]. Exactly how contour and surface information is
represented and processed in cortex is an active topic of research [54, 142].



Relations to Electrophysiology (II)

The findings of the electrophysiological experiments are summarized as follows:
(1) There are two sets of neurons where one set encodes regional properties
(such as average brightness) and the other set codes boundary location (in
agreement with J and l variable in the model respectively). (2) The processes
for computing the region and the boundary representations are tightly coupled,
with both processes interacting with and constraining each other (as in the
dynamical equations above). (3) During the iterative process, the regional
properties diffuse within each region and tend to become constant, but these
regional properties do not cross the region (in agreement with the model). (4)
The interruption of the spreading of regional information by boundaries results
in sharp discontinuities in the responses across two different regions (in
agreement with the model). The development of abrupt changes in regional
responses also results in a gradual sharpening of the boundary response,
reflecting increased confidence in the precise location of the boundary. These
findings are roughly consistent with neural network implementations of the
weak membrane model. But other explanations are possible. For example, the
weak membrane model requires lateral (sideways) interaction and it is possible
that the computations are done hierarchically using feedback from V2 to V1.



Relations to Electrophysiology Illustration

Figure 29: The stimuli for the experiments in the experiments by TS Lee and his
collaborators [96].



Edge Detection with Spatial Context (I)

Our second example is to develop a model for detecting edges using spatial
context. This relates to the phenomena known as association fields, see
figure (26)(left panel), where Gabor filters which are spatially aligned (in
orientation and direction) get grouped into a coherent form.
For this model, we have a set of neurons at every spatial position x , each tuned
to a different angle θi : i = 1, ..., 8, and a default cell at angle θ0. The first cells
are designed to detect edges at each orientation – i.e. they can be driven by
the log-likelihood ratio of an edge detector at orientation θi at this position.
The default cell is a dummy that is intended to fire if there is no edge present
at this position. This organization forms a population of cells arrayed according
to orientation (similar to a hypercolumn in V1). See figure (27)(right panel).



Edge Detection with Spatial Context (II)

We define a Gibbs distribution for the activity sx,θi of the cells. The energy
function E(~s) contains four types of terms: (I) A term∑

x

∑8
i=0 sx,iφ(f1, ..., fM). This term represents the local evidence for an edge

at each point and for its orientation. (II) A term
∑

x(
∑8

i=0 sx,i − 1)2. This
term is intended to ensure that only one cell is active at any spatial position.
This corresponds to an inhibitory interaction between cells in the same
hypercolumn. The cells in the hypercolumn give alternative, and inconsistent,
interpretations of the input – hence only one of them can be correct. (III) A
term that encourages edges to be continuous and for their directions to change
smoothly. To define this term, we let ~θi = (cos θi , sin θi ) and
~θTi = (− sin θi , cos θi ) denote the tangent to the edge and the normal. This
term encourages there to be edges in the tangent direction, while the next term
discourages them in the normal direction, see figure (27)(far right panel). This
term is motivated by the intuition that curves are spatially smooth and can be
justified by the statistics of natural images [38],[30].



Edge Detection with Spatial Context (III)

We write it as
∑

x,y

∑8
i,j=1 W

T
(x,θi ),(y,θj )

sx,i sy,j , where

W T
(x,θi ),(y,θj )

= − exp{−|~θi − ~θj |/K1} exp{−|x − y |/K2} exp{−|x̂y − ~θi |/K3} (35)

and (x̂y is the unit vector in direction x − y). This term encourages edges
which are in similar directions (first term), nearby in position (second term),
and where the edge orientation is similar to the difference x − y between the
two points. This term is excitatory. (IV) The final terms is inhibitory and
discourages edges to be parallel to each other (if they are nearby). It is written
as

∑
x,y

∑8
i,j=1 W

N
(x,θi ),(y,θj )

sx,i sy,j . Here

W N
(x,θi ),(y,θj )

= exp{−|x − y |/K4} exp{−|x̂y − ~θTi |} (36)



Edge Detection with Spatial Context (IV)

The first term says this interaction decreases with distance. The second term
discourages edges which are parallel to each other.
This gives an overall energy:

E(~s) =
∑
x

8∑
i=0

sx,iφ(f1, ..., fM) + K̂0

∑
x

(
8∑

i=0

sx,i − 1)2

+K̂1

∑
x,y

8∑
i,j=1

W T
(x,θi ),(y,θj )

sx,i sy,j + K̂2 +
∑
x,y

8∑
i,j=1

W N
(x,θi ),(y,θj )

sx,i sy,j . (37)

This yields a probability:

P(~s|~f ) =
1

Z
exp{−E(~s)}.

This model can be implemented in neural networks by defining either stochastic
or deterministic neural dynamics (i.e. either Gibbs sampling or mean field
theory). The resulting update equations are more complex that those defined
for our earlier examples but have the same basic ingredients. Models of this
type can qualitatively account for associative field phenomena.



Stereo Models

This section introduces computational models for estimating depth by binocular
stereo. The key problem is to solve the correspondence problem between the
inputs in the two eyes to determine the disparity. Then the depth of the points
in space can be estimated by trigonometry. (This pre-supposes that the eyes
are calibrated, meaning that the distance between the eyes and the direction of
gaze are known, which is beyond the scope of this chapter). Julesz [71] showed
that humans could perceive depth from stereo if the images consisted of
random dot stereograms which minimize the effect of feature similarity cues,
suggesting that human vision can solve this task by relying mainly on geometric
regularities (assumed about the structure of the world). Other researchers [18]
have studied human estimation of surface shape quantitatively and showed,
among other things, bias towards fronto-parallel surfaces.



Stereo: The Correspondence Problem

Most stereo algorithm address the correspondence problem by assuming that:
(i) image features in the two eyes are more likely to correspond if they have
similar appearance, (ii) the surface being viewed obeys prior knowledge such as
being piecewise smooth (e.g., like the weak membrane model). The first
assumption depends on local properties of the images while the second
assumption uses non-local context. In an earlier section we discussed how a
population of Gabor filters could be used to match local image features. In this
section we describe how context can be used to impose prior knowledge about
the geometry of the scene. We will study classic models which assume that the
surface is piecewise smooth. This leads to a markov field model which includes
excitatory connections, imposing the geometric constraints, with inhibitory
connections which prevent points from one eye having more than one match in
the second eye. This yields an algorithm which involves cooperation, to
implement the excitatory constraints, and competition to deal with the
inhibitory constraints. This is consistent with findings from recent
electrophysiological experiments [146],[145]. These complement experiments
[125] which tested the local stereo models described earlier.



A Cooperative Stereo Model (I)

We now specify a computational model for stereo which, for simplicity, we
formulate in one-dimension. There is a long history of this type of model
starting with the cooperative stereo algorithm [28, 110] and current computer
vision stereo algorithms are mostly designed on similar principles.
We specify the left and right images by ~IL, ~IR and denote features extracted
from them by ~f (~IL) = {f (xL) : xL ∈ DL}, ~f (~IR) = {f (xR) : xR ∈ DR}. We define
a discrete-valued correspondence variable V (xL, xR), so that V (xL, xR) = 1
means that the features at xL, xR in the two images correspond, and hence the
disparity is xL − xR . If the features do not match then we set V (xL, xR) = 0.
We encourage all data-points to match one, but allow some datapoints to be
unmatched and others to match more than once (by paying a penalty).



A Cooperative Stereo Model (II)

We specify a distribution P( ~V |~f (~IL), ~f (~IR)) = 1
Z

exp{−E( ~V ; ~f (~IL), ~f (~IR))/T},
where the energy E( ~V ; ~f (~IL), ~f (~IR)) is given by:

E( ~V ; ~f (~IL), ~f (~IR)) =
∑
xL,xR

V (xL, xR)M(f (xL), f (xR))

+A
∑
xL

(
∑
xR

V (xL, xR)− 1)2 + A
∑
xR

(
∑
xL

V (xL, xR)− 1)2

+C
∑
xL,xR

∑
yL∈N(xL)

∑
yR∈N(xR )

V (xL, xR)V (yL, yR){(xR − xL)− (yR − yL)}2. (38)



A Cooperative Stereo Model (III)

The first term imposes that there are matches between image points with
similar features, here M(., .) is a measure which takes small values if
f (xL), f (xR) are similar and large values if they are different. We will discuss at
the end of this section how M(f (xL), f (xR)) relates to model for local stereo
discussed earlier. The second two terms penalize image points which are either
unmatched, or are matched more than once. The third term encourages the
disparities, xL − xR , to be similar for neighboring points (here N(.) defines a
spatial neighborhood as before). These models can be applied to
two-dimensional images by solving the correspondence problem for each
epipolar line separately (by maximizing P( ~V |~f (~IL), ~f (~IR))). This is shown in
figure (30)(right panel). The parameter T is the variance of the model, as for
the line process model, and has default value T = 1.



A Cooperative Stereo Model Illustration
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Figure 30: Stereo. The geometry of stereo (left). A point P in 3-D space is projected
onto points PL; PR in the left and right images. The projection is specified by the
focal points OL,OR and the directions of gaze of the cameras (the camera geometry).
The geometry of stereo enforces that points in the plane specified by P,OR OL, must
be projected onto corresponding lines EL;ER in the two images (the epipolar line
constraint). If we can find the correspondence between the points on epipolar lines
then we can use trigonometry to estimate their depth, which is (roughly) inversely
proportional to the disparity, which is the relative displacement of the two images.
Right Panel: binocular stereo requires solving the correspondence problem which
involves excitation (to encourage matches with similar depths/disparities) and
inhibition (to prevent points from having multiple matches).



A Cooperative Stereo Model (IV)

We obtain a neural circuit model by performing mean field theory on
P( ~V |~f (~IL), ~f (~IR)). This replaces V (xL, xR) ∈ {0, 1} by continuous-valued

q(xL, xR) ∈ [0, 1] and an associated variable u(xL.xR) = T log q(xL,xR )
1−q(xL,xR )

with

q(xl , xR) = 1
1+exp{−u(xL,xR )} .

The update equation is:

du(xL, xR)

dt
= −u(xL, xR)−M(f (xL), f (xR))

−2A(
∑

yR 6=xR

q(xL, yR)− 1)− 2A(
∑
yL 6=xL

q(yL, xR)− 1),

−2C
∑

yL∈N(xL)

∑
yR∈N(xR )

q(yL, yR){(xR − xL)− (yR − yL)}2. (39)

This update includes the standard integration term (first term) and the second
term encourages matches where the features agree. There is also inhibition
between competing matches (the third and fourth term), and excitation for
matches which are consistent with a smooth surface (last term).



A Cooperative Stereo Model: Interactive Demo.

There is a variant of this algorithm which is used in interactive demo (4c). This
algorithm is a discrete Hopfield network which attempts to minimize the energy
E( ~V ; ~f (~IL), ~f (~IR)) in equation (38). The algorithm starts by assigning initial
values, 0 or 1, to each state variable V (xL, xR). The algorithm proceeds by
selecting a state variable, changing its value (e.g., changing V (xL, xR) = 1 to

V (xL, xR) = 0), calculating if this change reduces the energy E( ~V ; ~f (~IL), ~f (~IR)),
and keeping the change if it does. This process repeats until the algorithm
converges (i.e., all possible changes raise the value of the energy).



A Cooperative Stereo Model and the Local Model

How does the cooperative stereo algorithm relate to our earlier algorithm for
computing stereo disparity locally? Recall that the algorithm estimated the
disparity at a single point by having a set of neurons which were tuned to
different disparities {Di : i = 1, ...,N}, summing the votes v(Di ) for each
disparity by equation (14),and selecting the disparity with most votes. Using
the cyclopean coordinate system [71], we express the disparity by
D(x) = 1

2
(xR − xL) where x = 1

2
(xR + xL). At each point x we specify a

population of neurons which encode the votes v(D(x)) for the different
disparities. Then, instead of using winner-take-all to make a local decision, we
feed the responses v(D(x)) back into cooperative stereo algorithm by defining
M(f (xL), f (xR)) = exp{−v( 1

2
(xR − xL))} (the negative exponential exp{−} is

required so the M(f (xL), f (xR)) is small if the vote for disparity
D(x) = 1

2
(xR − xL) is large).



A Cooperative Stereo Model and Electrophysiology

Analysis of electrophysiological studies [146],[145] were in general agreement
with the predictions of this type of stereo algorithm. In particular, studies
showed that neural populations responses included excitation between cells
tuned to similar disparities at neighboring spatial positions and inhibition
between cells tuned to different disparities at the same position, see figure (31).
In addition, Samonds et al. [147] implemented a variant of the stereo algorithm
described above and showed that it could account for additional phenomena
such as sharper tuning to the disparity for larger stimuli and performance on
anti-correlated stimuli (where the left and right images have opposite polarity).



A Cooperative Stereo Model and Electrophysiology Illustration

Figure 31: Experiments for testing stereo algorithms [146],[145]. Left Panel: the
experimental setup. Right Panel: the experiments give evidence for excitation between
similar disparity and inhibition to prevent multiple matches.


