Cue Coupling

This section describes models for coupling different visual cues.

The ideas in this section are logical extensions of the ideas in the earlier
sections. But we are now addressing more complex aspects of vision and so the
techniques and the tools become more complex and more abstract as we begin
to reason about surfaces, objects, and their relations.



Vision Modules and Cue Combination

Quantifiable psychophysics experiments for individual cues are roughly
consistent with the predictions of the types of models discussed in the previous
two sections— see [18, 23] — but with some exceptions [160].

But how are different visual cues combined?

The most straightforward manner is to use a separate module for each cue to
compute different estimates of the properties of interest, e.g., the surface
geometry, and then merge these estimates into a single representation. This
was proposed by Marr [109] who justified this strategy by invoking the principle
of modular design.

Marr proposed that surfaces should be represented by a 2 1/2D sketch which
specifies the shape of a surface by the distance of the surface points from the
viewer. A related representation, intrinsic images, also represents surface shape
together with the material properties of the surface.



Cue Coupling from a Probabilistic Perspective

We consider the problem of cue combination from a probabilistic perspective
[22].

This suggests that we need to distinguish between situations where the cues are
statistically independent of each other and the cases where they are not. We
need also need to determine whether cues are using similar, and hence
redundant, prior information.

These considerations leads to a distinction between weak and strong coupling,
where weak coupling corresponds to the traditional view of modules while
strong coupling considers more complex interactions. To understand strong
coupling it is helpful to consider the causal factors which generate the image.
Note that there is strong evidence that high-level recognition can affect the
estimation of three-dimensional shape. E.g., , a rigidly rotating inverted face
mask is perceived as non-rigidly deforming face, while most rigidly rotating
objects are perceived to be rigid.



Combining Cues with Uncertainty

We first consider simple models which assume that the cues compute
representations independently and then combine their outputs by taking linear
weighted combinations.
Suppose there are two cues for depth which separately give estimates §1*, §§.
One strategy to combine these cues is by linear weighted combination yielding
a combined estimate S*: . . .

S* = wi1Sf + weSy,
where w1, w2 are positive weights such that w1 +w, = 1.
Landy and Maloney [91] reviewed many early studies on cue combination and
argued that they could be qualitatively explained by this type of model. They
also discussed situations where the individual cues did not combine and “gating
mechanisms” which require one cue to be switched off.



Case where weights are derived from uncertainties

An important special case of this model is when the weights are measures of
the uncertainty of the two cues. This approach is optimal under certain
conditions and vyields detailed experimental predictions which have been
successfully tested in some cases [69, 32], see [21, 48] for exceptions.
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If the cues have uncertainties o2, o3 we set the weights to be wy = ﬁ and
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wy = ﬁ The cue with lowest uncertainly has highest weight.
This gives the linear combination rule:
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Optimality of the Linear Combination Rule (I)

The linear combination is optimal for the following conditions.

(1) The two cues have inputs {5, i =1,2} and outputs S related by

conditional distributions {P(C;|S) : i = 1,2}.

(1) These cues are conditionally independent so that

P(Ci, G|S) = P(C1|S)P(C2|S) and both distributions are Gaussians:
o 1 |G - SP

P(G|S) = 7 exp{—T}7
1

P(GiS) = £ (-1 2T,

(1) The prior distribution for the outputs is uniform.



Optimality of the Linear Combination Rule (1)

In this case, the optimal estimates of the output § for each cue independently,
are given by the maximum likelihood estimates:

S = argmsaxP(61|§) =G, &= argmsa\XP(62|§) =G.
If both cues are available, then the optimal estimate is given by:

S* = argmax P(Gi, G|S) = argmax P(C1|S)P(G|S)
s s
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which is the linear combination rule by setting §1* = C, and §§‘ =G



Optimality of Combination Rule: Illustration
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Figure 33: The work of Ernst and Banks shows that cues are sometimes combined by
weighted least squares where the weights depend on the variance of the cues. Figure
adapted from [32]. The interactive demo (5) illustrates how the cues coupling result
depends on the means and variances of each cue.



Bayesian Analysis: Weak and Strong Coupling

We now describe more complex models for coupling cues from a Bayesian
perspective [22][185] which emphasizes that the uncertainties of the cues are
taken into account and the statistical dependencies between the cue are made
explicit.

Examples of cue coupling, where the cues and independent, are called “weak
coupling” in this framework. In the likelihood functions are independent
Gaussians and if the priors are uniform, then this reduces to the linear
combination rule.

By contrast, “strong coupling” is required if the cues are dependent on each
other.



The priors: avoiding double counting (1)

Models of individual cues typically include prior probabilities about S. For
example, cues for estimating shape or depth assume that the viewed scene is
piecewise smooth. Hence it is typically unrealistic to assume that the priors
P(S) are uniform.

Suppose we have two cues for estimating the shape of a surface which both use
the prior that the surface is spatially smooth. Taking a linear weighted sum of
the cues will not be optimal, because the prior would be used twice. Priors
introduce a bias to perception so we want to avoid doubling this bias.

This is supported by experimental findings [18] where subjects were asked to
estimate the orientation of surfaces using shading cue, texture cues, or both
combination. If only one cue, shading or texture, was available than subjects
underestimated the surface orientation. But human estimates were much more

accurate if both cues were present, inconsistent with double counting priors
[185].



Avoiding Double Counting: Experiments
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Figure 34: Cue coupling results which are inconsistent with linear weighted average
[17]. Left Panel: If depth is estimated using shading cues only then humans
underestimate the perceived orientation (i.e. they see a flatter surface). Center Panel:
Humans also underestimate the orientation if only texture cues are present. Right
Panel: But if both shading and texture cues are available then humans perceive the
orientation correctly. This is inconsistent with taking the linear weighted average of
the results for each cue separately. Figure adapted from [17].



Avoiding Double Counting: Probabilistic Analysis (I)

We model the two cues separately by likelihoods P(C1|S), P(C2|S) and a prior

P(S). For simplicity ee assume that the priors are the same for each cue.
This gives posterior distributions for each visual cue:

-

o = P(c1|*2P(§)7 P(EIG) = P(GIS)P(S)
P(Cl) P(Cz)

This yields estimates of surface shape to be Sr= arg maxg, P(§\ 61) and
Sy =arg maxs, P(5|G).



Avoiding Double Counting: Probabilistic Analysis (II)

The optimal way to combine the cues is to estimate S from the posterior
probability P(S|Ci, G):

== = P(G,G|S)P(S
P(S|Ci, &) = %.
1, L2

If the cues are conditionally independent, P(C|S) = P(C1|S)P((2)|S), then
this simplifies to:

61|§)P(52\§)P(§)_

o2 = P
P31, G = 71 PG.G)
1, L2




Avoiding Double Counting: Probabilistic Analysis ()

Coupling the cues, using the model in the previous slide, cannot correspond to
a linear weighted sum, which would essentially be using the prior twice (once
for each cue).

- - =0
To understand this, suppose the prior is P(S) = Z%, exp{— ‘5;:2”‘ }. Then,
P

setting t; = 1/0%, th=1/03,t, = 1/0,2,, the optimal combination is
5‘* _ t1C1+t2C2+tp o
t1+t2+t

the two cues Ci, C; and the mean S, of the prior.
By contrast, the estimate using each cue individually are given by

gx _ t1C+t,5, _ 1G+5,5,
51 T Tttt and 52 T tttttp

, hence the best estimate is a linear weighted combination of



