
PROPERTY OF THE MIT PRESS
FOR PROOFREADING, INDEXING, AND PROMOTIONAL PURPOSES ONLY

17.2  Visual Cortex    513

networks (CNNs), is directly inspired by the architec-
ture of visual cortex. Partly due to this computer vision 
connection, many neural models of feedforward visual 
processing can handle difficult classification problems 
in large image data sets, an important engineering step 
that at the same time has the scientific advantage of 
facilitating direct comparison with humans’ recogni-
tion performance.

The feedback models we present aim to go beyond 
classification, allowing all visual areas to interact recur-
rently, blending the different sorts of information 
extracted by each to form the kind of complete scene 
interpretation necessary to support a full range of visual 
tasks. This full scene interpretation is a more daunting 
problem than the classification, and our understanding 
of how it is solved in the brain is not yet as fully devel-
oped. While full scene interpretation in natural images 
remains beyond the grasp of the neural models we 
present, these models can tackle important subprob-
lems, and they account for a range of physiological and 
imaging experimental results.

17.2  Visual Cortex

Humans’ and animals’ ability to process objects and 
scenes is supported by a large swathe of specialized 
neural machinery located in visual cortex, near the 
back of the brain (see figure 12.11 in chapter 12 of this 
volume). In this section, we lay out the functional and 
anatomical properties of visual cortex, giving a set of 
desiderata and structural constraints that will shape the 
models we develop in the rest of the chapter. This sec-
tion’s core message is that the visual cortex forms a 
hierarchy of interconnected areas, and that useful rep-
resentations are built up sequentially, with low-level 
areas contributing the building blocks to the more 
high-level and semantically meaningful representations 
found further upstream.

Visual cortex is traditionally divided into two process-
ing pathways: the dorsal, or “where,” pathway, thought 
to represent the location and motion of objects and to 
support interaction with visual input via eye and body 

17.1  Introduction

The collection of questions humans can answer about 
the visual world is vast and diverse. Some can be 
answered at a glance: “Is this a picture of a car?” “Was 
this picture taken outdoors?” Others require more cog-
nitive computation, more viewing time, and possibly 
links to nonvisual cognitive systems: “Is everyone is this 
picture looking at the camera?” “Are the people in this 
image friends?” “What will happen next in this scene?”

These two classes of questions are hypothesized to be 
handled by two different processing modes in the brain. 
As we will see, the brain’s visual areas are organized into 
a hierarchy or chain, with each area passing informa-
tion to its immediate neighbors. Fast visual processing 
is thought to occur in a single feedforward pass through 
this chain, with information moving exclusively from 
lower areas to higher ones. More extended processing, 
by contrast, brings feedback connections into play, 
allowing information to circulate among the visual 
areas in loops. After reviewing the anatomy of visual 
cortex in section 17.2, the organization of this chapter 
follows the feedforward/feedback distinction, with sec-
tions 17.3 and 17.4 focusing on feedforward processing, 
and section 17.5, on feedback.

The particular focus of our feedforward discussion is 
classification problems. In object classification, a model 
assigns to an image the category label of its principal 
object, for example, “dog” or “car.” In scene classifica-
tion, the label identifies the picture’s larger-scale gist: 
Is it an indoor or outdoor scene, a natural scene or an 
urban one? Classification is an important building 
block for complex visual tasks and is a rich and difficult 
problem in its own right: only very recently have models 
emerged that can begin to account for human recogni-
tion performance, and even today, important open 
problems remain.

Classification has also been a major focus of  
recent computer vision research, and the interaction 
between this field and computational neuroscience has 
been fruitful for both. Indeed, the currently dominant 
class of computer vision models, convolutional neural 
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have unparalleled temporal and spatial precision, but 
they are difficult and time-consuming to perform, 
meaning that most studies can examine at most a few 
hundred cells. Functional magnetic resonance imaging 
(fMRI) is a noninvasive neuroimaging technique that 
monitors the oxygen consumed by blocks of tissue a few 
millimeters on a side; oxygen intake is a correlate of 
neural activity. Compared to electrophysiology, fMRI 
sacrifices spatial and temporal resolution (fMRI scan-
ners obtain a series of images every 2 seconds) but is 
quicker to perform and safe to use on awake human 
subjects as they perform behavioral tasks. Finally, mag-
netoencephalography (MEG) and electroencephalog-
raphy (EEG) are other imaging techniques, also suitable 
for human subjects, that give millisecond temporal 
resolution. However, these methods rely on electrical 
or magnetic fields recorded at the scalp, making their 
spatial resolution poor.

Once one of these methods has been used to capture 
neural responses within an area, it remains to character-
ize the information that this area contains. For instance, 
we are often interested in determining whether an 
area’s representation is sufficient to classify a stimulus 
based on its object or scene category. One relatively new 
analysis technique, neural decoding, underlies many of 
the studies reported in this chapter. The idea is that if 
a given representation contains category information, 
it should be possible to read this information out 
directly using a classifier. Concretely, suppose an experi-
ment showed images I1, …, In, from categories c1, …, cn, 
and that image Ii elicited neural response Ri. The clas-
sification problem is then to learn a mapping directly 
from neural response to category label. As usual in 
machine learning, the set of pairs (Ri, ci) are divided 
into a training set used to train a classifier and a test set 
used to validate its performance. If good classification 
is possible, one may conclude that the representations 
Ri contain category information. G enerally, decoding 
studies use linear classifiers, extracting category infor-
mation in a way similar to how downstream neural 
populations may do so.

Several notes are in order. First, the fact that it is 
possible for a classifier to extract category information 
from an area’s activity pattern does not mean that the 
brain itself extracts this information. Relatedly, the 
presence of category information does not rule out 
the possibility of other sorts of information being 
housed in a given region as well. Last, a negative 
decoding result, a failure to read out category from 
activity, does not necessarily imply an absence of infor-
mation: using finer-grained information or different 
algorithms, the brain may access information our clas-
sifiers cannot.

movements, and the ventral, or “what” stream, thought 
to support our core tasks of object and scene recogni-
tion. Our focus will be on the ventral stream, which 
encompasses four areas, V1, V2, V4, and inferotemporal 
cortex (IT).

Within each area, individual cells are responsive to 
stimuli presented in a small region of space, called the 
cell’s receptive field. V1, V2, V4, and parts of IT show 
retinotopic organization, meaning that cells whose 
receptive fields are close to each other are themselves 
physically close together in the brain.

Across areas, the key organizational hypothesis is that 
the ventral stream forms a hierarchy; although all four 
areas are richly interconnected (Kravitz et al., 2013), 
they are commonly pictured as comprising a chain,

	 V V V IT1 2 4↔ ↔ ↔ ,

in which each area interacts primarily with its immedi-
ate neighbors. V1 takes input from the lateral genicu-
late nucleus (LGN), the structure that processes 
information immediately after it leaves the retina, and 
IT passes its output to nonvisual areas in prefrontal 
cortex. Within the chain, projections from earlier to 
later areas are called feedforward, and those from later 
to earlier areas are called feedback. For example, V2 
sends feedforward projections to V4 and feedback pro-
jections to V1.

Justification of the hierarchical picture comes partly 
from anatomical studies tracing the projections that 
connect areas, and partly from functional consider-
ations. For instance, the activation induced by a stimu-
lus spreads sequentially up the hierarchy, emerging in 
V1 an average of 34–97 ms after stimulus onset, in V2 
after 82 ms, and in V4 after 104 ± 23.4 ms in anaesthe-
tized macaques (Schmolesky et al., 1998). A number of 
other quantities vary systematically along the ventral 
stream: receptive field sizes get larger from V1 to IT, 
and the number of neurons in successive areas becomes 
smaller. Most importantly, though, the hierarchical 
structure of the ventral stream is reflected in the repre-
sentations it produces. As information passes through 
the ventral stream, each area computes a new represen-
tation, encoded in the activities of that area’s cells. The 
higher the area, the better able its representation is to 
support tasks like classification.

A number of experimental techniques are available 
to study the brain’s activity in general, and the repre-
sentations computed along the ventral stream in par-
ticular. At the single-cell level, the tool of choice, 
electrophysiology, involves implanting electrodes in the 
brain of an animal—often a macaque monkey—and 
recording the electrical activity induced by presentation 
of different stimuli. E lectrophysiological recordings 
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features (Carlson et al., 2011). IT contains cells respon-
sive specifically to certain high-level object classes, for 
instance faces. At each stage, though, most neurons are 
responsive to a variety of stimuli, arguing against a one-
to-one correspondence between cells and high-level 
features. Overall, response properties of single cells are 
unlikely to tell the whole story: the full discriminative 
power shown by the higher-level ventral stream areas 
emerges from the conjunctive activity of the area’s 
whole population.

17.2.2  Invariance  To begin to get a more fine-
grained picture of how neural representations come to 
support classification, we turn our attention to invari-
ance to nuisance transformations such as translation 
and scaling. These transformations can radically change 
the pixel content of an image while preserving its class 
label, giving rise to difficult situations in which two 
images with very different pixel-level content should be 
assigned to the same category.

To isolate the effect of invariance on classification 
performance, Anselmi et al. (2013) looked at several 
classification problems in which all images were recti-
fied to a canonical position, scale, and orientation 
before classification. In this regime, even the simplest 
pixel representations were able to achieve good classi-
fication performance. This suggests that, at least for the 
classes studied, much of the performance difference 
between lower and higher ventral stream representa-
tions may be due to the latter’s invariance properties.

A particular benefit of invariant representations is 
that they reduce the sample complexity of the learning 
process, the number of labeled images a learner has to 
see before being able to categorize new examples. Intui-
tively, if a learner requires a separate example for each 
pose in which an object could appear, the total number 
of examples needed becomes extremely large. Anselmi 
et al. (2013) quantifies this intuition in the case of 
translation. Consider a collection of objects of p × p 
pixels, which may appear anywhere in an image of size 
rp × rp. G iven an invariant representation, it requires 
O(p2) examples to learn a linear classifier, as compared 
to O(p2r2) in the noninvariant case.

Like category selectivity, invariance builds along the 
ventral stream. D ecoding is again an important tool. 
In using decoding to test for invariance to position, 
say, the classifier is trained on representations elicited 
by images shown at positions P1, …, P(n–1) and tested 
on images shown at position Pn. Thus, the classifier is 
never shown examples of the position in which it is 
tested; good classification performance can only be 
attributed to information being preserved under posi-
tional shifts.

17.2.1  Representation by Area  This collection of 
experimental and analytical techniques allows us to 
explore how information evolves as it passes along the 
ventral stream. Our particular focus in this section will 
be on the ability of each area’s representation to support 
classification, though one may hypothesize that classifi-
cation supporting representations also tends to carry 
semantic information important for fuller scene inter-
pretation as well.

We begin with V1. The properties of the V1 represen-
tation are described in detail in chapter 12, but to 
briefly summarize, V1 cells are often modeled as Gabor 
filters, selective for bar-like stimuli at particular posi-
tions, orientation, and scales. The V1 representation is 
already more abstract than one using pixels, supporting 
edge detection and object segmentation, for instance, 
but it lacks the high-level semantic content and robust-
ness needed for effective classification.

At the opposite end of the ventral stream, the IT 
representation contains a remarkable amount of cate-
gory information. fMRI studies, for instance, have 
found subareas of IT specifically responsive to certain 
object classes, such as faces, places, and bodies. In a 
decoding study Hung et al. (2005) classified objects 
into one of eight categories using a representation con-
sisting of electrophysiological recordings from approxi-
mately 250 IT neurons, achieving a high mean accuracy 
of 94% (with chance being 1/8 = 12.5%).

In a combined MEG  and fMRI study, Cichy et al. 
(2014) explored the intermediate processing between 
V1 and IT. Taking advantage of MEG’s millisecond tem-
poral resolution, the authors were able to pose a large 
ensemble of decoding problems, one for each time 
point after stimulus onset. By examining the errors 
made in each of these problems, they conclude that 
representations at later times are better able to make 
fine classification judgments. For instance, decoding 
performance for the superordinate judgment of 
whether or not a stimulus was animate was highest at 
157 ms, while the peak accuracy for the finer judgment 
of whether or not an animate stimulus contained a body 
occurred later, at 170 ms.

Exactly how these population-level decoding results 
arise from the response properties of individual cells in 
the various brain areas is not completely clear. A simpli-
fied picture has neurons in each successive area becom-
ing responsive to more and more complex features, 
formed as combinations of the features represented at 
the layer below. V2, for instance, contains cells respon-
sive to angles and junctions formed by combinations of 
the bar-like features preferred by V1 cells (Ito and 
Komatsu, 2004). Farther up, a number of studies have 
argued that V4 represents still more complex curvature 
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are inspired by the architecture of visual cortex: even 
in no-holds-barred computer vision, where perfor-
mance, rather than biological fidelity, is the measure of 
success, neuroscientific insights have played an impor-
tant developmental role.

Progress in CNNs, and the history of their rise to 
prominence, is encapsulated in the results of the Ima-
geNet Large Scale Visual Recognition Challenge 
(ILSVRC), an annual contest in which models compete 
on a data set notable for its size, containing 1,000 image 
categories, each with between a few hundred and more 
than a thousand example images. In ILSVRC, models 
are judged on their ability to assign to an image a 
correct object-category label; example categories 
include “Afghan hound,” “electric fan,” “yurt.” The 
competition uses natural images harvested from the 
Internet and not cropped to isolate the target item: to 
correct for the fact that an image may contain multiple 
object classes, models are allowed to produce five can-
didate labels and are considered to achieve a correct 
classification if any one of these five matches the target. 
All statistics reported here are from the survey paper 
(Russakovsky et al., 2014).

In 2010, the first year the contest was held, the 
winning model attained 28.2%, an impressive result 
given the difficulty of the task, but significantly short of 
the 5.1% error achieved by a human labeler. The fol-
lowing year saw a modest performance improvement, 
with the winning model’s classification error dropping 
to 25.8%. Both this model and the 2010 winner are 
representative of the computer vision techniques 
popular at the time, representing an image in terms of 
the orientation statistics of its spatial gradients.

In the following year, 2012, CNNs entered the  
scene, cutting error rates dramatically, with Krizhevsky 
et al.’s (2012) AlexNet attaining 16.4% error. In subse-
quent years, CNNs have continued to dominate the 

Using physiological data from IT, Hung et al. (2005) 
find decoding performance decreased by less than  
10% in the presence of changes in translation and  
scale. In an MEG  study Isik et al. (2014) show that 
invariance emerges in stages over the course of visual 
processing, with invariance to size arriving first, fol-
lowed by invariance to position. In addition, invariance 
to smaller transformations precedes invariance to larger 
transformations.

Invariance also increases at the single-cell level, with 
responses in V1 being invariant to at most small trans-
formations while some IT cells show invariance to fairly 
large degrees of rotation, position, and scale change 
(Ito et al., 1995; Hung et al., 2005). Additionally, Rust 
and D iCarlo (2010) show an increase in invariance 
from V4 to IT.

17.2.3  Summing Up: Lessons for Models  The 
experimental results summarized above pose a clear set 
of desiderata for the computational models we will 
study in the remainder of this chapter. At a minimum, 
the models should mimic cortex’s hierarchical struc-
ture, arriving at the top level with a representation suf-
ficient for classification. E xperimental findings about 
invariance give an important clue about how these rep-
resentations can be built. Sections 17.3 and 17.4 encode 
these insights in models of the visual system’s initial 
feedforward processing stage, arriving at algorithms 
that mimic humans’ ability to classify objects in scenes.

17.3  Feedforward Models

The past five years have seen dramatic progress in feed-
forward models of visual classification, yielding algo-
rithms that can compete with humans on challenging 
tasks. Importantly, the class of models, convolutional 
neural networks (CNNs), responsible for this success, 

Figure 17.1  The convolutional neural network (CNN) 
architecture. Inspired by Hubel and Weisel’s findings in V1, 
a CNN is composed of a series of layers, each with a simple 
(S) and complex (C) sublayer. Simple cells build selectivity 
for complicated features, and complex cells build translation 

invariance. As it passes through the network, an image under-
goes a series of transformations, the end result of which is a 
representation that can be fed into a classifier. This applies 
more or less directly to HMAX and LeNet; more recent 
models include simple-only layers.
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A series of classic experiment done by David Hubel 
and Thorsten Wiesel in the 1960s provide the principal 
neuroscientific inspiration for the CNN architecture. 
Hubel and Weisel recorded from V1 cells in anesthe-
tized cats as the animals viewed patterns of light dis-
played on a screen. They found two main types of cells: 
simple cells responded to bar-like patterns at a particu-
lar orientation and position on the screen. Complex 
cells also responded to bars and also had a preferred 
orientation, but had a small degree of position invari-
ance: their responses were preserved under small trans-
lations of the stimulus.

Mimicking the hierarchical organization of visual 
cortex, a CNN is composed of a succession of layers. 
Extrapolating Hubel and Wiesel’s findings, each unit in 
the network is of either simple or complex type: simple 
cells build selectivity for complicated features whereas 
complex cells build translation invariance. Classically, 
the network is a composed of a series of layers, each 
with a simple and complex sublayer; complex cells take 
input from their own layer’s simple cells, which, in turn, 
take input from the complex cells in the layer before. 
More recently (Krizhevsky et al., 2012; Szegedy et al., 
2014), many models modify this schema by postfixing 
or interspersing some number of layers that contain 
only simple cells; we stick to the classical structure here.

Just as category information is exposed as an image 
passes through the areas of the ventral stream, a CNN’s 
layers enact a similar series of transformations, culmi-
nating in a top-layer representation suitable for input 
to a classifier. This architecture is shown in figure 17.1. 
We now explore the complex and simple cell types in 
turn.

competition, becoming by far the most popular model 
class and achieving steadily decreasing error rates: 
11.7% in 2013 and 6.4% in 2014. He et al. (2015) 
claimed 4.94% on the 2012 data set, beating reported 
human performance.

The success of CNNs is not limited to ILSVRC; it is 
now safe to say that they are the tool of choice for the 
field of object and scene recognition as a whole. They 
have also made an impact in related fields, for instance, 
being used to compute visual features for game playing 
(Mnih et al., 2015), and have attracted considerable 
investment from industry. As described below, CNNs 
also account well for humans’ recognition behavior and 
provide unprecedented matches with electrophysiologi-
cal data.

17.3.1  Convolutional Neural Networks  CNNs 
have a long history prior to their recent climb to com-
puter vision preeminence. The first CNN was Fukushi-
ma’s 1980 model, the Neocognitron (Fukushima, 1980, 
1988). In the 1990s, Yan LeCun and collaborators devel-
oped the LeNet family of CNNs (LeCun et al., 1998) 
and used them successfully for tasks like handwritten 
digit recognition. In 1999, Riesenhuber and Poggio 
proposed HMAX, a CNN specifically designed to model 
mammalian visual cortex (Riesenhuber and Poggio, 
1999). HMAX continued to be developed in the 2000s 
(Serre et al., 2007b). While the different CNNs devel-
oped over the years are distinguished by various design 
choices, most share a core architecture: this will be the 
focus of this section. Section 17.3.3 presents HMAX, 
whose more explicitly biological orientation motivates 
a few important points of difference.

Figure 17.2  A segment from the early layers of a convolu-
tional neural network. E ach complex (C) and simple (S) 
sublayer consists of a collection of feature maps, shown in the 
figure as sheets, consisting of cells responsive to the same 
feature at different positions. Complex cells build position 

invariance by pooling over inputs from a single feature map 
in the previous sublayer. Simple cells build selectivity for com-
plicated features by combing inputs from multiple feature 
maps. As shown in the figure, receptive field sizes increase 
farther up the network.
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localized but differ in the fact that they take input  
from all of the previous layer’s feature maps rather than 
just one.

In sum, a layer-2 simple cell’s inputs come from 
complex cells detecting line segments at a full range of 
orientations and a small range of positions. To become 
selective to a feature like a corner, the cell has to acti-
vate strongly only if a certain combination of these 
segments, for instance a 90° one and 0° one, are present 
in the image. Whereas complex cells played an OR-like 
role, simple cells have to behave more like an AND over 
their inputs. To allow only particular inputs to activate 
our simple cell, we introduce connection weights mod-
ulating the influence these inputs have. Inputs corre-
sponding to features included in our target pattern get 
high weights; other features get low ones. In real net-
works, as we will see, simple cell weights and the fea-
tures they define are learned automatically rather than 
being set by hand.

Considering a simple cell Sp
l

iφ( )  in an arbitrary layer 
l, suppose that the previous layer has n feature maps, 
corresponding to features ϕ1 , … ,ϕn . The afferents of 
Sp

l
iφ( )  are then a subset of layer l – 1’s complex cells, 

localized in space to R(p), but spanning the full range 
of feature maps. Denote this set

	 A S C q R p j np
l

i q
l

jφ ϕ( )( ) = ∈ ( ) = …{ }− |1 1( ) , .

One of these afferent cells, Cq
l

j
− ( )1 ϕ , is connected Sp

l
iφ( ) 

via the weight W q pj i( , ) , .ϕ φ→( )  With this (somewhat cumber-
some) notation in place, we can present the simple cell 
activation function, the counterpart of equation 17.1:

S Cp
l

i q
l

jφ η ϕ φ
φ

φ( ) = ( ) +








→( )

−

( )( )
∑ W bq p

A S
j i

p
l

i

i( , ) ,
1 j .	 (17.2)

Here, η  is a nonlinear function, such as a sigmoid or 
hyperbolic tangent, and b iφ  is a bias term. Overall, then, 
a simple cell sums the activations of its afferents, weight-
ing each activation by the corresponding connection 
weight, adds a bias term, and applies a nonlinearity. As 
with complex cells, a simple cell’s receptive field spans 
the receptive fields of its afferents and is therefore 
larger.

To take its place in the larger network architecture, 
Sp

l
iφ( )  must itself be part of a feature map. In other 

words, there must exist simple cells Sq
l

iφ( )  for all other 
positions q. Since φi -specificity is defined by a pattern 
of weights, a feature map is nothing other than an array 
of simple cells with the same pattern of input weights, 
placed at different positions in the layer; the weights 
are often said to be tied. Thus, computing the activa-
tions of all the cells in a feature map is mathematically 

Consider first building a V1 complex cell like the 
ones Hubel and Wiesel observed; we will denote such a 
cell by Cp i

1 θ( ), where the superscript “1” tells us that the 
cell lives in the first layer, and the subscript p indexes 
the cell’s position within the layer. Because of the net-
work’s retinotopic organization, p also picks out a posi-
tion in the input image where the cell’s receptive field 
is centered. The argument θi  is the orientation for 
which the cell is selective. To denote the activation of a 
cell, rather than its label, we use boldface: Cp i

1 q( ).
To make our task explicit, we need to wire up Cp i

1 θ( ) 
in such a way that it activates to a bar at orientation θi  
appearing anywhere in its receptive field; we will denote 
the receptive field R(p). Hubel and Wiesel proposed a 
simple way in which this could be done. They hypoth-
esized that Cp i

1 θ( )  receives input from a collection of 
simple cells, all also with orientation selectivity for θi , 
whose smaller receptive fields cover R(p). Thus, if any 
one of these afferent cells becomes active, it indicates 
the presence of a θi -oriented bar somewhere in R(p). 
All Cp i

1 θ( ) has to do, then, is perform an OR-like opera-
tion over its input signals, becoming active if any one 
of them is active. In CNNs, the role of the OR operation 
is often played by the max function, yielding the 
so-called max-pooling activation function for V1 
complex cells: C Sp i q i

1 1q q( ) = ( )∈ .( )Maxq R p

Complex cells in higher layers of the network work 
similarly. The complex cells in an arbitrary layer l 
perform max pooling over a localized collection of l’s 
simple cells all tuned to the same feature φi . In higher 
layers, these features are more complicated than the 
orientations we have considered so far:

	 C Sp
l

i q
l

iφ φ( ) = ( )∈Maxq R p( ) . 	 (17.1)

This expression requires that, for each position p, 
there does in fact exist a family of identically tuned 
simple cells at a range of positions in R(p). This moti-
vates a key architectural assumption of CNNs: simple 
cells are organized into “sheets,” called feature maps, 
which tile the input plane with cells with the same 
tuning. In figure 17.2, feature maps are shown as 
stacked arrays. A single layer is composed of multiple 
feature maps. As also shown in figure 17.2, the fact that 
complex cells pool over multiple simple cells means 
that the complex cells’ receptive fields are larger.

We now consider simple cells, again using an example 
of an early network layer, this time the second layer. 
Layer 2 simple cells are responsive to patterns such as 
corners and T-junctions, which can be constructed as 
combinations of the oriented bars selected for by their 
layer-1 complex cell afferents. Simple cells are similar 
to complex cells in that their afferents are spatially 
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we define an error function E(w) measuring the differ-
ence between f(Xi; w) and δ yi . A simple L2 distance 
illustrates the point, though more complex measures 
such as cross-entropy are generally used in practice.

	 E w f X wi y
i

i( ) = ( ) −∑ ; δ
2

2
.	 (17.3)

Given a choice of error function, optimization pro-
ceeds by gradient descent.

A given weight w is updated by
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j
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∂

1 1 α 	 (17.4)

where α  is a learning rate. The actual computation of 
the gradient is usually done by an algorithm called 
backpropagation. While it works very well in practice, 
backpropagation is generally considered neurally 
implausible, and we do not present it here. Neverthe-
less, even backpropagation-trained networks can be 
neuroscientifically interesting, as they make it possible 
to test hypotheses about general network structure, and 
choice of learning objective, network properties that 
can be chosen independently of any specific learning 
process.

17.3.3  HMAX  While the CNNs used for tasks like 
the ILSVRC are inspired by neuroscience, their main 
objective is classification performance. HMAX, by con-
trast, is explicitly designed as a cortical model, drawing 
design choices from the experimental literature wher-
ever possible. HMAX differs from the CNN template 
presented so far in several ways. First, HMAX simple 
cells pool over scales as well positions, building invari-
ance to both changes in size and translations. Second, 
while other models learn their simple cells’ weights at 
every layer, HMAX layer-one simple cells are hand set 
to have the G abor-like tuning found in V1. The first 
layer is composed of Gabor filters at 16 different scales, 
from 7 × 7 pixels to 37 × 37, and at four different ori-
entations, 0°, 45°, 90°, and 135°.

In addition, HMAX’s simple cell activation function 
is somewhat different from equation 17.2. To avoid the 
extra notation associated with different scales, we will 
drop some of our earlier indexing, considering an arbi-
trary simple cell Si. As before, Si receives inputs from a 
set A(i) of complex cells from the previous layer. Its 
activation is given by

	 S Ci j= − −
∈ ( )
∑exp ( )

1
2 2

2

σ
w ji

j A i
.	 (17.5)

The interpretation here is that the synaptic weights 
wji define a “template”: Si’s excitation is when the 

equivalent to convolving the layer’s input with the linear 
filter defined by its feature’s weight pattern, adding the 
bias b to the result, and applying η.  This is the origin 
of the name “convolutional neural network.” Simple 
cell weights and biases are free parameters in a CNN 
and must be learned during a training period; the pro-
cedure is outlined below.

With simple and complex cell types in hand, a 
modeler can assemble an entire network by specifying 
a number of parameters: the number and sizes of its 
layers, the number of its feature maps, the sizes of its 
receptive fields, and so on. Classical CNNs such as 
HMAX, LeNet 5, and the Neocognitron make choices 
roughly similar to visual cortex, having around four 
layers and sticking to the alternating simple and 
complex sublayer scheme that we have used in this 
section. More recently, architectures have grown more 
exotic; G oogLeNet, winner of the 2014 ILSVRC, for 
instance, has 22 layers, and Simonyan and Zisserman 
(2014) present another high-performing model with 
16–19. As described above, many modern models also 
include some number of simple-cell-only layers. The 
question of why such apparently nonbiological choices, 
particularly as regards layer numbers, yield state-of-the-
art recognition performance is an interesting one that 
will require further investigation.

17.3.2  Learning in CNNs  Having specified the 
structure of a CNN, it remains to learn the simple cell 
connection weights. A number of learning techniques 
are possible. HMAX, for instance, uses a simple unsu-
pervised learning scheme, described below. However, 
by far the most common approach in performance-
optimized CNNs is to optimize a supervised learning 
objective function using gradient descent. These 
methods define an error function that measures the 
model’s performance on a training data set of labeled 
images, compute the gradient of this error function 
with respect to each of the model’s weights, and perform 
standard gradient descent.

The output layer of a CNN has one unit for each 
possible class label an input image could be assigned. 
The activation in the yth output unit in response to an 
image X represents the model’s belief that y is X’s 
correct label. We denote by f(X; w) the output activa-
tions induced by an image X fed through a network, 
parameterized by weights w. G iven an image-correct 
label pair (Xi, yi) from the training set, a perfectly 
correct network would produce f(Xi; w) = δ yi , a vector 
uniformly zero aside from a one in the yith position, 
indicating a complete concentration of belief on the 
correct label. A model accrues error to the extent to 
which it deviates from this desired output. Specifically, 
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ventral stream. In an attempt to level the playing field 
by limiting humans to feedforward processing as well, 
Serre et al. (2007a) used a paradigm called masking, in 
which each target image is only shown for 20 ms and is 
followed by a mask, a noise image modified to share the 
target’s low-level statistics. The motivation for this pro-
cedure is that lower visual areas will be occupied with 
feedforward processing of the mask images during the 
time period when feedback processing of the target 
could ordinarily occur, thereby preventing this feed-
back processing from taking place.

Under these conditions, human subjects achieved 
80% accuracy on the animal/no-animal classification 
task. HMAX achieves a similar 82% accuracy. Moreover, 
the pattern of errors made by the model was qualita-
tively similar to that of humans: humans and the model 
tended to find the same images difficult.

To get a finer-grained picture of the properties of a 
trained CNN that supports recognition performance, 
Zeiler and Fergus (2014) use a clever algorithm to visu-
alize the features preferred by units at different layers. 
Applying this algorithm to a CNN similar to the first 
ILSVRC winner (Krizhevsky et al., 2012), they find fea-
tures qualitatively similar to those detected by human 
macaque visual cortex (figure 17.3). Unlike HMAX, in 
which the layer-1 G abor filters are hand chosen, the 
weights at all layers of this CNN are learned during 
training. Even so, edge-like tuning still emerges in the 
network’s first layer. The second layer selects for fea-
tures involving multiple edge transitions, such as 
corners, similar to hypothesized V2 features. The 
highest layers of the network, 4 and 5, are selective for 
recognizable objects and object parts, such as animal 
faces in layer 4 and whole animals in layer 5, suggesting 
a similarity to mammalian IT. Roughly, then, the fea-
tures a given CNN layer selects for are qualitatively 
similar to those selected for by a biological layer at a 
similar point in the hierarchy.

The feature-preference correspondence between 
biological neurons and artificial CNN units suggests a 
more direct comparison: How well can CNN activations 
predict actual physiological data? Yamins et al. (2014) 
recorded the responses of macaque IT and V4 units and 
compared the results to CNN activations induced by the 
same images. To make the comparison, Yamins et al. 
compare each biological neuron to the linear combina-
tion of artificial units that best matches its responses. 
Using this procedure, Yamins et al. find that the CNN’s 
top layer explains 48.5 ± 1.3% of the explainable vari-
ance in the biological IT cells’ firing patterns, and the 
model layer below explains 51.7 ± 2.3% of the variance 
of biological V4 firing rates. To put this number in 
context, it is comparable to the matches other encoding 

activations in A(i) match this template exactly, and it 
falls off in a Gaussian way as they deviate from it.

As measured by performance, probably the impor-
tant distinguishing feature of HMAX is its learning rule. 
Proceeding with the activation function interpretation 
above, learning in HMAX consists of choosing an affer-
ent template for each of its simple cells. HMAX accom-
plishes this with a simple, unsupervised sampling 
procedure. For each simple cell Si, the model picks an 
(unlabeled) image from a data set provided, which, 
when presented to the network, induces a particular 
pattern of activation in the complex cells in Si’s afferent 
set, A(i), with Cj being the induced activation in the jth 
simple cell. This activation pattern is stored as the tem-
plate; wji: = Cj. In other words, each simple cell becomes 
tuned to the neural image of a particular image patch 
arising in the training set.

This learning scheme has two advantages over the 
supervised one presented above. First, it avoids the bio-
logical implausibility associated with backpropagation. 
Second, the fact that it is unsupervised means that it 
does not require a large database of natural images, 
likely better matching the conditions faced by a young 
human or animal during development. These advan-
tages, though, come at the price of reduced perfor-
mance. As we will see below, HMAX achieves respectable 
recognition performance, competing with humans  
on some tasks. However, it lags significantly behind 
performance-optimized CNNs in most classification 
problems. The difference between HMAX’s unsuper-
vised learning rule and the supervised backpropagation 
used by most other models is likely the main reason for 
this deficit.

17.3.4  Assessing CNNs  A number of experimental 
methods are available to help us to study the perfor-
mance and properties of CNNs and to assess the similar-
ity of CNNs to the mammalian visual cortex.

A first question is behavioral: How well can CNNs 
account for human recognition performance? We have 
already seen, CNN performance compares favorably to 
humans in the difficult ILSVRC recognition task. A 
more controlled experiment compared HMAX to 
humans on a simpler visual task, determining whether 
or not an image contains an animal. In difficult cases, 
humans can deploy a number of strategies to make this 
determination, for instance, moving their eyes for 
detailed examination of particular image regions or 
using prior knowledge about where in a natural scene 
an animal might hide. However, strategies like this 
require time and feedback processing and are outside 
the portion of visual processing that CNNs attempt to 
model, namely, the initial feedforward pass through the 
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Figure 17.3  Zeiler and Fergus (2014) developed a deconvo-
lution algorithm to visualize the features that best activate the 
units in a CNN. Here, the algorithm is applied to AlexNet, 
the best-performing CNN in ILSVRC 2012. Each 3 × 3 grid 
corresponds to one feature map. The images on the left of 
each panel show algorithmic reconstructions of the image 

Layer 2 

Layer 5 

Layer 3 

Layer 4  

features that cause high activations, and the color images on 
the right show patches in which these patterns occur. As in 
primate visual cortex, units in higher layers are responsive to 
complex stimuli. Reproduced with permission and modified 
from Zeiler and Fergus (2014).

models have achieved to the much better understood 
lower visual areas.

Another physiological question one can ask about 
CNNs concerns the biological reality of their basic oper-
ations. The simple cell activation function in equation 
17.2 is a standard and widely accepted model of neural 
activation throughout the brain, but a CNN’s complex 
cells’ max-pooling operation is more exotic. D oes it 
actually occur in cortex? Lampl et al. (2004) recorded 
from V1 complex cells and found that for 80% of them, 
a max-like activation function fit their responses better 
than a linear model. Knoblich et al. (2007) present a 
circuit-level model of how max pooling might occur.

Given these impressive results, it is natural to wonder 
if CNNs now offer a full account of feedforward object 
classification. While they undoubtedly make substantial 
progress toward this goal, a few caveats remain. First, 
while CNNs achieve human-like total error on tasks like 
the ILSRVC, the patterns of errors they make deviate 
somewhat from those made by humans (Russakovsky et 
al., 2014). Russakovsky compared human performance 
to GoogLeNet, the most recent ILSRVC winner. More 
than half of human errors are attributable to knowl-
edge deficits as opposed to visual errors: humans may 
not realize that the correct label is an option and may 
struggle with fine-grained and obscure classes, specific 
species of dogs, for example. CNNs, by contrast, have 

more purely visual problems, finding it difficult to label 
objects that take up a small percentage of the image as 
a whole, and struggling with images distorted by 
Instagram-style filters. CNNs also struggle with abstract 
representations of objects such as drawings or statues. 
Taking these last two sources of error together, one 
might hypothesize that, compared to humans, a CNN 
is more likely to classify based on textural rather than 
structural features of an image. Relatedly, Szegedy et al. 
(2013) demonstrate that CNNs can be fooled by adver-
sarial examples, images constructed by taking an image 
the model originally classified correctly, and adding a 
specially designed perturbation. While the resulting 
image is indistinguishable to human eyes from the orig-
inal, the model nevertheless labels it incorrectly.

Second, achieving high classification accuracy with 
biological training mechanisms remains an open chal-
lenge. As mentioned, the popular backpropagation 
algorithm relies on non-neural mechanisms. More 
generally, commonly used supervised learning para-
digms require very large amounts of labeled training 
data, arguably significantly more than human learners 
need. See D urbin and Rumelhart (1989), O’Reilly 
(1996), and Balduzzi et al. (2014) for proposed bio-
logically plausible backpropagation alternatives and 
section 17.6.1 for further discussion of small-sample 
learning.
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So feedforward classification is not without its loose 
ends. Nevertheless, CNN modeling has been a signifi-
cant advance. Indeed, it is arguably the most successful 
effort to date in solving a difficult biological problem 
in an at least broadly biological way.

17.4  Feedforward Scene Recognition

Models like HMAX and other CNNs are generally used 
for object recognition, as in the animal-detection task 
described above, but in principle, nothing prevents 
them from categorizing scenes as well. Indeed, a natural 
conjecture is that scene recognition is nothing other 
than repeated object recognition—we might recognize 
a street scene, for instance, by realizing that it contains 
cars, pedestrians, and buildings in particular arrange-
ments. But recent work gives compelling experimental 
evidence that this object-based view of scene perception 
is incorrect, or at least incomplete. Rather, the human 
object recognition apparatus is supplemented by a dis-
tinct set of processes housed in a distinct set of brain 
areas that quickly extract the global geometric proper-
ties of a scene, its “gist,” that support fast recognition 
of a scene’s semantic category and its functional proper-
ties. This section reviews this experimental work on gist 
extraction and then shows that its findings have been 
captured in computational models.

If the properties of a scene that support classification 
are not the identities of its constituent objects, what are 
they? The evidence suggests that scene classification 
relies on a collection of global geometric properties, 
such as a scene’s openness, the extent to which the 
horizon is visible; its depth; and its navigability. In addi-
tion to their supporting role in classification, these 
properties have clear ecological relevance in their own 
right.

Greene and Oliva (2009) showed subjects masked 
images of natural scenes for variable amounts of time 
and examined which properties subjects were able to 
extract. They found that a scene’s global properties 
became available earlier (mean = 34 ms) than did its 
basic-level semantic category (“mountain,” “ocean,” 
etc.; mean = 50 ms), consistent with a picture in which 
global properties underlie category judgments. To show 
the sufficiency of these properties for scene classifica-
tion, G reene and Oliva (2006) had human subjects 
evaluate the prevalence of each of seven global proper-
ties in each database of natural scene images and 
trained a classifier to predict the category of a scene 
given only its properties, as coded by humans. They 
found a good correlation between human performance 
and that of the classifier, and a similar distribution of 
mistaken classifications.

Other timing studies examine when object informa-
tion enters the mix, and they argue for the following 
approximate ordering: global properties, then scene 
category, then individual object categories. In a study 
by Fei-Fei et al. (2007), subjects generated free descrip-
tions of scenes they had viewed for various durations. 
While the portions of their descriptions involving 
objects changed and became more detailed for longer 
viewing times, subjects’ high-level scene classifications 
remained relatively constant. This is consistent with an 
interpretation in which the scene category is extracted 
quickly while object identities require longer viewing to 
emerge in full.

In addition to limiting the processing time available 
to viewers, other studies have restricted the information 
available in the frequency domain. Schyns and Oliva 
(1994) showed subjects images from which all frequen-
cies above two cycles per degree had been eliminated. 
After this modification, objects generally appear only as 
unidentifiable blobs, but subjects’ ability to identify the 
scene category was largely unimpaired. A similar low-
pass-filtered image is shown in figure 17.4A.

Further evidence for scene processing as distinct 
from object processing comes from neuroimaging 
studies showing a distinct network of brain areas under-
lying scene perception. Imaging work has found at least 
three areas that preferentially respond to scenes or 
places over objects: the parahippocampal place area 
(PPA), retrosplenial cortex, and the occipital place 
area. In a particularly striking finding, Epstein and Kan-
wisher (1998) showed that PPA activation to an image 
of a room was more or less unchanged by removing all 
the moveable objects (furniture etc.), further evidence 
of a geometric rather than object-based encoding. 
Decoding studies with fMRI also support this view. For 
instance, Park et al. (2011) were able to decode scene 
information from all three of the scene-specific areas 
mentioned, as well as from the object-selective area 
lateral occipital cortex (LOC), but the pattern of errors 
the classifier made showed a sensitivity to spatial prop-
erties (open vs. closed) in the scene areas, as compared 
to content in LOC.

17.4.1  Feedforward Models of Scene Percep-
tion  These experimental findings suggest some 
ways that a representation designed to support scene  
classification should differ from one for object classifi-
cation. First, as indicated by humans’ ability to classify 
scenes using only low spatial frequencies, a scene rep-
resentation should need to be only weakly spatially 
localized. Second, and relatedly, the scene representa-
tion should be able to be relatively low dimensional, as 
shown by the good performance of the model in Greene 
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Figure 17.4  (A) Despite the fact that low-pass filtering has 
removed object information, it is still easy to recognize that 
the image shows a street scene. (B) A global feature tem-
plate, one principal component of a multiscale filter-bank 
representation of a database of natural images. The image is 
divided into 16 subregions, and an output value is computed 
for each. The polar plot within subregions shows how the 
output is computed for different orientations and spatial fre-
quencies: angle in the plot represents orientation, and dis-
tance along the radius represents spatial frequency, with low 
frequencies near the center. White regions correspond to 
positive outputs, black, to negative. (C) A noise image 
(right) coerced to share global features with a target image 
(left). The comparison shows that global features preserve 
the scene’s large-scale geometry even while losing its finer 
details. Reproduced with permission and modified from 
Oliva and Torralba (2006).

and Oliva (2006) using only seven human-identified 
features.

Most models of scene processing stem from Oliva and 
Torralba (2001). Here we present a slightly more neural 
variant by the same authors, Oliva and Torralba (2006). 
The model begins with a V1-like representation given 
by the output of a bank of G abor filters spanning a 
range of orientations and scales and positioned densely 
across the image. A first reduction step coarsens the 
spatial resolution of this representation, by dividing the 
image into N × N windows and averaging the output of 
each filter within each window. This reduces the dimen-
sionality of the representation to N × N × S × R, where 
S is the number of spatial scales in the filter bank, and 
R is the number of orientations.

The second reduction step computes this represen-
tation for each of a large number of images in a data 
set and compresses the resulting set of vectors with 
principal components analysis. Each principal compo-
nent is a weighted combination of filter outputs at 
each of the N × N windows. These weighted combina-
tions are then “fused” into what the authors call global 
feature templates (GFTs), which span the whole image; 
an example is shown in figure 17.4B. The first M of 
these GFTs can then be applied to a new scene image, 
by applying the original filters and weighting the 
results, and the output fed to a classifier to extract 
global properties like openness, depth, and so forth. 
To get a feel for the representation that the G FTs 
compute, figure 17.4C shows a noise image modified 
in such a way that it induces the same GFT responses 
as a target image of a natural scene. While the modi-
fied noise image loses the fine details present in the 
target, it maintains enough of its global gist to support 
easy classification.

Since Oliva and Torralba (2001), a number of authors 
have proposed different models of scene-level process-
ing. See, for example, Renninger and Malik (2004) and 
Siagian and Itti (2007) and references therein.

Scene classification is a worthy end in itself, but scene 
information can also be useful in the context of object 
detection. An image’s scene category contains a lot of 
information about which objects it is likely to contain 
and where they are likely to appear. A street scene, for 
instance, is likely to contain multiple cars, while a 
mountain or forest scene probably contains none. Fur-
thermore, cars appear at predictable (vertical) loca-
tions in street scenes; a car is unlikely to appear in the 
sky, for instance. Torralba et al. (2010), building on 
Murphy et al. (2003), use scene-level information to 
adjust the outputs of local object detectors, ensuring 
that the final detections contain a plausible number of 
objects of each class and that these objects appear in 
plausible locations.

Similar intuitions underlie the model in Torralba et 
al. (2006), which uses scene features to predict human 
eye movements during visual search. Subjects were told 
to find an instance of a target object class, “car,” for 
example, and their eye movements were tracked as they 
looked for it. If humans use their knowledge of the 
target image’s class, together with quickly extracted 
scene gist features from the given image, then a model 
incorporating gist features should better predict their 
fixations than one without.

The tendency of a human to fixate a location X is 
modeled as

	 S X L X P X G O( ) = ( ) =−γ ( | , )1 	 (17.6)
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where L(X) is the local saliency of the location X. Heu-
ristically, L measures the extent to which X is unex-
pected given the rest of the image; salient regions stand 
out. This local contribution is traded off via the expo-
nent γ  with a global term, P X G O| , =( )1  denoting the 
probability that an instance of the target class is present 
at the location X, given the image’s global scene-gist 
features G, and assuming that at least one target class 
instance is present in the image as a whole (O = 1). As 
expected, the combined global–local model signifi-
cantly better predicted which image regions subjects 
were likely to fixate than a local-only one.

17.5  Feedback Connections

While the foundations of the feedforward models pre-
sented in section 17.3 were already in place by the end 
of the 1960s, an understanding of visual cortex’s feed-
back connections has been more elusive. It is generally 
agreed that feedback connections mediate attentional 
processing, carrying signals about stimulus salience and 
task relevance from frontal and parietal areas (see 
chapter 19, “Saccades and Smooth Pursuit E ye Move-
ments,” and chapter 4, “Neural Rhythms”), but there 
has been less consensus about the role of feedback con-
nections in this chapter’s core themes of object and 
scene recognition. Here, we will focus on a class of 
models that has come to the fore over the last fifteen 
years or so, which views feedback connections as pri-
marily generative in nature, enabling the brain to syn-
thesize as well as consume images.

That the brain can accomplish this generation is 
intuitively clear from everyday experiences like dream-
ing and visual imagination and from clinical observa-
tions of visual hallucinations. Sufferers of Charles 
Bonnet syndrome, for instance, report extremely  
vivid hallucinations which they have trouble distinguish-
ing from reality, and which imaging studies have shown 
to have very similar neural signatures to normal  
visual processing (Ffytche, 2005). But even granting the 
visual cortex’s generative capacity, it still remains to 
explain how this capacity could be used to support 
recognition.

17.5.1  Generative Models for Recognition  The 
spiritual father, arguably, of the generative approach to 
vision is Hermann von Helmholtz, who in 1867 advanced 
the theory of “perception as unconscious inference.” 
On this view, the input the visual system receives is the 
result of a causal process, the imaging process mapping 
world states (particular configurations of objects, illu-
mination, etc.) to two-dimensional images, or collec-
tions of LGN cell responses. The goal of visual cortex 

is then to invert this process, inferring from an image 
the world state that caused it. Note the ambiguity inher-
ent in this problem: any image is, in general, consistent 
with many high-level causes. For instance, a percept of 
a given size might be caused by a large, distant object 
or by a small object close at hand.

The purely feedforward models we have studied so 
far approximate a solution to this inverse problem by 
learning a direct mapping from percept to causes, a 
purely bottom-up approach. G iven a model of the 
imaging process, a purely top-down process is also pos-
sible: one could guess high-level causes and check them 
by running the imaging process and seeing if the result 
matched the observed percept. This approach has the 
advantage of being robust to low-level ambiguity, but in 
practice, of course, pure trial and error is hopelessly 
inefficient. Practical generative vision models use a 
mixed approach in which bottom-up and top-down 
information is progressively integrated.

Reflecting the ambiguity inherent in the inverse 
inference problem, generative models in vision are gen-
erally probabilistic. Sticking with our chain view of 
visual cortex, in which areas interact primarily with 
their immediate neighbors, allows us to factor the joint 
probability of the activities in all cortical areas, and of 
the input data in the LGN, as follows:

P LGN V V V IT
P LGN V P V V P V V P V IT P

, , , ,
) ( | )( | | |

1 2 4

1 1 2 2 4 4

( )
= ( ) ( ) (( )IT .

		  (17.7)

The conditional probabilities P V Vi j|( ) encode a 
model of the statistics of natural images given their 
content. For instance, P V IT( | )4  indicates which V4  
responses the model expects given the presence of a 
particular configuration of objects, encoded as IT 
responses. These probabilities are acquired through 
experience; this is the learning problem. Once the rel-
evant distributions are in place, we can ask Helmholtz’s 
inversion question: which higher-level causes were likely 
to have generated a given LGN input? In the probabi-
listic context, this is called the inference problem, and 
it amounts to approximating or maximizing the follow-
ing posterior distribution:

P V V V IT LGN
P V V V IT LGN

P LGN
1 2 4

1 2 4, , , |
, , , ,

( )
( ) = ( )

(17.8)

	= ( ) ( )1
1 2 2 4 4

Z
P V V P V V P V IT P IT| | ( | ) ( ) .

Here, we have treated the probability of the LGN 
input as a normalizing constant and used uation 17.7 
to perform the factorization in the last step.
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In general, generative approaches to recognition 
share this basic structure and problem definition but 
differ in the way in which the optimization is performed 
and in how the distributions are parametrized.

17.5.2  Predictive Coding  When you tell a friend 
about your day, you do not catalog routine minutiae. 
Rather, you only mention the few unusual events that 
distinguished this particular day from any other, relying 
on your friend’s prior knowledge of your daily habits to 
fill in the details you left out. This is the intuition under-
lying predictive coding, a technique originally devel-
oped for speech processing in the 1960s: a sender need 
only transmit those parts of a signal that are unexpected 
given a predictive model possessed by the receiver.

Predictive coding underlies several models of visual 
cortex and other brain areas (Mumford, 1992; Friston, 
2005). Our exposition most closely follows the model 
developed in Rao and Ballard (1999). In Rao and Bal-
lard’s model, higher visual areas play the role of the 
receiver in the sketch above, and lower areas, the 
sender. Higher areas use feedback connections to trans-
mit their generative predictions of the next lower level’s 
activity, and lower areas send up the errors in these 
predictions via feedforward connections.

In the simplest version of the model, the predictions 
made by the ith area is the linear function of the area’s 
own activities:

	 WiVi 	 (17.9)

where Wi  is a matrix of synaptic weights. The Wi  are 
structured so that each cell in area Vi sends connections 
to a spatially localized subset of cells in the layer below, 
the size of this subset increasing with i, corresponding 
to the fact that cells in higher areas have larger recep-
tive fields. 

With a Gaussian noise model, equation 17.9 gives the 
following conditional probabilities:

	 P V V Vi i i i( | diag+ + += ( )1 1 1
2) ( , )N Wi σ 	 (17.10)

where σi
2 is a layer-dependent noise variance. With this 

formulation, we can solve both the learning problem 
(finding W) and the inference problem with gradient 
descent; we focus on the inference problem here. From 
equation 17.8, passing to log space and differentiating 
gives the following:
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After plugging in equation 17.10, we obtain the follow-
ing update rule:
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This is a quantitative expression of the predictive 
coding intuition explained above. The second term in 
the sum is the error in the predictions coming from the 
higher area Vi+1  and is available locally to Vi . The first 
term, the error in Vi ’s own predictions, has to be passed 
back up fromVi−1 where it is computed.

These considerations suggest a neural implementa-
tion like the one shown in figure 17.5, adapted from 
Friston (2005). E ach visual area is composed of two 
subpopulations: the prediction neurons Pi send pre-
dictions via feedback connections, and the error detect-
ing neurons Ei compute the error in predictions 
coming down from the area above. For a more detailed 
attempt to map the predictive coding hardware onto 
neural machinery, see Bastos et al., (2012).

17.5.3  Predictive Coding: Simulations and Pre-
dictions  In simulations with a truncated version of 
the model above, encompassing LGN, V1, and V2, Rao 
and Ballard (1999) derive a number of properties of V1 
cell responses, particularly the so-called extra-classical 
receptive field effects. As described in section 17.2, a 
cell’s classical receptive field is the region of space in 
which a presented stimulus can evoke a response. Many 
V1 cells have in addition an extra-classical receptive 
field (ECRF), which is a larger area outside the classical 
receptive field where stimuli can modulate the cell’s 
firing. Two examples are shown in figure 17.6. E nd-
stopped cells are responsive to bar-like stimuli and show 
enhanced responses when a bar terminates in their 
ECRF. Another effect, surround suppression, occurs 
when a cell’s firing decreases when the dominant ori-
entation in its classical receptive field extends through 
its E CRF. In general, extra-classical effects occur at 

Figure 17.5  A possible neural architecture for predictive 
coding. E ach area contains two populations of neurons: Pi 
predicts the activity of the downstream area, sending the pre-
dictions via the synaptic weights matrix Wi, and Ei computes 
the error made by the predictions coming from the next 
higher area.
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around 80–100 ms after stimulus onset, as compared to 
66 ms for classical V1 responses, suggesting a role for 
feedback, or at least lateral, processing.

After training their network on a database of natural 
images, Rao and Ballard found that a large proportion 
of their error-correcting neurons displayed end-
stopping effects. An analysis of natural image statistics 
reveals why this should be so. Edges in natural images 
generally continue smoothly; short, isolated bar seg-
ments are rare. D uring training, the simulated V2 
neurons adapt to this regularity and shape their predic-
tions of V1 responses accordingly. Thus, short bars con-
tained within a V1 cell’s ECRF trigger a prediction error 
and cause increased activity in the V1 error-detecting 
cells. Recall that the receptive field of each simulated 
V2 neuron contains several V1 neurons; this group con-
stitutes its central cell’s ECRF.

The analysis for surround suppression is similar. By 
and large, the dominant orientation in a natural image 
changes slowly and smoothly over space, so this is what 
V2 cells come to predict. When this prediction is upheld, 
error-detecting neurons fire less, resulting in the 
observed suppression.

Subsequent studies have used fMRI to investigate pre-
dictive coding. Murray et al. (2004) used stimuli of a 
variety of types, each containing a collection of ele-
ments. In one class of stimuli, the elements could be 
interpreted as forming a coherent group of some kind, 
while, in the other class, they appeared essentially 
random. A collection of line segments forming a coher-
ent two-dimensional shape, for instance, would be a 
member of the first class, while a collection of scattered 
segments would be a member of the second. In fMRI 
experiments, the groupable stimuli were found to 
induce increased response in higher visual areas, such 
as the object-responsive area LOC, and reduced 
responses in V1. This finding is consistent with  

predictive coding: groupable stimuli admit a higher-
level explanation that is able to “predict away” lower-
level responses. The authors point out, however, that the 
result is also consistent with an alternative “sharpening” 
explanation, in which lower-level responses that are con-
sistent with higher-level predictions are enhanced, and 
others reduced, perhaps as a way to produce a sparser 
representation overall.

More directly related to our concern with object rec-
ognition, Egner et al. (2010) showed subjects images of 
either faces or houses. Before each image, subjects saw 
a colored frame that was stochastically predictive of the 
image category to follow: a face followed green frame 
with probability 0.25, a yellow frame with probability 
0.5, and a blue frame with probability 0.75. Egner et al. 
recorded the activation in the FFA, a fusiform area 
selective for faces. Consistent with other studies, they 
found some FFA activity in response to house stimuli, 
but this activation was much higher, almost as much as 
for faces, when these stimuli were unexpected. The 
predictive coding explanation of this result is that the 
FFA activation is an error-correcting response induced 
by the violated face expectation. The authors rule out 
an alternative explanation that face expectation uni-
formly enhances FFA activation, perhaps as a result of 
anticipatory neural activity. On this explanation, activa-
tion on face-expected, face-present trials should be at 
least as high as on face-unexpected, face-present ones, 
the opposite of the actual finding that face-present acti-
vation increased the face expectation.

For a recent review of other predictive coding, includ-
ing proposals about how it could function in cognitive 
domains other than vision, see Clark (2013).

17.5.4  Other Approaches to Inference  Schemes 
like Rao and Ballard’s are perhaps the best-developed 
approaches to inference in generative vision, but there 
is no shortage of other candidates. We focus in particu-
lar on one algorithm, known as belief propagation or 
message passing, in part because it has been proposed 
as a general algorithm for neural probabilistic infer-
ence, applicable to areas beyond visual cortex. As the 
name suggests, the message-passing algorithm is based 
on communication between probabilistically related 
variables, making it particularly amenable to neural 
interpretations. The specific approach we sketch here 
was developed in Lee and Mumford (2003). For another 
approach, see Rao (2007).

Lee and Mumford move to a slightly different formal-
ism from the one presented above, replacing the con-
ditional probabilities with potential functions ϕ(V Vi j, ), 
which measure the undirected compatibility of the rep-
resentations in a pair of adjacent areas.

Figure 17.6  Extra-classical receptive fields (ECRFs). In both 
figures, the cell’s classical receptive field (RF), the region in 
which a presented stimulus can directly induce firing, is 
shown in red, and its ECRF, a larger area in which stimuli can 
modulate firing, is shown in black. End-stopped cells show a 
decrease in firing when a bar extends beyond their classical 
RF. Surround suppression occurs when a cell fires less strongly 
when the orientation present in its classical RF continues in 
its ECRF.
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Lee and Mumford propose an inference mechanism 
that combines belief propagation with another algo-
rithm popular in machine learning and computer 
vision called particle filtering. Particle filtering replaces 
the continuous distributions over Vi  with a discrete 
approximation, taking the form of weighted samples: 

w Vk i
k

k

n
�

=
∑

1

 where the �Vik , called particles, are a chosen 

set of possible activation values. Belief propagation then 
allows neighboring areas to update these distributions 
by passing messages. Specifically, each area passes up 
this message:
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Similarly, the downward massages take the form
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Focusing on the upward case, the kth component of 
the message M VV V i

k
i i→ ++ ( )1 1

�  can be understood as the 
expected compatibility of the particle �Vik+1  with the 
activity in area Vi, where the expectation is taken with 
respect to incoming messages from the other direction. 
We have presented the standard version of the algo-
rithm, called the sum product algorithm; Lee and 
Mumford use a variant called the max-sum algorithm, 
in which the sum is replaced with a max.

After one round of message passing, each particle �Vik  
has received “scores” from the messages coming from 
above and below. These are multiplied to give the par-
ticle’s weight:
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As the model’s beliefs evolve, many of the original 
particles become overwhelmingly unlikely, as mani-
fested in low weights. At each iteration, a new set of 
particles is formed by resampling with replacement par-
ticles according to their weights. This will tend to rein-
force particles that are doing well while killing off ones 
that are doing poorly.

The basic form of the message-passing algorithm, 
propagation of locally computed information, makes it 
attractive from a neural point of view. One sticking 
point, though, is how the particles are represented. 
Since the algorithm requires each brain area to main-
tain multiple independent hypotheses (particles) simul-
taneously, the question arises how they can be kept 
internally coherent and mutually distinct. Lee and 
Mumford tentatively suggest a few options such as the 
synchronous firing, but at present no option constitutes 
a fully fleshed out proposal.

Comparing this picture with Rao and Ballard’s model, 
presented above, we see that the top-down messages can 
still be interpreted as predictions, but the bottom-up 
messages are no longer directly interpretable as error 
signals. In addition, allows more complex interactions 
between areas than Rao and Ballard’s. This makes the 
Lee and Mumford model more expressive, but at the 
cost of less tractable inference.

17.5.5  Feedback Processing and Priors  In addi-
tion to providing an efficient representation, integrat-
ing generative top-down signals with bottom-up ones is 
an effective way of dealing with the ambiguities inher-
ent in low-level cues. Yuille and Kersten (2006) argue 
that low-level determinations are difficult to make using 
only local low-level information but are relatively easy 
given a high-level analysis. McDermott (2004) asked 
human subjects to determine whether a junction of 
edges was present in a given image region. This is easy 
when the whole image is visible; an object’s location 
determines the locations of its edges. However, when 
McDermott restricted his subjects’ information to low-
level cues by making them view the image through a 
small, 13 ×13 pixel window, their junction-recognition 
performance was poor.

A prediction, then, is that feedback processing should 
be especially prevalent when low-level cues are ambigu-
ous or absent. The Kanizsa square (figure 17.7) is a 
well-known visual illusion, which admits two interpreta-
tions: a white square partially obscuring four black 
circles, or four mutilated circles. Lee and Mumford 

Figure 17.7  The Kanizsa square is an ambiguous stimulus, 
which can either be interpreted as a white square partially 
occluding four circles, or as four circles with missing pieces. 
Feedback processing induces V1 cells to respond to illusory 
contours defining the square.
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recorded from V1 as monkeys viewed this stimulus, 
finding equally strong responses to the illusory con-
tours between the circles as to the real ones within the 
circles, suggesting an interpretation in which higher-
level processes settled on the “occluding square” inter-
pretation and used feedback connections to fill in the 
“missing” contour information in V1. Importantly, V1 
cells responded to illusory contours after V2 cells, con-
sistent with the feedback story.

In a study using more natural stimuli, Tang et al. 
(2014) used subdural electrodes to record from the 
brains of human epilepsy patients undergoing surgery 
as they viewed two ordinary and heavily occluded 
natural images. Object recognition was possible in the 
occluded images—occlusion was calibrated so that sub-
jects achieved approximately 80% accuracy in a behav-
ioral identification task—but most (all but 18%, on 
average) low-level information was obliterated by the 
occluders. However, activity in category-selective IT 
cells was significantly delayed in the occluded condi-
tion, suggesting a reliance on preceding recurrent 
processing.

17.5.6  Feedforward and Feedback Processing: 
Summing Up  Feedforward and feedback models 
present substantially different pictures of visual process-
ing. How do the two fit together? The mainstream view 
is of a first, purely feedforward pass sufficient for rela-
tively straightforward classification tasks followed by 
more sustained feedback processing supporting more 
difficult or ambiguous determinations.

A first line of evidence for this view comes from the 
timing of human recognition. In an EEG study, Thorpe 
et al. (1996) found category-selective information 
arising in the prefrontal cortex (after visual cortex) in 
only 150 ms. Historically, this timing has been a chal-
lenge for feedback models, given their more extensive 
processing demands. Lee and Mumford (2003) point 
out, however, that if recurrent processing occurs con-
tinuously in local feedback loops, rather than requiring 
multiple complete top-to-bottom passes, then recogni-
tion at the 150-ms timescale is not unrealistic. More 
recent time studies pose challenges for this argument, 
though. A recent behavioral study (Potter et al., 2014) 
used a rapid serial visual presentation (RSVP) paradigm 
in which a sequence of images was shown for only 13 
ms each, after which subjects were asked whether an 
image matching a description (e.g., “bear catching 
fish”) was present in the sequence. E ven under these 
extremely demanding time constraints, subjects’ per-
formance was significantly better than chance. Short 
presentation times alone are consistent with feedback 
models, but the RSVP paradigm poses a challenge: in 

the time after presentation of the first image, early 
visual areas are occupied with analysis of subsequent 
images and are therefore unavailable for feedback pro-
cessing of the first one.

Other evidence comes from physiology. In a decod-
ing study, Hung et al. (2005), for instance, found that 
category information was present in the first IT spikes 
appearing in response to a stimulus, arguing against a 
feedback picture in which initial IT activity is fed back 
to and processed by earlier areas before a final inter-
pretation is reached.

As argued above, though, fast, purely feedforward 
processing is insufficient for many tasks, particularly 
those with ambiguity, like occlusion. Precise character-
ization of the tasks supported by the two processing 
regimes is an important question that awaits future 
work.

17.6  Conclusion

As we have seen, several well-established frameworks 
exist for understanding the various processing stages in 
the ventral visual pathway. However, several important 
questions remain unanswered. Here we focus on two 
areas we think will be important for future research.

17.6.1  Digging D eep: Learning From Few E xam-
ples  While the remarkable developments in com-
puter vision over the last few years owe much to new 
algorithms and representation schemes, much credit 
must also go to the availability of huge databases of 
labeled images, and the computing power required to 
process them. This state of affairs contrasts markedly 
with human vision: we can often learn to recognize a 
new object (say an iPhone circa 2005) from only one 
example, not hundreds or thousands. Even as children, 
we hear our parents explicitly identify only a relatively 
modest number of objects in the world. It is an impor-
tant challenge, therefore, both for the development of 
the next generation of computer vision systems and for 
genuine understanding and replication of the animal 
visual system, to come up with computational systems 
that can learn from similarly compact collections of 
data.

As we have seen, building in invariance to nuisance 
transformations is one route to data-efficient models. 
HMAX and other CNNs can build invariance to changes 
and scale, but we can hope for more gains by account-
ing for other transformation types. Anselmi et al. (2013) 
develops a more general theory of invariant 
representations. 

Transformations like translation, scaling, and rota-
tion are class general; they apply to all object classes in 
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the same way, a property that does not hold for trans-
formations in general. Changes in expression, for 
instance, are a class of transformation that apply to 
faces alone. Less obviously, three-dimensional rotation 
in depth followed by projection onto the two-
dimensional image plane is also class-specific: a long, 
thin object, for instance, rotates differently from an 
approximately spherical one. Anselmi et al. present a 
two-stage model to tackle class-specifc transformations. 
The first stage, corresponding to areas V1–V4, is an 
HMAX-style CNN. The second stage, corresponding to 
anterior IT, consists of a collection of modules each of 
which handles class-specific transformations for one 
important object class. The face patches in primate 
brains are hypothesized to be examples of such modules. 
The resulting architecture achieves competitive perfor-
mance in face processing tasks and accounts for a 
number of experimental findings. It predicts, for 
instance, the existence of the mirror-symmetrical cells 
found in macaque face areas that respond equally to a 
face as to an axis-flipped version.

Another approach to improving data efficiency (Sal-
akhutdinov et al., 2011) uses hierarchical probabilistic 
models. A nonvisual parable conveys the main idea. 
Suppose you are given a number of opaque bags of 
colored marbles. You empty out the first one, seeing 
that it contains only red marbles. Further exploration 
shows that all the marbles in second are blue, and all 
in the third are yellow. You then draw a single green 
marble from the fourth bag. Even without seeing any 
other bag-four marbles, you can be reasonably sure that 
they are green: After all, all of the other bags were 
monochromatic. Examples like this are formulated with 
hierarchical probability models: the individual bags are 
probability distributions, in this case distributions over 
marble colors, whose parameters are themselves drawn 
from a higher-level distribution. Thus, learning some-
thing about a few of the bags—for instance, that they 
are monochromatic—tells you something about the 
generative process for bags in general and allows you 
make hypotheses about new examples. Salakhutdinov 
et al. transfer this intuition to vision, replacing bags with 
object categories and marbles with image features. 
Thus, information about the feature distributions for a 
few classes is information about how features are dis-
tributed for classes in general. As with the single green 
marble in the example, this higher-level information, 
combined with a single image from a new class, con-
strains the new class’s structure, making it easier recog-
nize further examples.

17.6.2  Thinking Wide: Full Scene Interpretation 
in Natural Images  We began this chapter with an 

overview of the range of questions humans can answer 
about the visual world but have focused the discussion 
so far on the areas best understood by neuroscience: 
feedforward object and scene classification and prelimi-
nary steps toward full scene interpretation made by 
feedback models. Here we discuss the prospects for 
modeling a wider range of visual tasks, ones requiring 
the analysis of scenes with multiple objects interacting 
in complex ways. We briefly survey promising computer 
vision approaches to these problems, approaches that 
may develop into fruitful sources of neuroscientific 
hypotheses. 

A prerequisite, arguably, for human-level flexibility in 
visual scene analysis is the ability to recognize all the 
objects present in an image and to represent their 
spatial relations. One version of this task is called image 
parsing (Yao et al., 2010; Zhu and Mumford, 2007; Tu 
et al., 2005; Jin and G eman, 2006; Zhu et al., 2010; 
Socher et al., 2011). In language processing, one parses 
a sentence by recursively breaking it up into meaningful 
parts: a sentence is composed of phrases, which are 
themselves composed of smaller phrases, and so on. 
Images have similar hierarchical structure: an image 
depicts a scene, which is composed of objects, which 
are composed of parts, which are composed of primi-
tive components like corners and edges. Given an input 
image, an image-parsing algorithm seeks to recover this 
hierarchal structure. Whereas the classification models 
we have seen so far assign an image a single label, 
image-parsing algorithms assign an image a whole parse 
tree.

Several models (Yao et al., 2010; Zhu and Mumford, 
2007) define image grammars. Just as a string grammar 
is a generative model for the well-formed strings in a 
language, an image grammar is a rich, structured gen-
erative model for images. As in the feedback models 
surveyed above, image parsing is the task of inverting 
this generative model, going from an image to the 
sequence of choices that could have formed it. There 
are two main algorithmic challenges in this approach. 
In the learning problem, the model must infer the 
appropriate grammar to describe a collection of input 
images . In the inference problem, the model must find 
a parse to explain an image with respect to an already 
fixed grammar. G iven the large number of possible 
grammars and parse trees, both of these problems are 
challenging.

Partly in response to these difficulties, other image-
parsing approaches such as Zhu et al. (2010) and Jin 
and Geman (2006) eschew formal grammars, opting for 
more tractable recursive models amenable to efficient 
discriminative and dynamic programming algorithms. 
Socher et al. (2011) uses a neural network approach, 
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though not one with direct correspondence to the 
brain. This model takes as input an image overseg-
mented into regions, from each of which it extracts a 
feature vector. It then proceeds by merging regions 
pairwise, continuing until only one region remains in 
the image. The binary tree resulting from this process 
is the image’s parse.

The heart of the model is a so-called recursive neural 
network (RNN) that takes as input two feature vectors 
and outputs a single merged feature vector of the same 
length. The RNN is used to evaluate candidate region 
merges. G iven neighboring regions R1 and R2 with 
feature vectors F1 and F2, the model computes F3 = 
RNN(F1, F2). A linear regression model then assigns a 
score to F3, which measures the quality of merge. Given 
a current segmentation of the image into regions, the 
model considers each possible merge and chooses the 
one with the highest score, continuing in this way recur-
sively. E ach time a new merged region is created, it 
comes with its feature vector, F3 above. In addition to 
being necessary for calculating further merges, this 
feature vector can be fed into a classifier assigning a 
category label to region. Thus, each node in the parse 
tree can be assigned a category.

In the context of generative models like image gram-
mars, one often hears the slogan “vision as inverse 
graphics,” an expression of the Helmholtzian view of 
perception as unconscious inference. Some promising 
recent models (Mansinghka et al., 2013; Kulkarni et al., 
2015) take this slogan literally, viewing images as arising 
not from a grammar but from a probabilistic graphics 
program, in which parameter choices such as object 
positions, camera angle, and lighting conditions are 
stochastic. G iven a generative model of this kind, an 
inference algorithm can be used to find the collection 
of parameter choices that best explain a given input 
image. While this inference problem is difficult, advan-
tages of the inverse graphics approach include the fact 
that it can model a scene’s three-dimensional structure 
and can exploit the expressivity and flexibility of a full 
programming language, potentially obtaining richer 
scene interpretations than those possible with grammar-
like formalisms. 

Mapping structured scene interpretation models to 
neural computation is an important outstanding chal-
lenge. In addition the purely visual aspects of this 
mapping, a full solution will have to address fundamen-
tal questions about how the brain represents structured 
information. In vision, these questions arise in even the 
simplest visual scenes. Consider, for instance, a ball 
inside a cup. We know how to represent the ball and 
the cup by feature vectors, and we may be able to extend 
the principle to find the vector for “inside” as well. The 

question, then, is how to combine all of these represen-
tations in a way that reflects the scene’s structure, pre-
serving, for instance, its distinctness from “cup inside 
ball.” Considering neural representations of more 
complex objects, such as parse trees, only magnifies the 
problem. The question of neural representations of 
structured and relational data, sometimes called the 
“connectionist variable binding problem,” has a long 
history, and a number of solutions have been proposed 
(Smolensky and Legendre, 2006; Shastri and Ajjana-
gadde, 1993; van der Velde and de Kamps, 2006). To 
date, though, none has emerged as a consensus solu-
tion. Open problems abound in this area, both for 
computational neuroscience in general and for fully 
structured vision in particular.
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