Attention Correctness in Neural Image Captioning

Chenxi Liu

Joint work with Junhua Mao, Fei Sha, Alan Yuille 11/27/2016

Outline

- "Classic" Image Captioning Models
- Deep Attention in Image Captioning
- Evaluation of Visual Attention
- Supervision on Visual Attention
- Results and Discussion

"Classic" Image Captioning Models

Ι

→ A little boy playing with a yellow shovel

 \longrightarrow y_1, \dots, y_T

- a = CNN(I)
- $h_t = RNN(y_{t-1}, h_{t-1}, a)$
- $p(y_t|y_1, ..., y_{t-1}, I) = g(h_t)$

CNN is usually pretrained on ImageNetRNN can be an LSTMg is usually a MLP

Deep Attention in Image Captioning

- Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with visual attention." *ICML 2015*
- Intuition
 - The image feature does not contain location information
 - Different words describe different regions of the image
 - Can this dynamic alignment be modeled and learned?

Deep Attention in Image Captioning

- $a_{1:L} = CNN(I)$
- $h_t = RNN(y_{t-1}, h_{t-1}, z_t)$

Now conv layer feature Context vector is dynamic

• $z_t = \sum_{i=1}^{L} \alpha_{ti} a_i$ • $\alpha_{ti} = \frac{\exp(e_{ti})}{\sum_{i=1}^{L} \exp(e_{ti})}$ • $e_{ti} = f(a_i, h_{t-1})$

Weighted sum of per-location features Softmax: attention sums to 1 *f* is usually a MLP

• Amazingly, the whole thing is differentiable

Deep Attention in Image Captioning

A woman is throwing a <u>frisbee</u> in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

So... what's the problem?

- The attention maps carry important information in understanding (and potentially improving) deep networks
- Although impressive visualization results of the attention maps are shown, there are no quantitative evaluations
- In other words, the visualizations could be cherry-picked
- Therefore, we study the following two questions:
 - (Evaluation) How often and to what extent are the attention maps consistent with human perception/annotation?
 - (Supervision) Will more human-like attention maps result in better captioning performance?

But... where do we find GT attention?

 Plummer, Bryan A., et al. "Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-sentence models." ICCV 2015.

A man with pierced ears is wearing glasses and an orange hat. A man with glasses is wearing a beer can crotched hat. A man with gauges and glasses is wearing a Blitz hat. A man in an orange hat starring at something. A man wears an orange hat and glasses.

During a gay pride parade in an Asian city, some people hold up rainbow flags to show their support.

A group of youths march down a street waving flags showing a color spectrum.

Oriental people with rainbow flags walking down a city street. A group of people walk down a street waving rainbow flags. People are outside waving flags.

- A couple in their wedding attire stand behind a table with a wedding cake and flowers.
- A bride and groom are standing in front of their wedding cake at their reception.
- A bride and groom smile as they view their wedding cake at a reception.

A couple stands behind their wedding cake. Man and woman cutting wedding cake.

Summary

Evaluation of Visual Attention

- In answer to Q1
- We define attention correctness as a metric that scores he consistency between an attention map and the ground truth region
- Attention Correctness of a word:
- $AC(y_t) = \sum_{i \in R_t} \alpha_{ti}$
- Attention Correctness of a phrase:
- $AC(\{y_t, ..., y_{t+l}\}) = \max(AC(y_t), ..., AC(y_{t+l}))$

0.08	0.12	0.20	0.12
0.04	0.10	0.12	0.08
0.00	0.02	0.08	0.04
0.00	0.00	0.00	0.00

Supervision on Visual Attention

- In answer to Q2
- We encourage the generated attention to resemble GT attention by introducing explicit supervision

•
$$L_{attn} = \begin{cases} -\sum_{i=1}^{L} \beta_{ti} \log \alpha_{ti} \\ 0 \end{cases}$$

•
$$L = L_{orig} + \lambda L_{attn}$$

• The question remains is how to construct β_{ti}

Supervision on Visual Attention

- Strong Supervision with Alignment Annotation
 - In Flickr30k Entities, the corresponding region of a phrase is given
 - So we construct β_{ti} from the corresponding region
- Weak Supervision with Semantic Labeling
 - In MS COCO, the corresponding region of a phrase is not annotated
 - We can "guess" β_{ti} from the instance segmentation masks with 80 semantic classes. For example, for the caption "A boy is playing with a dog", the model should probably attend to the region of "person" class when generating the word "boy"
 - This is not ideal of course

Results of Attention Correctness

Caption	Model	Baseline	Correctness
Ground Truth	Implicit	0.3214	0.3836
Ground Truth	Supervised	0.3214	0.4329
Concreted	Implicit	0.3995	0.5202
Generated	Supervised	0.3968	0.5787

- Baseline: attending equally everywhere (not learning any meaningful attention)
- The implicit attention model outperforms the baseline by 12%, so the model is indeed learning some meaningful attention
- The supervised attention model outperforms the baseline by 18%, i.e. our model is better at localizing the corresponding region

Results of Attention Correctness

Results of Caption Quality

- The fact that our model has better attention correctness is not too much of a surprise
- We may be more interested in whether supervised attention model also has better captioning performance
- The intuition is that a meaningful dynamic weighting of the input vectors will allow later components to decode information more easily

Results of Caption Quality

Table 3: Comparison of image captioning performance. * indicates our implementation. Caption quality consistently increases with supervision, whether it is strong or weak.

Dataset	Model	BLEU-3	BLEU-4	METEOR
Flickr30k	Implicit	28.8	19.1	18.49
	Implicit*	29.2	20.1	19.10
	Strong Sup	30.2	21.0	19.21
COCO	Implicit	34.4	24.3	23.90
	Implicit*	36.4	26.9	24.46
	Weak Sup	37.2	27.6	24.78

Results of Caption Quality

Table 4: Captioning scores on the Flickr30k test set for different attention correctness levels in the generated caption, implicit attention experiment. Higher attention correctness results in better captioning performance.

Correctness	BLEU-3	BLEU-4	METEOR
High	38.0	28.1	23.01
Middle	36.5	26.1	21.94
Low	35.8	25.4	21.14

Qualitative Results

wall.

Girl rock climbing on the rock A young smiling child hold his toy alligator up to the camera.

Two male friends in swimming A black dog swims in watrunks jump on the beach while people in the background lay in the sand.

ter with a colorful ball in his mouth.

Qualitative Results

blue pants is sitting on a wall.

A man in a blue shirt and A man in a blue shirt and blue pants is skateboarding on a ramp.

A man and a woman are A man and a woman are walking down the street. walking down the street.

Discussion

- Visual attention allows us to peek into the deep learning black box, and shows us how machines interpret the image
- However, its interpretation is not entirely consistent with human perception, which is arguably a more "reasonable" and "low energy" interpretation. A similar conclusion was also reached recently in visual question answering
- Attention is essentially a (normalized) similarity function that bears resemblance to semantic segmentation. In the future I plan to draw more connection between attention and semantic segmentation

Thank you!