Linear Models of Simplified Cells

This section introduces a model of a simplified cell.

The cell receives inputs | = (I, b, ..., Iny) from dendrites which are weighted by
synaptic strengths w = (w1, wa, ..., Wn).

These are summed at the soma (cell body) to obtain:

N
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The cells outputs a response f(w - 1) along its axon, indicated by the firing rate
of the neuron. f(.) is a monotonic function, see next slide, but in this lecture
we use a linear approximation:

N
S=w-1=> wl.
i=1



The non-linear function f(.)

f(.) is monotonic non-linear function, which takes value 0 if the input is small,
then increases linearly in the linear regime until it saturates at a maximum
value.

A typical choice of f(.) is the sigmoid function f(w - 1) = o(w -1 — T), where
T is a threshold and o(.) is a soft-threshold.

In this lecture, we ignore f(.) and study the behavior of the model in the linear
regime.

Cells in the retina and Lateral Geniculate Nucleus (LGN) are often modeled
without the non-linear function f(.), but adding instead a constant C to the
output, to account for spontaneous firing of the cell, and yielding an output
w -1+ C, see [190].
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Figure 12: Left Panel: A neuron receives input — action potentials from other neurons
— at its dendrites which generate excitatory and inhibitory postsynaptic potentials
(EPSPs and IPSPs respectively) whose voltages are integrated at the soma and
converted to outgoing action potentials. Right panel: a simplified model of a neuron.
There are inputs (/1, ..., Is) at the dendrites, with synaptic strengths wi, ..., ws, these
are summed at the soma, >; w;/;, and the output S is given by a sigmoid function
(37 wili). The sigmoid function o() (top right) has a linear regime (brown line) and
low- and high-thresholds.



Linearity and Superposition

This model S = w - | is linear in two respects.

Firstly it is linear in the input I so that if we double the input | — 2I, then the
output doubles also S — 2S. Secondly, it is linear in the weights w.

Most importantly, it obeys the principle of superposition so that if S, S? are
the outputs to input 11, I? respectively, then the output to input Al + X212 is
MS 4+ S

This result is important for characterizing the response of simple neural cells,
since it implies that we can determine the output of the cell to any stimulus by
observing its response to a limited set of input stimuli I.

Note that this property still remains if we re-introduce the non-linear function
f(.), provided the function is known.



Retinotopy (1)

The retinotopic organization of the early visual system has two implications for
these cells. Firstly, the weights of the cell depend on its retinotopic position

X = (x1,x2) and the positions ¥ = (y1, y») of its dendrites.

We replace the input /; by /(¥) and the weights w; by w(X — y). The receptive
field w(X — ¥) will typically be zero unless |X — y/| is small.

The neuron is modelled by:

S(X) = Z w(X — ) I(7) = w1

y



Retinotopy (II)

Secondly, retinotopy implies that there are cells with similar properties (e.g.,
the same weights w) arranged roughly evenly in spatial position (apart from
the log-polar transformations [151]).

This can be thought of as having “copies” of the same cell at all positions in
space. In terms of linear filter theory, see later this section, these sets of cells
are convolving the image rby a filter w.



Receptive Fields in Retina and LGN.

The receptive fields of the ganglion cells in the retina and cells in the Lateral
Geniculate Nucleus (LGN) can be determined by measuring the firing rate of
the neurons in terms of its response to different input stimuli I'and estimating
a model for the response, as discussed in the next section.

The experimental findings are that many simple cells have a characteristic
receptive field called center-surround. But these findings are done using
synthetic stimuli and their response may be more complex if they are studied
using natural stimuli.

Photoreceptors have different properties, see [139].



On-center and Off-center receptive fields

There are two different types: on-center and off-center. The receptive field
weights w(X — ¥) are radially symmetric and take the form of a Mexican hat or
inverted Mexican hat, for on-center and off-center cells respectively [109].
These cell responses are usually thresholded, e.g., by the sigmoid function, so
that they usually only give positive responses.

The weights w(X — ¥) can be approximated by the Laplacian of a Gaussian
(LOG) or by its negative:

o o o8 .5 2
wrog(X) = _{W + a—xg}G(X :0,07).
1

where G(x: 0,0°) = 7 exp{—(x¥ + x3)/(20°)}.
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[llustration of Center-Surround Cells
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Figure 13: This figure shows the input-output of a center surround cell (e.g., Laplacian
of a Gaussian) in three different ways. First in terms of the inputs and outputs of
neurons (left). Second in terms of the digitized input image, the filter, and the
digitized output (center). The output at each pixel is given by the product of the filter
to the appropriate intensity values in the input image, e.g.,
4x37T—1%x49—1x47—1x 10— 1 x 21 = 21. Thirdly, in terms of the input and
output images (right).



Figure of Gaussians and Derivatives of Gaussians
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Figure 14: A Gaussian filter (far left). The first derivative of a Gaussian (left). The
laplacian of a Gaussian or Mexican hat (right). A sinusoid (far right).



Symmetry and Properties of Receptive Fields

These cells have two important properties:

(1) They are radially symmetric in the sense that wioc(.) is invariant to
rotation, e.g. suppose we express position X in terms of radial components:
x1 = rcosf,x; = rsinf, then wiog(rcosb, rsin@) is independent of 6. (Il)
The receptive field weights w(.) sum up to zero. More precisely,

> wios(X) =0.

Note that center-surround cells are often modelled as the differences of two
Gaussians: wpog(X) = A1G(X: 0,0%) — AG(X : 0,03), where 01,02 take
different values [190]. This gives a similar model, if |01 — 02| and |A; — A;| are
small.



Purpose of Center Surround Cells: Dynamic Range

The purpose of these center-surround cells is believed to help deal with the
large dynamic range of images.

Suppose we can express the image locally as /(X) = C(X) + B where C(X) is
the contrast, which describes the local details of the image, and B is the
background. Then filtering an image by a center-surround cell, whose receptive
field sums to 0, removes the background term and preserves part of the
contrast.

More precisely, using equation (57):

5(x) = Z wroG (X — Y)I(Y) = Z wroc (X — ¥)(C(¥) + B)



Encoding Information for Transmission

Receptive fields of this type can also help efficiently encode the information at
the retina in order to transmit it efficiently to the visual cortex.

This can be studied using information theory and the statistics of natural
images to predict properties of receptive fields and how they change in different
environments [6].

This theory is beyond the scope of our chapter and we refer to the detailed
exposition in [190].



Is the retina more complex?

These models of cells in both the retina and the LGN are well studied.
Although many of their properties were estimated using synthetic input data it
has been shown that in some cases the input image can be estimated from the
response of cells in either the retina or the LGN using these types of models
[175, 24, 19].

But other authors [47] argue that the retina is more complex and that, in
particular, the neurons may act more as feature detectors instead of as
spatial-temporal filters as described in this section.

In particular, [47] describes many finding suggesting that the retina is more
complex that the linear filtering model described above. It is known, for
example, that if the light levels go down then the receptive field size becomes
larger [190].



Temporal and Color Properties

A more realistic model models the output as

S(E )= w(X—y,t—7)I(¥,7)
v, T

where w(X — y/,t — 7) is a space-time filter.
There are two types of cells with different temporal properties:
(1) M-cells whose receptive fields are spatially large but temporally small
(faster) and which project to the dorsal stream.
(I1) P-cells whose receptive fields are spatially smaller but temporally larger
(slower) and which project to the ventral stream.

We can also model the dependence of the cells on the wavelength of the input
light by

S(x) = / dAw(R — P)we(\)I(Z, N),

where X\ denotes the wavelength and wc(\) specifies the sensitivity of the cell
to color, see [190].



Tuning of Receptive Fields to Sinusoids

To determine the receptive field of a neuron we study its response to a class of
stimuli while varying the stimulus parameters (i.e. the perceptual dimensions).
To find how well the neuron is tuned to particular stimulus parameters, see [64].
In this section, we analyze tuning when the stimuli are sinusoid gratings.

We stimulate the receptive field of a neuron by a sinusoid grating

I(X) = Acos(& - X+ p) + b,

where A is the amplitude, p is the phase, & is the frequency and [ is the mean
light level.

The frequency specifies the orientation of the stimulus, by the unit vector

& = &/|@|, and the period of the oscillation by |&|. The phase p shifts the
center of the sinusoid. To see this, re-express

Acos(@ - X+ p) = Acos(@ - (X — %)), where X = —p@/||? is the shift in
position. If p = 0 the center occurs at X = 0.



The Response of a Center-Surround Cell to sinusoids

We assume that the neuron is a center-surround cell and its receptive field is a
laplacian-of-a-gaussian w;oc(X).
The predicted response is:

/ dXwio6(X)Acos(@ - X 4 p) = A(cos p)(@ - @) exp{—(c°@ - @) /2}.

We deduce three properties: (i) the response is biggest if the center of the
sinusoid is aligned to the center of the cell, i.e. p =0, falling to zero at

p = /2, (i) the cell responds best to frequencies with |& - &| = 2072 ( by
maximizing the response with respect to |&|), and (iii) the cell is insensitive to
the orientation of the stimuli.

We can characterize a neuron by measuring its firing rate when stimulated with
sinusoids. We can use these properties to determine if it is center-surround or

not. And if it is, to estimate its parameter .



