
Simple Cell Receptive Fields in V1.

The receptive field properties of simple cells in V1 were studied by Hubel and
Wiesel [65][66] who showed that many cells were tuned to the orientation of
edges and size of bars of light.
They also showed that these cells were spatially organized with hypercolumns
and retinotopic organization. Further electrophysiological studies by Roner and
Pollen [133] and Jones and Palmer [70] showed that the receptive field
properties of these cells could be approximately modelled by Gabor filters [25]
which are the product of Gaussians and sinusoids. Derivative of Gaussian filters
give an alternative model [181].
It was also reported that the receptive fields occur in quadrature pairs [133] so
that neighboring cells are ninety degrees out of phase (e.g., a cosine Gabor is
paired with a sine Gabor).



Gabor Filters

Gabor functions are the product of a Gaussian
G(~x ;~0,Σ) = 1

2π|Σ| exp{−(1/2)~xTΣ−1~x}

with covariance Σ times a sinusoid:
exp{i~ω · ~x} = cos ~ω · ~x + i sin ~ω · ~x .
This gives two basic types of Gabors: (i) cosine-Gabors

Gcos(~x) = G(~x ;~0,Σ) cos ~ω · ~x

and (ii) sine-Gabors
Gsin(~x) = G(~x ;~0,Σ) sin ~ω · ~x .

These form a quadrature pair, because sin(.) and cos(.) are ninety degrees out
of phase.



Properties of Gabor Filters

Gabor filters give a good trade-off between localization in position and in
frequency.
The Gaussian has good localization in position, in the sense that its response is
very small if |~x | > 2σ. The sinusoid has perfect localization in frequency (due
to the orthogonality of sinusoids) but is unable to localize in position (because
a sinusoid does not tend to zero for large ~x).
Gabor derived the Gabor function by optimizing a criterion that balanced
optimality in frequency with optimality in position [25].



Illustration of Gabor Filters

Figure 15: A family of Gabor receptive fields. The panels show cosine-Gabors (left
panel) and sine-Gabors (right panel) at different orientations (rows) and different
scales (columns). Observe that the cosine-Gabors have biggest responses at their
centers (because cos 0 = 1) while the sine-Gabors have small responses there (because
sin 0 = 0).



The response of Gabor filters

Figure 16: A Gabor functions aligned to the vertical axis (left). The image of a zebra
(center). The response of the vertical Gabor filter on the zebra image (right).



Modelling V1 neurons with Gabor filters

It was argued [94] that many simple cells in V1 could be modeled by a family
of Gabor filters with specific relationships between the parameters of the
gaussian and the sinusoid, Σ and ~ω. The orientations of the Gaussian and the
sinusoid are aligned and the aspect ratio between the major and minor axes of
the Gaussian is 4.
In more detail, express the frequency of the sinusoid by ~ω = ω(cos θ, sin θ),
where θ is its orientation and ω is the frequency. Then the covariance Σ of the
gaussian is proportional to
(1/4)(cos θ, sin θ)(cos θ, sin θ)T + (− sin θ, cos θ)(− sin θ, cos θ)T (T denotes
vector transform).
The sinusoid exp(i~x · ~ω) has its ”propagating direction” along the shorter axis
of the Gaussian, so the gaussian smooths more in the direction perpendicular to
the propagating direction, by a factor of 1/2 =

√
1/4.



A Family of Gabor Filters

This family is specified by:

ψ(~x ;ω, θ,K) =
ω2

4πK 2

× exp{−(ω2/8K 2){4(~x · (cos θ, sin θ))2 + (~x · (− sin θ, cos θ))2}

× exp{iω~x · (cos θ, sin θ)} exp{(K 2/2)}}.

The variance is proportional to K 2. This is normalized so that∫
d~x{ψ(~x ;ω, θ,K)}2 = 1. K ≈ π for a frequency bandwidth of one octave,

K ≈ 2.5 for a frequency bandwidth of 1.5 octaves (“octaves” are the log ratio
of the frequency – see [190]).
This family can also be scaled to give a form:

ψa(~x ;ω, θ,K) =
1

a
ψa(~x/a;ω, θ,K)



The Tuning of Gabor Filters (I)

We study the tuning of Gabor cells by stimulating them with a family of stimuli
of form A cos(~ω · ~x + ρ) and varying ~ω and ρ .
We define ωx = ~ω · (cos θ, sin θ) and ωy = ~ω · (− sin θ, cos θ) to be the
projections of the input sinusoid in the favored direction of the cell (i.e. ~ω) and
in the orthogonal direction (i.e. ωy = 0 if the input sinusoid aligns perfectly
with the orientation of the cell).



The Tuning of Gabor Filters (II)

The responses of the cosine-Gabor Gcos and the sine-Gabor Gsin are given by:

A

2
cos ρ exp{−2K 2ω2

y/ω
2}

×{exp{−(K 2/2ω2)(ω + ωx)2}+ exp{−(K 2/2ω2)(ω − ωx)2}} exp{K 2/2}

A

2
sin ρ exp{−2K 2ω2

y/ω
2}

×{exp{−(K 2/2ω2)(ω + ωx)2} − exp{−(K 2/2ω2)(ω − ωx)2}} exp{K 2/2}.

The cosine-Gabor cell is tuned to ρ = 0 and the tuning falls off as cos ρ. The
cell also favors sinusoid stimuli which are aligned to it (i.e. ωy = 0), and whose
frequency ωx = ±ω.
The sine-Gabor prefers stimuli with ρ = π/2 and has similar tuning to the
frequency with ωy = 0 and ωx = ±ω.



Complex Cells

Complex cells are sensitive to orientation but they are less sensitive than simple
cells to the spatial position of the stimuli. This illustrates the standard theory
of the ventral stream where visual processing proceeds up this stream using
receptive fields, similar to simple and complex cells, which are increasingly
tuned to more complex structures and are less sensitive to the precise positions
of the stimuli.
From this perspective, complex cells are the second stage after simple cells,
forming a simple-complex cell module which gets repeated up the hierarchy.



Complex Cells energy model

We describe here the energy model where the complex cell receives input from
two simple cells which are ninety degrees out of phase (i.e. cosine-Gabors and
sine-Gabors). This is partly motivated by quadrature cells [70] and because, see
the following slide, these cells are less sensitive than simple cells to the specific
position of the stimuli.
More precisely, the energy model of a complex cell gives response:

S(~x) = {ψsin ∗ I (~x)}2 + {ψcos ∗ I (~x)}2

where ∗ indicates convolution..



Tuning of Complex Cells

We study the tuning of complex cells by measuring their response to sinusoid
stimuli The findings show that these cells are, like simple cells, also tuned to
orientation, frequency, and phase. But their tuning, particularly to phase, is less
precise. Hence complex cells are less sensitive to the precise position of the
stimuli. The response is given by:

A2

4
exp{K 2} exp{−4K 2ω2

y/ω
2}

{exp{−(K 2/ω2)(ω + ωx)2}+ exp{−(K 2/ω2)(ω − ωx)2}

+2 cos 2ρ exp{−(K 2/ω2)(ω + ωx)2} exp{−(K 2/ω2)(ω − ωx)2}}.

Observe that the dependence on the phase ρ is much small (the dominant term
in the second line is independent of ρ).



Illustration of Complex Cells

Figure 17: A complex cell can be modelled as a quadrature pair of Gabor filters. The
stimulus is a grey circle on a white background (far left). A quadrature pair of Gabor
filters is applied to the stimulus giving the largest responses when the orientation of
the Gabors matches the orientation of the edge of the circle. The responses of the
Gabors are squared and then summed to yield the final output (far right).



Complex Cells: Complications

There are other models where complex cells are built from simple cells in
alternative ways, but where the complex cells retain their basic property of
being tuned to orientation and frequency but being less sensitive to the
position of the stimuli.
But some researchers question whether complex cells receive input from single
cells arguing that the computations could be done by non-linear neurons which
exploit the complexity of the dendridic tree [115].
Other researchers argue [113] that there is no sharp dichotomy between simple
and complex cells but instead there is an continuum of cells with variable
sensitivity to position.


