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Outline
1. Principal Component Analysis (PCA)
2. Singular Value Decomposition (SVD) — advanced material

3. Fisher Linear Discriminant

1 Principal Component Analysis (PCA)

One way to deal with the curse of dimensionality is to project data down onto a space of
low dimensions, see figure (1). There are a number of different techniques for doing this.
The most basic method is Principal Component Analysis (PCA) .

Figure 1:



We will use the following convention:
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The data samples are Z1,..., Ty in a D-dimension space. First, compute their mean
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and their covariance N
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Next, compute the eigenvalues and eigenvector of K:
Solve Ke' = Aé’
AL > Ay > - 2 AN

Note: K is a symmetric matrix- so eigenvalues are real, eigenvectors are orthogonal.
€nu - €y = 1 if = v, and = 0 otherwise. Also, by construction, the matrix K is positive
semi-definite, so Ay > 0 (i.e. no eigenvalues are negative).

PCA reduces the dimension by projection the data onto a space spanned by the eigen-
vectors €; with A\; > T, where T is a threshold. Let M eigenvectors be kept. Then, project
data & onto the subspace spanned by the first M eigenvectors, after subtracting out the
mean. Formally:

where the coefficients {a,} are given by
ay = (Z—f)- €

Note: orthogonality means €, - €, = d,,, which denotes the Kronecker delta.
Hence:

D
F=[+> ((&—f) é)e,
v=1

and there is no dimension reduction (no compression).



Then, approximate
M

TR+ Z((f_ fi) - €y)ey
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This Projects the data into the M-dimension subspace of form:

M
i+ bé,
v=1

See a 2-dimensions example in figure (2). The eigenvector of K corresponds to the
second order movements of the data.

Figure 2: In two-dimensions, the eigenvectors give the principal axes of the data.

If the data lies (almost) on a straight line, then \; > 0, Ao & 0, see figure (3).

Figure 3: In two-dimensions, if the data lies along a line then A; > 0 and A\s = 0.

1.1 PCA and Gaussian Distribution

PCA is equivalent to performing ML estimation of the parameters of a Gaussian distribu-
tion 1
12 ATx~—q1(2 =~
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to get ﬁ, 3 by performing ML on 11, (i | i, %), and then throw away the directions where
the standard deviation is small. ML gives fi = + sz\il Zyand ¥ = + sz\il(fl —mu)(Z; —
i)”. See Bishop’s book for probabilistic PCA.

1.2 When is PCA appropriate?

PCA is almost always a good technique to try, because it is so simple. Obtain the eigen-
values A\; > Ay > --- > Ay and plot f(M) =M X/ SN A, to see how f(M) increases
with M and takes maximum value 1 at M = D. PCA is good if f(M) asymptotes rapidly
to 1. This happens if the first eigenvalues are big and the remainder are small. PCA is
bad if all the eigenvalues are roughly equal. See examples of both cases in figure (4).
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Figure 4: Left: eigenvalues asymptote rapidly to 1, this is good. Right: all eigenvalues are
equally important, PCA is not appropriate here.

PCA would be bad in an example in which the data is a set of strings
(1,0,0,0,...) =2
(0,1,0,0,...) = 9
(0,0,0,0,...,0,1) = Zn

Then, it can be computed that there is one zero eigenvalue of PCA. But all the other
eigenvalues are not small. In general, PCA works best if there is a linear structure to the
data. It works poorly if the data lies on a curved surface and not on a flat surface.

1.3 Interpretation of PCA

What is PCA doing? There are two equivalent ways to interpret PCA: (i) minimize the
projection error, and (ii) maximize the variance of the projection.
Consider the variance of the data Zfil(f@ — ji)?. Tt is independent of the projection.

We can express (%; — fi)? = Zgl{(i‘} — fi) - €,}2, where the &, are the eigenvectors of the
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correlation. Hence,

N 1 N M 1 N D
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where the left-hand side is the variance of the data, the first term of the right-hand side is
the variance of the data within the plane €1, --- , €y, and the last term is the projection
error.

When ; is projected to a point & , = i+ {(&i—fi)-&,}¢é,, it has a projection error
ZVD:M+1{(IEz — ji) - €,}2. The sum of the projection error and the variance of projection
are constant. So maximizing on is equivalent to minimizing the other.

Also, this relationship can be expressed in terms of eigenvalues. It reduces to

Z/\V—Z/\ + Z Ay

v=M+1

To see this, - SN (& —)-(Z— ) = Trace(C) = S22 \,. The variance of the projection
is Z]Vw: 1 Av, by similar reasoning. Hence, the projection error is ZVD: M1 v

1.4 Cost Function for PCA
The cost function for PCA can be defined as

. N M
J(M, {a}, {e}) = DIl + ) ariéi) — T,
k=1 i=1

where The {ay;} are projection coefficients.
Minimize J w.r.t. M,{a},{e} Data {Z} : k =1 to N}
Intuition: find the M-dimensional subspace s.t. the projections of the data onto this
subspace have minimal error, see figure (5).
Minimizing J, gives the {_Aéi}’s to be the eigenvectors of the covariance matrix
= & X (@ — )@ — 1)
=~ k=1~ Tk
ki = (T — ﬁ) - €; the projection coefficients.

To fully understand why PCA minimizes or maximizes these terms we must express
the criterion slightly differently. Then we use Singular Value Decomposition (SVD), which
is advanced material of this lecture.

We can re-express the criteria as

N D M
Tl {a}, {e}] = >0 {(us — o) + Y ariew) ),
i=1

k=1 b=1

= Nl

j=}



Figure 5: PCA can be obtained as the projection which minimizes the least square error
of the residuals.

where b denotes the vector components.
This is an example of a general class of problem.
Let E[\Ija 6] = Zng}f::llv(i‘ak - Zﬁil \Ijal/q)yk)Q .
Goal: minimize E[¥,e] w.r.t. ¥, e.
This is a bilinear problem, that can be solved by SVD.
Note: Tar = Tar — Mo 1S the position of the point, relative to the mean.

2 Singular Value Decomposition SVD
We can express any N X D matrix X , Tgk in form

X=EDF

M
LTak = Z ea,ud,uufuk

pr=1

where D = {d,,,,} is a diagonal matrix (d,, = 0, # v). Note: X is not a square matrix
(unless D = N). So it has no eigenvalues or eigenvectors.

VN -0
D= o : , where the {)\;} are eigenvalues of X X7 (equivalently of X7 X)

0 - VAx

E = {e,.} are eigenvectors of (X XT)ab7
F = {f,1} are eigenvectors of (X7 X)p,



1, v label the eigenvectors.

Note: For X defined on previous page, we get that (X X7) = Zgzl(fk — ) (& — )T
Also note that if (X X7)e'= Aé, then (X7 X)(XTe) = \(XTé).

This relates the eigenvectors of X X7 and of X” X (calculate the eigenvectors for the
smallest matrix, then deduce those of the bigger matrix — usually D < N).

Minimize:
a=D.k=N M 2
E[l/% 6] = (jak - Z waud)uk)
a=1,k=1 v=1
wau =o€y
We set 4
{ ¢llk =V 5l/Vf]Z

Take M biggest terms in the SVD expansion of x.
But there is an ambiguity.

M
> Yavbuk = @d)ar = (VAL §)a
v=1

for any M x M invertible matrix A
P — YA
¢— Al
For the PCA problem, we have constants that the projection directions one orthogonal
unit eigenvectors. This gets rid of the ambiguity.

2.1 Relate SVD to PCA

Linear algebra can be used to relate SVD to PCA. Start with an n x m matrix X.
XXT is a symmetric n x n matrix

XTX is a symmetric m x m matrix

Note that (XX7)" = XXT.

By standard linear algebra,
XXTet = \tet,

with n eigenvalues A\* and eigenvectors €. The eigenvectors are orthogonal é* - & = §*~
(=1ifpu=v,=0if p #v).
Similarly,
XXTJ(_-'V _ TVJE'V,

with m eigenvalues 7 and eigenvectors fY, where f* . f¥ = §+.



The {&"} and {f*} are related because

(XTX)(XTer) = x(XTer)
(XXT)(X ) = 7(X )
Hence, XTé" f“, Xf“ ox e and A = 7#. If n >m , then there are n eigenvectors
€,} and m eigenvectors . So, several {€,} relate to the same f,,.
Iz Iz Iz I
Claim: we can express

X =D a'@fy
17

T _ p ST
X —g af fte,
o

(For some a*. We will solve for all o later.)

Verify the claim:

Similarly, xTx = Zu(a“)Qf“fE. So, (a*)? = M. (Because we can express any sym-
metric matrix in form u )\Mé“é’uT, where M\ are the eigenvalues and é* are eigenvectors.)

->T
X =3, aterf, isthe SVD of X
In coordinates:
xai = ZH’ auegf@“
Lai = ZH»” egaufsuufiy
x = EDF
Eau = ega Dul/ = auaum Fi= fiy'

3 Fisher’s Linear Discriminant

PCA may not be the best way to reduce the dimension if the goal is discrimination. Suppose
you want to discriminate between two classes of data 1&2, shown in figure (6).

If you put both sets of data into PCA, you will get this, see figure (7). The eigenvectors
are €1, €; with eigenvalues A\ > As. Because of the form of the data Ay >> As.

The best axis, according to PCA is in the worst direction for discrimination (best axis
is €] because A\ >> \g).
Projecting datasets onto € gives, see figure (3):



Figure 6: This type of data is bad for PCA. Fisher’s Linear Discriminant does better of
the goal is discrimination.

™~

Figure 7: The PCA projections for the data in figure (6) The best axis, according to PCA,
is the worst axis for projection if the goal is discrimination.

e
A E’%z = g

Figure 8: If we project the data onto €1, then data 1 and 2 gets all mixed together. Very
bad for discrimination.



The second direction €] would be for better. This would give, see figure (3):

/2
Tﬁ“ﬁ ‘”L‘;

Figure 9: We get a better discrimination if we project the data onto €s, then it is easy to
separate data 1 from data 2.

Fisher’s Linear Discriminant gives a way to find a better projection direction.
n1 samples &; from class X3
ng samples Z; from class Xo
The goal is to find a vector W, project data onto this axis (i.e. &; - &) so that the data
is well separated. Define the sample mean
Mi = 7= Ygex, & for i =1,2.
Define the scatter matrices
Si =Y sex, (@ —mi)(Z —my)" fori=1,2.
Define the between-class scatter
Sp = (& — m;)(Z — m;)T between classes X1 and Xo.
Finally define the within-class scatter
Sw=S1+Ss

Now, project onto the (unknown) direction
m; = Ni Y ose x, W+ Z = T m;, using the definitions of the sample means. Note that the
means of the projections are the projections of the means. The scatter of the projected
points is

52 = Y wex, (W T — - m;)? = wl S; @, by definition of the scatter matrices.

The Fisher criterion is to choose the projection direction w to maximize:

|y — i

J(W) = ——
<) St + 53

This maximizes the ratio of the between-class distance (|m; — ms|) to the within-class
scatter.

See figure (10) with an example of a good projection direction, while other projection
directions are bad — see figure (11).
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Figure 10: The projection of the data from figure (6) onto the best direction & (at roughly
forty-five degrees). This separates the data well because the distance between the projected
means m1,mo is a lot bigger than the projected scatters Si,Ss.
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Figure 11: A bad projection direction, by comparison to figure (10). The distance between
the projected means mq, mo is smaller than the projected scatters Si,Ss.
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Result: The projection direction that maximizes J (&) is @ = S 1(1; — mi2). Note that
this is not normalized (i.e. |&J| # 1), so we must normalize the vector.

Proof: Note that the Fisher criterion is independent of the norm of &. So we can
maximize it by arbitrarily requiring that &S @ = 7, where 7 is a constant. This can be
formulated in term of maximization with constraints:

Maximize G7'Spid— A\(&T'S,& —7), where ) is a Lagrange multiplier and 7 is a constant.

2 = SpG-AS,&=0

Hence, S;'Spd = A\&. But
Sp = (111 — m2) ! (M — m2)
Sp & = p(my — mg) for some p (=W - (M1 — M2)).

Hence Spd o (1) — 1ms2). This implies that S;1Spd oc Syl (M) — ms), and the result
follows from recalling that S;1Spd = A\@.

3.1 Alternative

An alternative way to model this problem is to assign a Gaussian model to each dataset
(i.e. learn the model parameters ji, 3 for each dataset). Then if the covariance is the same
for both datasets, then the Bayes classifier is a straight line whose normal is the direction
W.

& T+ wy = 0,0 = X(jiiy — fiz). This is exactly the same as Fisher’s method! See
figure (12).

But if the data comes from two Gaussian with different covariances, then Bayes classifier
is a quadratic curve, so it differs from Fisher’s linear discriminant.

Figure 12: Try to model the datasets by learning Gaussian models for each dataset sep-
arately. Then we recover Fisher if both datasets have the same covariance. The decision
plane will have a surface normal which points along the direction of Fisher’s ¢J. But if the
two datasets have different covariances, then the Bayes classifier will be a quadratic curve
and differs from Fisher.
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3.2 Multiple Classes

For ¢ classes, compute ¢ — 1 discriminants project D-dimensional feature with ¢ — 1 space.
Within-class
Su=S1+ -+ Sc1
Between-class
SB = Stotal — Sw = D1 1 - (M — m) (1M — ﬁi)T, where S;,q; is the scatter matrix for all
the classes.
Multiple Discriminant Analysis consists of the following steps:

Seek vectors w; 11 =1,...,c—1
Project samples to ¢ — 1 dim space: (w1 -,...,we 1) = w! Z.
|wTSpw|

The criterion is J(w) = TS
The solution is given by the eigenvectors, where eigenvalues are the ¢ — 1 largest in

)
' a2

Figure 13: w' is a good project direction, w? is a bad projection direction.

E where|.| is the determinant.

w! is a good projection of the data, s is a bad projection, see figure (13).

3.3 Limitations of PCA and Fisher

It is important to realize the limitations of these methods and also why they are popular.

They are popular party because they are easy to implement. They both have optimiza-
tion criteria which can be solved by linear algebra. This is because the optimization criteria
are quadratic, so the solutions are linear. This restriction was necessary when computers
did not exist.

But now it is possible to have other optimization criteria which can be solved by
computers. For example, based on criteria like nearest neighbour classification. This
will be discussed later.
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Also PCA assumes that the data lies on a low-dimensional linear space. But what if
it lies on a low-dimensional curved space? More advanced techniques can deal with this —

e.g. ISOMAP.
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