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Structure of the Talk

• Part 1. Marr’s Dream. Unifying the study of Biological Vision (BV) and 
Computer Vision (CV). 

• Part 2. Why I became a Bayesian. Brief history of Bayes in 1980’s.
• Part 3. Examples.
• Part 4. Bayes and the Brain. Analysis by Synthesis. 
• Part 5. Reviving Marr’s dream. 
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Part 1: Marr’s Dream of Vision
• When I started vision in 1982 there was a dream – articulated by David 

Marr in his book “Vision” – that Computer Vision (CV) and Biological Vision 
(BV) could be studied together in a complimentary manner.

• Computer Vision was a very new and disorganized field with roots in 
Artificial Intelligence, Image Processing, Pattern Analysis (an early version 
of Machine Learning), and Neural Networks. 

• Biological Vision was much older. Psychophysics was established in the 19th 
century. Neuroscience studies of vision were more recent but had 
produced Nobel prize-winning work (Hubel & Wiesel).

• BV was studied at many universities, CV at only a few (e.g., MIT, Stanford, 
CMU). BV conferences were much bigger than CV conferences.

Part 1: Marr’s Dream
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Marr & Poggio’s Three Levels of Analysis
• Marr’s dream was based on his (and Poggio’s) three levels of analysis.
• 1. Computational Level
• 2. Algorithmic Level
• 3. Hardware Level.

• It was argued that the core computational task of vision was the same for 
BV and CV namely: how to estimate physical properties of the underlying 
3D scene from images (patterns of light rays). 

• So the computational level should be similar. The algorithms might be, 
depending on whether you believed in neural network models. The 
hardware of computers and brains were certainly different.
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Natural Constraints and Ecological Constraints
• Vision was gradually being perceived to be a very hard problem. 

Images were ambiguous – they requires assumptions about the real 
world to enable vision to be unambiguous (and well-posed).

• Marr argued that natural constraints were needed to make vision 
possible – surfaces are usually smooth, objects are typically rigid, etc. 
Gibson’s “ecological constraints” captured a similar idea. One aim of 
vision scientists was to identify these natural constraints.

• Marr acknowledges that some aspects of the brain were surely due to 
biology/evolution and that others, like blind spot in the retina, 
attentional mistakes like change blindness, were properties that CV 
systems were unlikely to want.
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Marr’s Framework for Vision

• Marr proposed a framework for vision. This consisted of constructing 
a series of representations.

• The primal sketch represented image properties.
• The 2 1/2D sketch represented surfaces depth/orientation – shape 

from X -- as seen from the viewer.
• The 3D model which represented objects in terms of 3D geometric 

primitives (Biederman’s Geon theory).
• These representations could be roughly mapped to areas of the visual 

cortex.
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Marr’s Theory: Mind, Brains, and Machines
• The link between Marr’s theory and Neuroscience (Brain) was limited, 

due to the challenges of performing neuroscience experiments.
• There was closer link to Psychology and Cognitive Science (Mind) 

because you could compare Computational models to behavioral 
experiments (mostly qualitative).

• Example: Marr & Poggio’s model of stereo agreed with human 
experiments on Julesz’s Random Dot Stereograms (RDS).

• Left (Stereo), Center (RDS). Right (Fox – the result of matching the RDS).
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Marr’s Theory: Mind, Brains, and Machines
• Other Examples:
• Ullman’s computational models for estimating 2D and 3D motion.
• S. Ullman. The Interpretation of Visual Motion. 1977.
• Related work. Grossberg’s dynamical system models for spatial 

grouping. 
• All these models gave qualitative agreement with the perceptual 

findings. Very few quantitative results.
• The computational models were designed to work on simplified 

artificial stimuli. But some models could be extended to real images.
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The Computational Theories
• The theories were largely formulated in terms of minimizing energy, 

or cost, functions.
• These energy functions could often be expressed in terms of a data 

term plus a natural constraint term.
• The natural constraints were fairly simple – e.g., surfaces are spatially 

smooth, objects tend to move rigidly.
• At the same there was similar CV work by B. Horn who used energy 

models for shape from shading and structure from motion. Again 
energy = data term + smoothness term.

• The models were beginning to work on real world images.



Computational Cognition, Vision, and Learning

Why I became a Bayesian.
• I was strongly influenced by the work of S. Geman and D. Geman

“Stochastic Relaxation, Gibbs Distributions, and the Bayesian 
Restoration of Images” PAMI. 1984.

• It offered a mathematically coherent framework for addressing all 
vision problems. By defining a Gibbs distribution – the exponential of 
the negative energy – it could subsume all  “energy function” models 
of vision. The data terms became the likelihood function and the 
natural constraints became priors. 

• This probabilistic formulation also suggested algorithms for 
performing inference and learning. Geman & Geman used Gibbs 
sampling and simulated annealing.

• As an ex-Physicist, I was very attracted by this theoretical framework.

Part 2. Why Bayesian
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Advantages of Bayes.
• Advantages of the Bayesian Formulation were exploited and developed in 

subsequent papers.
• (1) Using Gibbs distributions – almost all the energy function models could 

be reinterpreted as Bayesian models. Natural constraints as priors.
• (2) This probabilistic formulation naturally suggested inference algorithms. 

In particular we developed new algorithms by adapting mean field theory 
(MFT)  from Statistical Physics.  These have since been generalized and re-
branded as variational inference. Belief propagation is closely related.

• (3) For certain classes of models, the MFT algorithms became identical to 
neural network models (Hopfield) and several of the dynamical systems 
models (Grossberg) could also be re-derived in this manner.

• (4) The probabilities of Bayes meant that you could combine visual cues 
(e.g., for estimating shape) in a principled way by taking into account their 
statistical dependencies. This led to distinguishing between “weak 
coupling” and “strong coupling”.

Part 2. Why Bayesian



Computational Cognition, Vision, and Learning

Advantages of Bayes.
• (5) Bayes Decision Theory. This gives a direct link to Signal Detection 

Theory, Ideal Observer Theory, and Control Theory. (And to versions 
of Machine Learning with empirical risk). A unified framework.

• (6) Bayes defined probabilities over problem instances. This enabled 
performance bounds (e.g., Bayes risk) but even convergence rates of 
algorithms, in some cases. This could also be used for learning 
algorithms, (Smirnakis and Yuille 1993), recently rediscovered as 
unsupervised learning 

• (7) Analysis of Bayesian models showed close relationships between 
models that appeared very different (by integrating out variables).

• (8) Bayes and the Brain. Analysis by Synthesis. See later section.

Part 2. Why Bayesian
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Examples of Bayes.
• The Motion Coherence Theory. A.L. Yuille & N.M. Grzywacz. 1988.
• We proposed that motion perception used a slow+smooth prior. This 

accounted qualitatively for a range of perceptual phenomena: motion 
capture, motion coherence. For short- and long-range motion.

Part 3. Examples
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Example.The Motion Coherence Theory.
• It also technically derived the solution as linear combinations of kernels 

which were the eigenfunctions of differential operators. 

• This helped inspire Poggio’s work on Radial Basis functions for learning.
• Later studies gave some quantitative support for this model (Watamaniuk

et al, H. Lu & A.L. Yuille). Very nice demonstrations of a similar model by Y. 
Weiss et al. 

• Methods like these are used for state-of-the-art matching algorithms. E.g., 
Jiayi Ma et al. 

Part 3. Examples
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Analog Neural Networks on Early Vision

• Koch, Marroquin, Yuille. Analog Neural Networks in Early Vision. 
PNAS. 1986.

• This work used mean field theory to give a neutrally plausible 
implementation for Geman & Geman’s model.

• This may be consistent with properties of the visual cortex. See T-S 
Lee’s research group at CMU.

• Note that T-S Lee has several neuroscience findings that give evidence 
for some of these computational models, e.g.,  support for Marr 
Poggio’s theory of stereopsis. 
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Example: Cue Coupling

• Psychophysical studies of Shape from X by Buelthoff and Mallot. 
• These involved cues such as texture, shading, and stereo.
• Their finding supported Bayesian theories and were inconsistent with 

linear weighted averaging.
• Are cues independent or not?
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Example: Strong Coupling.

• Other studies suggested strong coupling and, in particular, model 
selection between competing explanations of the data. Blake and 
Buelthoff. Kersten et al. Buelthoff and Mallot. 
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Bayes and the Brain: Analysis by Synthesis

• Helmholtz (1880’s) proposed that vision could be studied  as inverse 
inference. This requires inverting the process that generates the image. 

• Inverse inference requires priors.
• There are an infinite number of ways that images can be formed. 
• Why do we see a cube?
• The likelihood P(I|S) rules
• out some interpretations.
• The prior P(S) argues that cubes
• are more likely than other shapes.



Computational Cognition, Vision, and Learning

Bayes and the Brain: Analysis by Synthesis

• Richard Gregory
• "Perception (vision) as hypotheses“. 
• Perception is not just a passive acceptance of stimuli, but an active 

process involving memory and other internal processes.
• Humans have internal representations – we see images when we 

dream, we can imagine what animals and people will do, we can 
hallucinate. 

• In more modern terms: “You have a physics simulator in your head”. 
J.B. Tenenbaum.
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Vision as Inverse Inference.

• Inverse inference: optical illusions caused by incorrect inference.
• Think that the shadow is cast by the beach towel (left) or a levitating 

man (right).
• Ball in the box (D. Kersten).
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Analysis by Synthesis: Mumford & Grenander
• Grenander (1960’s) had proposed that vision could be formulated as 

pattern theory and proposed the idea of “analysis by synthesis”. This is 
naturally expressed in Bayesian terms. (S. Geman was a student of 
Grenander). 

• Mumford embraced Analysis by Synthesis and Pattern Theory.
• Analysis by Synthesis emphasizes pattern synthesis as well as pattern 

analysis. Bayesian inference requires you construct a prior probability 
model of whatever signals or situations you are modeling and you should 
always test your prior by sampling to see which features it models 
accurately and which it does not.
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Mumford’s Bold Hypothesis.
• Mumford (1991) boldly proposed a model for how a primate brain could perform 

analysis by synthesis using bottom-up and top-down processing.
• He proposed that each area of the cortex carries on its calculations with the 

active participation of a nucleus in the thalamus with which it is reciprocally and 
topographically connected. This nucleus plays the role of an 'active blackboard‘ 
on which the current best reconstruction of some aspect of the world is always 
displayed

• Each cortical area maintains and updates the organism's knowledge of a specific 
aspect of the world, ranging from low level raw data to high level abstract 
representations, and involving interpreting stimuli and generating actions.

• It draws on multiple sources of expertise, learned from experience, creating 
multiple, often conflicting, hypotheses which are integrated by the action of the 
thalamic neurons and then sent back to the standard input layer of the cortex. 

• . 
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Mumford’s bold hypothesis for 
the architecture of the neocortex. 
• The higher areas of the neocortex  attempts to fit its abstractions to the data it 

receives from lower areas by sending back to them from its deep pyramidal cells a 
template reconstruction best fitting the lower level view. 

• The lower areas attempts to reconcile the reconstruction of its view that it receives 
from higher areas with what it knows, sending back from its superficial pyramidal cells 
the features in its data which are not predicted by the higher area. 

• The whole calculation is done with all areas working simultaneously, but with order 
imposed by synchronous activity in the various top-down, bottom-up loops.

• Neuroscience  experiments give increasing support for top-down models and maybe 
for analysis by synthesis.
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Vision as Bayesian Inference: Yuille & Kersten.

• A. Yuille & D. Kersten. Trends in Cognitive Science. 2006.
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Vision as Bayesian Inference: Yuille & Kersten

• Goats that kill!
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Vision as Bayesian Inference: Yuille & Kersten

• Adding more realism building on work by Z. Tu & S.C. Zhu 2002, Z. Tu
et al. 2006.
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Reviving Marr’s Dream
• Marr’s dream lead to much technical progress. Many current CV 

models are based on these computational models.
• But recent work – e.g., Deep Nets – has stressed learning the 

posterior distribution directly. P(x|y), instead of P(y|x) and P(x).
• There has been reasonable interaction between BV and CV, at least at 

the behavioral level. Knill and Richards. 1996.
• There has been some neuroscience, for example by T.S. Lee’s group at 

CMU. But most neuroscientists showed little interest in 
computational models.

• But overall Marr’s dream has not been achieved Why not?

Part 5: Reviving Marr’s Dream
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Reviving Marr’s Dream
• Why not? Because Image are very complicated (see below).
• CV researchers had to work with the complexity of real images. BV  

researchers did not.
• And BV and CV researchers had different agendas. CV researchers 

want to design an entire vision system. 
• BV researchers often settle for understanding components. 

Neuroscience is a “cottage industry”. A. Movshon.
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The Split
• Stimuli – in the 1980’s CV and BV researchers both worked mostly with 

simple synthetic stimuli. Real world stimuli were too difficult.
• But CV researchers had to leave their comfort zone of synthetic stimuli 

because their algorithms had to work on real world stimuli. This started a 
long slow process where CV developed increasingly complicated 
mathematical and computational techniques.

• But BV researchers had no need to leave their comfort zone. Their research 
required controlled stimuli – almost impossible with real world images. As 
a side effect, BV researchers never needed to learn the mathematical and 
computational tools that CV researchers were developing.

• BV findings on synthetic stimuli could inspire CV algorithms. But  CV 
researchers found that models that work on “toy stimuli” rarely worked on 
real stimuli. BV findings were increasingly considered to be irrelevant. 
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Why it is time to revive Marr’s Dream.
• What has changed?
• Computer Graphics (CG) advances. It is possible to generate realistic visual 

stimuli which can be used as controlled stimuli (experimental design) for 
BV experiments. Behavioral, Electrophysiological, fMRI, These stimuli are 
also being gradually accepted by the CV community.

• Neuroscience Techniques. Great progress in methods for recording from 
the brain. Optogenetics. Mapping mice neural circuits.

• Mturk: The ability to do “big data” experiments using large numbers of 
experimental subjects. 

• Machine Learning Methods. These enable BV researchers to make 
predictions when they have enough “big data”. They also enable the design 
of CV theories that serve as “data-driven ideal observers”.

• CV can make predictions on realistic stimuli which are not embarrassingly 
bad and hence can be used as models of human and primate vision.
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Reviving Marr’s Dream: Conclusion. 

• BV systems are much better than CV systems (expect for a few very 
special cases). BV systems can perform many more visual tasks, they 
require much less supervision, they are adaptive and flexible.

• BV can challenge CV to perform at human level. 
• But directly studying BV without studying CV is problematic. CV 

researchers have an immense range of mathematical and 
computational techniques. They know what the really hard vision 
problems are (even if they do not know how to solve them).

• From another perspective: we best understand the brain by trying to 
reverse engineer it.
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