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Organisms use the process of selective attention to optimally allocate their computational resources to
the instantaneously most relevant subsets of a visual scene, ensuring that they can parse the scene in real
time. Many models of bottom-up attentional selection assume that elementary image features, like inten-
sity, color and orientation, attract attention. Gestalt psychologists, however, argue that humans perceive
whole objects before they analyze individual features. This is supported by recent psychophysical studies
that show that objects predict eye-fixations better than features. In this report we present a neurally
inspired algorithm of object based, bottom-up attention. The model rivals the performance of state of
the art non-biologically plausible feature based algorithms (and outperforms biologically plausible fea-
ture based algorithms) in its ability to predict perceptual saliency (eye fixations and subjective interest
points) in natural scenes. The model achieves this by computing saliency as a function of proto-objects
that establish the perceptual organization of the scene. All computational mechanisms of the algorithm
have direct neural correlates, and our results provide evidence for the interface theory of attention.
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1. Introduction

The brain receives an overwhelming amount of sensory infor-
mation from the retina – estimated at up to 100 Mbps per optic
nerve (Koch et al., 2004; Strong et al., 1998). Parallel processing
of the entire visual field in real time is likely impossible for even
the most sophisticated brains due to the high computational com-
plexity of the task (Broadbent, 1958; Tsotsos, 1991). Yet, organisms
can efficiently process this information to parse complex scenes in
real time. This ability relies on selective attention which provides a
mechanism through which the brain filters sensory information to
select only a small subset of it for further processing. This allows
the visual field to be subdivided into sub-units which are then pro-
cessed sequentially in a series of computationally efficient tasks
(Itti & Koch, 2001a), as opposed to processing the whole scene
simultaneously. Two different mechanisms work together to
implement this sensory bottleneck. The first, top down attention,
is controlled by the organism itself and biases attention based on
the organism’s internal state and goals. The second mechanism,
bottom up attention, is based on different parts of a visual scene
having different instantaneous saliency values. It is thus a result
of the fact that some stimuli are intrinsically conspicuous and
therefore attract attention.1

Most theories and computational models of attention surmise
that it is a feature driven process (Itti, Koch, & Niebur, 1998; Koch
& Ullman, 1985; Treisman & Gelade, 1980; Walther et al., 2002).
However, there is a growing body of evidence, both psychophysical
(Cave & Bichot, 1999; Duncan, 1984; Egly, Driver, & Rafal, 1994;
Einhauser, Spain, & Perona, 2008; He & Nakayama, 1995; Ho &
Yeh, 2009; Kimchi, Yeshurun, & Cohen-Savransky, 2007; Matsuk-
ura & Vecera, 2006; Scholl, 2001) and neurophysiological (Ito & Gil-
bert, 1999; Qiu, Sugihara, & von der Heydt, 2007; Roelfsema,
Lamme, & Spekreijse, 1998; Wannig, Stanisor, & Roelfsema,
2011), which shows that attention does not only depend on image
features but also on the structural organization of the scene into
perceptual objects.
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In the Kimchi, Yeshurun, and Cohen-Savransky (2007) experi-
ment a display of 9 red and green, ‘L’-shaped elements was used
to show that objects can automatically attract attention in a stim-
ulus driven fashion. Subjects were tasked with identifying the color
of a target element in the display. In a subset of the trials the ele-
ments were arranged, using Gestalt factors, to form an object (see
Fig. 1) which was task irrelevant (the task being to report the color
of a tagged L shape). Reaction times were fastest when the target
formed part of the object, slowest when the target was outside of
Fig. 1. Top row: Stimuli used by Kimchi, Yeshurun, and Cohen-Savransky (2007).
‘L’-shaped elements were arranged to form a no object (left) or object (right)
condition. It was found that, in the object present case, attention is automatically
drawn to the location of the object. Second row: results of the Graph Based Visual
Saliency (GBVS) algorithm (Harel, Koch, & Perona, 2007) in predicting the locations
of highest saliency. Third row: results of the Itti, Koch, and Niebur (1998) algorithm
in predicting the locations of highest salience. Fourth row: results of the Adaptive
Whitening Saliency (AWS) model (Garcia-Diaz, Fdez-Vidal, et al., 2012; Garcia-Diaz,
Leborn, et al., 2012). Fifth row: results of the Hou algorithm by Hou and Zhang
(2008). All feature based algorithms fail to identify the object in the second display.
Bottom row: results of the proto-object saliency algorithm described in this work.
The algorithm uses Gestalt cues to perform perceptual scene organization. The
formation of the object is clearly identified by the algorithm. In all figures red is the
highest salience and blue the lowest. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
the object and intermediate when there was no object present.
These results suggest that attention is pre-allocated to the location
of the object giving rise to a benefit when the target forms part of
the object and a cost when the target is outside of the object. Con-
sequently, a model of salience should identify the object as the
most salient location in the visual field. However, as shown in
Fig. 1, feature based algorithms such as those by Itti, Koch, and Nie-
bur (1998), Harel, Koch, and Perona (2007), Garcia-Diaz, Fdez-Vi-
dal, et al. (2012), Garcia-Diaz, Leborn, et al. (2012)and Hou and
Zhang (2008) are unable to do this. Instead image features (‘L’-
shapes) are recognized as the most salient regions for both the
no-object and object cases.

In the work that follows we present a biologically plausible
model of object based visual salience. The model utilizes the con-
cept of border ownership cells, which have been found in monkey
visual cortex (Zhou, Friedman, & von der Heydt, 2000), to provide
components of the perceptual organization of a scene. Hypotheti-
cal grouping cells use Gestalt principles (Koffka, 1935; Kanizsa,
1979) to integrate the global contour information of figures into
tentative proto-objects. Local image saliency is then computed as
a function of grouping cell activity. As shown in Fig. 1, these mech-
anisms allow the model to correctly assign the location of highest
salience to the object in the stimuli used by Kimchi, Yeshurun, and
Cohen-Savransky (2007). If no object is present, individual ele-
ments are awarded the highest saliency. In the remainder of this
paper the model is used to investigate whether visual saliency is
better explained through image features or through (proto)-ob-
jects, and whether the bottom up bias in subjective interest
(Masciocchi et al., 2009; Elazary & Itti, 2008) is object or feature
based. Our results strongly support the ‘‘interface theory’’ of atten-
tion (Qiu, Sugihara, & von der Heydt, 2007) which states that fig-
ure-ground mechanisms provide structure for selective attention.
This work has important benefits in not only understanding the vi-
sual processes of the brain but also in designing the next genera-
tion of machine vision search and object recognition algorithms.
2. Related work

Early theories of visual attention were built on the Feature Inte-
gration Theory (FIT) proposed by Treisman and Gelade (1980). FIT
is a two stage hypothesis designed to explain the differences be-
tween feature and conjunction search. It proposes that feature
search, where objects are defined by a unique feature, occurs rap-
idly and in parallel across the visual field. Conjunction search,
where an object is defined by a combination of non-unique fea-
tures, occurs serially and requires attention. In the first, pre-atten-
tive, stage of FIT the features which constitute an object are
computed rapidly and in parallel in different feature maps. This al-
lows for the rapid identification of a target defined by a unique fea-
ture. However, if an object is defined by a combination of non-
unique features then attention is needed to bind the features into
a single object and the search must be performed serially. The sit-
uation is more complex than described in this early view (see, e.g.
Wolfe, 2000) but it suffices as a starting point to understand the
basic principles.

How independent, parallel feature maps give rise to the deploy-
ment of bottom up attention can be explained by a saliency (Koch
& Ullman, 1985) or master (Treisman, 1988) map which guides vi-
sual search towards conspicuous targets (Wolfe, 1994, 2007).
These maps represent visual saliency by integrating the conspicu-
ity of individual features into a single, scalar-valued 2D retinotopic
map. The activity of the map provides a ranking of the salient loca-
tions in the visual field with the most active region describing the
next location to be attended. Several structures in the pulvinar
(Robinson & Petersen, 1992), posterior parietal cortex (Bisley &
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Goldberg, 2003; Constantinidis & Steinmetz, 2005; Kusunoki, Gott-
lieb, & Goldberg, 2000), superior colliculus (Basso & Wurtz, 1998;
McPeek & Keller, 2002; Posner & Petersen, 1990; White & Munoz,
2010), the frontal eye fields (Thompson & Bichot, 2005; Zenon
et al., 2010), or visual cortex (Koene & Zhaoping, 2007; Mazer &
Gallant, 2003; Zhaoping, 2008) have been suggested as physiolog-
ical substrates of a saliency map.

Numerous computational models (Itti & Koch, 2001b; Itti,
Koch, & Niebur, 1998; Milanese, Gil, & Pun, 1995; Niebur & Koch,
1996; Walther et al., 2002) were developed to explain the neural
mechanisms responsible for computing a saliency map. The Itti,
Koch, and Niebur (1998) model, based off the conceptual frame-
work proposed by Koch and Ullman (1985), is arguably the most
influential of all saliency models. The model works as follows: an
input image is decomposed into various feature channels (color,
intensity and orientation in this model, plus temporal change in
the closely related Niebur & Koch (1996) model; other channels
can be added easily). Within each channel, a center surround
mechanism and normalization operator work together to award
unique, conspicuous features high activity and common features
low activity. The results of each channel are then normalized to
remove modality specific activation differences. In the last stage,
the results of each channel are linearly summed to form the sal-
iency map. This model, which uses biologically plausible compu-
tation mechanisms, is able to reproduce human search
performance for images featuring pop out (Itti, Koch, & Niebur,
1998) and it predicts human eye fixations significantly better
than chance (Parkhurst, Law, & Niebur, 2002). More recent sal-
iency algorithms have improved on the normalization method
(Itti & Koch, 2001a; Parkhurst, 2002), changed the way in which
features are processed to compute saliency (Garcia-Diaz, Fdez-
Vidal, et al., 2012; Garcia-Diaz, Leborn, et al., 2012; Harel, Koch,
& Perona, 2007; Hou & Zhang, 2008), incorporated learning
(Zhang et al., 2008) or added additional feature channels; how-
ever all of these models incorporate the ideas of feature contrast
and feature uniqueness, as introduced by Koch and Ullman
(1985), to compute saliency.

In contrast to FIT and feature based attention, Gestalt psychol-
ogists argue that the whole of an object is perceived before its indi-
vidual features are registered. This is achieved by grouping features
into perceptual objects using principles like proximity, similarity,
closure, good continuation, common fate and good form (Koffka,
1935; Kanizsa, 1979). This view is backed by an increasing amount
of evidence, both psychophysical (Cave & Bichot, 1999; Duncan,
1984; Egly, Driver, & Rafal, 1994; Einhauser, Spain, & Perona,
2008; He & Nakayama, 1995; Ho & Yeh, 2009; Matsukura & Vecera,
2006; Scholl, 2001) and neurophysiological (Ito & Gilbert, 1999;
Qiu, Sugihara, & von der Heydt, 2007; Roelfsema, Lamme, & Spe-
kreijse, 1998; Wannig, Stanisor, & Roelfsema, 2011). These results
show that attention does not only depend on image features but
also on the structural organization of the scene into perceptual
objects.

One theory of object based attention is the integrated competi-
tion hypothesis (Duncan, 1984) which states that attention is allo-
cated through objects in the visual field competing for limited
resources across all sensorimotor systems. When an object in one
system gains dominance, its processing is supported across all sys-
tems while the representation of other objects is suppressed. Sun
and Fisher (2003) and Sun et al. (2008) utilized this theory in their
design of an object based saliency map which could reproduce hu-
man fixation behavior for a number of artificial scenes. Although it
is based on a biologically motivated theory, their model does not
use biologically plausible computational mechanisms; instead,
machine vision techniques are used. Consequently the model does
not provide insight into the biological mechanisms which can ac-
count for object based attention.
An alternative hypothesis for object based attention is coher-
ence theory (Rensink, 2000). It uses the notion of proto-objects,
which are pre-attentive structures with limited spatial and tempo-
ral coherence. They are rapidly computed in parallel across the vi-
sual field and updated whenever the retina receives a new
stimulus. Focused attention acts to stabilize a small number of pro-
to-objects generating the percept of an object with both spatial and
temporal coherence. Because of temporal coherence, any changes
to the retina at the object’s location are treated as changes to the
existing object and not the appearance of a new one. During this
stage the object is said to be in a coherence field. Once attention
is released from the object, it dissolves back into its dynamic pro-
to-object representation. In coherence theory, proto-objects serve
the dual purpose of being the ‘‘highest-level output of low-level vi-
sion as well as the lowest-level operand on which high-level pro-
cesses (such as attention) can act’’ (Rensink, 2000). Consequently
proto-objects must not only provide a representation of the visual
saliency of a scene but also a mechanism through which top down
attention can act.

Walther and Koch (2006) used the concept of proto-objects to
develop a model of object based attention. Their model uses the
Itti, Koch, and Niebur (1998) feature based saliency algorithm to
compute the most salient location in the visual field. The shape
of the proto-object at that location is then calculated by the
spreading of activation in a 4-connected neighborhood of above
threshold activity in the map with the highest saliency contribu-
tion at that location. They demonstrated that proto-object based
saliency could improve the performance of the biologically moti-
vated HMAX (Riesenhuber & Poggio, 1999) image recognition algo-
rithm. However, there are two drawbacks associated with this
model. First, the model does not extend the Itti, Koch, and Niebur
(1998) algorithm to account for how the arrangement of features
into potential objects can affect the saliency of the visual scene.
As a result, this model cannot explain the results obtained by
Kimchi, Yeshurun, and Cohen-Savransky (2007) (see Fig. 1).
Second, although the computational mechanisms in the model
can theoretically be found in the brain, it is unclear if the spreading
of brightness or color signals, as used in the algorithm to extract
proto-objects, actually occurs in the visual cortex (Rossi & Paradiso,
1999; Roe, Lu, & Hung, 2005; von der Heydt, Friedman, & Zhou,
2003).

In the following, we present a neurally plausible proto-object
based model of visual attention. Perceptual organization of the
scene through figure-ground segregation is achieved through
border ownership assignment – the one sided assignment of a
border to a region perceived as figure. Neurons coding border
ownership have been discovered in early visual cortex, predom-
inantly area V2 (Zhou, Friedman, & von der Heydt, 2000), see
Fig. 2. Li (1998) suggests that border-ownership signals originate
from the lateral propagation of edge signals through primary vi-
sual cortex but such a mechanism seems unlikely because the
signals would have to travel along slow intra-areal connections.
This is not compatible with the observed time course of border-
ownership responses which appear as early as 20 ms after the
edge signals of a visual stimulus arise. An alternative hypothesis,
supported by recent neurophysiological evidence (Zhang & von
der Heydt, 2010), is that ‘‘grouping ðGÞ cells’’ communicate with
border-ownership (B) neurons via (fast) white matter projections
(Craft et al., 2007). The grouping neurons integrate object fea-
tures into tentative proto-objects without needing to recognize
the object (Craft et al., 2007; Mihalas� et al., 2011). The high con-
duction velocity of the myelinated fibers connecting the border
ownership neurons and the grouping cells accounts for the fast
development of border ownership responses. The proto-object
saliency model draws inspiration from the neuronal model of
Craft et al. (2007) which uses a recurrently connected network
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Fig. 2. Response of a border ownership cell in monkey V2 to stimuli of varying
sizes. Border ownership cells only respond when their receptive field falls over a
contrast edge and their response is modulated by which side of their receptive field
the figure appears on. Rows A and B show the stimuli which are, for a given trial,
identical within the receptive field (black ellipse) of the border ownership selective
cell. Bar graphs below Row B show the mean firing rate of the cell to the stimuli. For
all sizes and both contrast polarities, the cell’s preferential response occurred when
the square was located to the left of the receptive field. Reproduced with
permission from Zhou, Friedman, and von der Heydt (2000).
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of B and G cells to model border ownership assignment for a
number of synthetic images.

3. Model

The core of our model is a grouping mechanism which esti-
mates the location and spatial scale of proto-objects within the in-
put image. This mechanism, described in Section 3.1, provides
saliency information through the perceptual organization of a
scene into figure and ground. In Section 3.2 the grouping mecha-
nism is extended to operate across multiple feature channels and
to incorporate competition between proto-objects of similar size
and feature composition.

Objects in a visual scene can occlude each other partially. Our
convention is that in the occlusion zone, we always refer to the ob-
ject that is closest to the observer as the ‘‘figure,’’ and that behind it
as the ‘‘background.’’ To achieve scale invariance, the algorithm
successively down samples the input image, bðx; yÞ, in steps offfiffiffi

2
p

to form an image pyramid spanning 5 octaves. The kth level
of the pyramid is denoted using the superscript k. Unless explicitly
stated any operation applied to the pyramid is applied indepen-
dently to each level. Each layer of the network represents neural
activity which propagates from one layer to the next in a feed for-
ward fashion – the model does not have any recurrent connections.
This was done to ensure the computational efficiency of the model.
However, if computation time is not an issue then recurrent con-
nections can be added to ensure more accurate border-ownership
and grouping assignment (see Craft et al. (2007) and Mihalas� et al.
(2011) for examples of such circuits). Receptive fields of neurons
are described by correlation kernels and correlation is used to cal-
culate the neural response to an input, see below for details. The
model was implemented using MATLAB (Mathworks, Natick, MA,
USA).

3.1. A feed forward model of grouping

This model (shown in Fig. 3) is responsible for estimating the
location and spatial scale of proto-objects within the input image.
The first stage of processing extracts object edges using 2D Gabor
filters (Kulikowski, Marcelja, & Bishop, 1982), which approximate
the receptive fields of simple cells in the primary visual cortex
(Jones & Palmer, 1987; Marcelja, 1980). Both even, ge;hðx; yÞ, and
odd, go;hðx; yÞ, filter kernels are used, where:

ge;hðx; yÞ ¼ e�
x02þc2y02

2r2 cosðxx0Þ

go;hðx; yÞ ¼ e�
x02þc2y02

2r2 sinðxx0Þ
ð1Þ

where h 2 f0;p=4;p=2;3p=4g radians, c is the spatial aspect ratio, r
is the standard deviation of the Gaussian envelope, x is the spatial
frequency of the filter, and x0 and y0 are coordinates in the rotated
reference frame defined by

x0 ¼ x cosðhÞ þ y sinðhÞ
y0 ¼ �x sinðhÞ þ y cosðhÞ

ð2Þ

Simple cell responses are computed according to

Sk
e;hðx; yÞ ¼ bkðx; yÞ � ge;hðx; yÞ
Sk

o;hðx; yÞ ¼ bkðx; yÞ � go;hðx; yÞ
ð3Þ

where Sk
e;hðx; yÞ and Sk

o;hðx; yÞ are the even and odd edge pyramids at
angle h and � is the correlation operator defined as

f ðx; yÞ � gðx; yÞ ¼
X1

m¼�1

X1
n¼�1

f ðm;nÞgðxþm; yþ nÞ ð4Þ

Using an energy representation (Adelson & Bergen, 1985;
Morrone & Burr, 1988), contrast invariant complex cell responses
are calculated from a simple cell response pair as

Ck
hðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sk

e;hðx; yÞ
2 þ Sk

o;hðx; yÞ
2

q
ð5Þ

where Ck
hðx; yÞ is the complex cell’s response at angle h.

To infer whether the edges in Ck
hðx; yÞ belong to figure or ground,

knowledge of objects in the scene is required. This context infor-
mation is retrieved from a center surround mechanism, as com-
monly implemented in the retina, lateral geniculate nucleus and
cortex (Reid, 2008). Center-surround receptive fields have a central
region (the center) which is surrounded by an antagonistic region
(the surround) which inhibits the center. Our model uses center-
surround mechanisms of both polarities, with ON-center receptive
fields identifying light objects on dark backgrounds and OFF-center
surround operators detecting dark objects on light backgrounds.
This is implemented as

CSk
Dðx; yÞ ¼ bb

kðx; yÞ � csoff ðx; yÞc

CSk
Lðx; yÞ ¼ bb

kðx; yÞ � csonðx; yÞc
ð6Þ

where b�c is a half-wave rectification, and CSD and CSL are the dark
and light object pyramids. csoff and cson are the OFF-center and
ON-center center surround mechanisms generated using a differ-
ence of Gaussians as follows:

csonðx; yÞ ¼
1

2pr2
i

e
�x2þy2

2r2
i � 1

2pr2
o

e
�x2þy2

2r2
o

csoff ðx; yÞ ¼ �
1

2pr2
i

e
�x2þy2

2r2
i þ 1

2pr2
o

e
�x2þy2

2r2
o

ð7Þ

In these equations, ri is the standard deviation of the center (inner)
Gaussian and ro is the standard deviation of the surround (outer)
Gaussian.

Next, for a given angle h, antagonistic pairs of border ownership
responses, Bh and Bhþp, are created by modulating C cell responses
with the activity from the CS pyramids. B cells can code borders for
light objects on dark backgrounds or dark objects on light
backgrounds. This is achieved by computing B cell activity
independently for each contrast case and then summing to give a



Fig. 3. Grouping network architecture. Input to the system is the gray parallelogram at the bottom of the figure. For simplicity only cells and connections at a single scale are
shown. High (low) contrast connections and cells indicate high (low) activation levels. Red (blue) lines represent excitatory (inhibitory) connections. Green ellipses indicate
simple (S) cell receptive fields. Simple cells are activated by figure edges and the outputs of the even (Se) and odd (So) cells are combined to form complex (C) cells. The
complex cells directly excite the Border Ownership ðBÞ neurons. Note that, in this example, B0 neurons represent right borders and Bp neurons represent left borders; in
general, border-ownership selective neurons always come in two populations whose preferred side of figure differ by 180 degrees. Also note that the mechanism rendering B,
neurons insensitive to contrast are not shown in this figure (see Eq. (12) and preceding equations). An estimate of objects in the scene is extracted using CS neurons which
have large center surround receptive fields. CSL neurons have on-center receptive fields and extract bright objects from dark backgrounds. CSD neurons have off-center
receptive fields and extract dark objects from light backgrounds (the subscripts stand for ‘‘light’’ and ‘‘dark.’’). Thus, CSD and CSL neurons have identical receptive fields but of
opposite polarity, at each location. For clarity only the receptive field of the most responsive CS neuron is shown at a given location (purple dashed ellipse). The B cell
responses to C cells are modulated by the CS cells. Excitation from the CS cell coding for figure on the B cell’s preferred side enhances B cell activity whilst inhibition from the
CS cell coding for an object on the non preferential side suppresses B cell activity. This is the start of global scene context integration as objects with well defined contours will
strongly bias the B cells to code for their borders whilst they inhibit B cells coding for ground. B cell activity is then integrated in an annular manner to give the grouping
activity represented by the G cells. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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border ownership response independent of figure-ground contrast
polarity. This mimics the behavior of the border ownership cell
shown in Fig. 2.
Bh;L, the border ownership activity for a light object on a dark

background is given by

Bk
h;Lðx;yÞ¼ Ck

hðx;yÞ� 1þ
X
jPk

1

2j
vhþpðx;yÞ�CSj

Lðx;yÞ�wopp

X
jPk

1

2j
vhðx;yÞ�CSj

Dðx;yÞ
 !$ %

ð8Þ

and Bh;D, the border ownership activity for a dark object on a light
background is given by

Bk
h;Dðx;yÞ¼ Ck

hðx;yÞ� 1þ
X
jPk

1

2j
vhþpðx;yÞ�CSj

Dðx;yÞ�wopp

X
jPk

1

2j
vhðx;yÞ�CSj

Lðx;yÞ
 !$ %

ð9Þ

where vh is the kernel responsible for mapping object activity in the
CS pyramids back to the objects edges (see Fig. 4 for details), wopp is
the synaptic weight of the inhibitory signal from the opposite polar-
ity CS pyramid and the term 2�j normalizes the vh operator such
that the influence across spatial scales is constant. vh is generated
using the von Mises distribution as follows:

vhðx; yÞ ¼ �
exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� R0

� �
sin tan�1 y

x

� �
� h

� �h i
2pI0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� R0

� � ð10Þ

R0 is the zero crossing radius of the center surround masks, and h is
the desired angle of the mask. The factor p

2 rotates the mask to
ensure it is correctly aligned with the edge cells. I0 is the mod-
ified Bessel function of the first kind. vh is then normalized
according to

vhðx; yÞ ¼
vhðx; yÞ

maxðvhðx; yÞÞ
ð11Þ

The border ownership responses coding for light and dark ob-
jects are then combined to give the contrast polarity invariant
response
Bk
hðx; yÞ ¼ B

k
h;Lðx; yÞ þ B

k
h;Dðx; yÞ ð12Þ

The sign of the difference Bhðx; yÞ � Bhþpðx; yÞ determines the direc-
tion of border ownership at pixel ðx; yÞ and orientation h. Its magni-
tude gives a confidence measure for the strength of ownership
which is also used for determining the local border orientation,
see Eqs. (13) and (14).

In the above, the activity of a B cell is facilitated by CS activity
on its preferred side and suppressed by CS activity on its non-pre-
ferred side. This is motivated by neurophysiological results which
show that when an edge is placed in the classical receptive field
of a border ownership neuron, image fragments placed within
the cell’s extra-classical field can cause enhancement of the cell’s
activity if the image fragment is placed on its preferred side, and
suppression if it is placed on the non-preferred side (Zhang &
von der Heydt, 2010). Furthermore, modulating the B cell re-
sponses with the CS activity summated across spatial scales en-
sures that the B cell response is invariant to spatial scale — a
behavior exhibited by the B cells’ biological counterpart, see
Fig. 2 (Zhou, Friedman, & von der Heydt, 2000). Furthermore, by
biasing the B cell activity by the CS activity at lower spatial scales,
the model is made robust in its border ownership assignment
when small concavities occur in larger convex objects.

At each pixel multiple border ownership cells exist coding for
each direction of ownership at multiple orientations. However, a
pixel can only belong to a single border. The winning border owe-
nership response ðB̂Þ is selected, from the pool of all border owner-
ship responses, according to

B̂kðx; yÞ ¼ Bk
ĥðx; yÞ ð13Þ

where

ĥ ¼ arg max
h
Bk

hðx; yÞ � B
k
hþpðx; yÞ

� �
ð14Þ

In words, the orientation of B̂ is assigned according to the pair of
B cell responses with the highest difference, and the direction of



(a)

(b)

(c) (d)

Fig. 4. (a) The annular receptive field of the grouping cells (adapted from Craft et al.
(2007)). In the model this is realized by using eight individual kernels (vh in the
text) whose combined activity produces the desired annular receptive field. Each
kernel is generated using Eq. (10) and the kernels v0; vp=2; vp and v3p=2 are shown in
the figure. Identical kernels are also used as the connection pattern to map the
activity of the CS cells to the B cells during border ownership assignment. See Eq.
(8). (b) The annular receptive field of the grouping cells bias the G cells to have a
preference for continuity (C) and proximity (P) (adapted from Craft et al. (2007)). (c)
Conventions for the display of B cell activity at a given pixel. The length of the
arrows indicates the magnitude of each cell’s activity. (d) Border ownership is
assigned to a given pixel by selecting, from the pool of all potential B cells (shown in
(c)), the pair of cells with the greatest activity difference. Within that pair, the cell
with the greater activity will own the border – in the case shown, B0. The winning
border will then excite its corresponding grouping cell, G1. This is done by mapping
the activity of B0 to G1 using v0. G1 also receives a small inhibitory signal from Bp

(not shown here). G2 denotes the G cell which corresponds to Bp . Black (gray) lines
indicate high (low) activity.
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ownership is assigned to the B cell in that pair with the greater
response.

The final stage of the algorithm calculates grouping ðGÞ cell re-
sponses by integrating the winning B̂ cell activity in an annular
fashion, see Fig. 4. This biases G cells to show preference for objects
whose borders exhibit the Gestalt principles of continuity and
proximity (Fig. 4b). G cell activity is defined according to

Gkðx;yÞ¼
X

h

d Bk
hðx;yÞ; B̂k

� �
� Bk

hðx;yÞ�wb�Bk
hþpðx;yÞ

h i
�vhðx;yÞ

j k
ð15Þ

where d Bk
hðx; yÞ; B̂k

� �
¼ 1 if Bk

hðx; yÞ ¼ B̂k and zero otherwise. wb is
the synaptic weight of the inhibitory signal from the B cell coding
for the opposite (non-preferred) direction of ownership.

The G pyramid from Eq. (15) is the output of the grouping
algorithm.
3.2. Proto-object based saliency

In this section the basic model of Section 3.1 is extended to ac-
count for multiple feature channels and to incorporate competition
between proto-objects of similar size and feature composition.
Note that saliency is obtained based on the primitives generated
for the proto-object computation and that the basic mechanisms
are shared.

The extended model, shown in Fig. 5, accepts an input image
which is decomposed into 9 feature channels: 1 intensity channel,
4 color-opponency channels and 4 orientation channels. A normal-
ization operator added to the grouping mechanism allows for com-
petition between proto-objects of similar size and feature
composition. The effect of this operator is that the grouping activ-
ity of maps with few proto-objects is promoted and the grouping
activity of maps with multiple proto-objects is suppressed. This
operator, N 1ð�Þ, which is very similar to that used by Itti, Koch,
and Niebur (1998), works as follows: The two center surround pyr-
amids, CSD and CSL, are simultaneously normalized so that all val-
ues in the maps are in the range ½0; . . . ;M�. If, before normalization,
the maximum of CSD was twice the maximum of CSL, then after the
normalization the maximum of CSD will be M and the maximum of
CSL will be M=2. Next, the average of all local maxima, �m, is com-
puted across both maps. In the final stage of normalization each
center surround map is multiplied by ðM � �mÞ2. N 1ð�Þ is simulta-
neously applied to CSD and CSL to preserve the local ordering of
activity in the maps. The effects of the normalization propagate
forward through the grouping mechanism – maps with high CS
activity, will have high border ownership activity which results
in high grouping activity. Conversely, maps with low CS activity
will have weak grouping activity.

The intensity channel, I , is generated according to

I ¼ r þ g þ b
3

ð16Þ

where r; g and b are the red, green and blue channels of the RGB
input image (Itti, Koch, & Niebur, 1998).

The four color opponency channels – red–green ðRGÞ, green–red
ðGRÞ, blue–yellow ðBYÞ and yellow–blue (YB) are generated by
decoupling hue from intensity through normalizing each of the
r; g; b color channels by intensity. However, because hue varia-
tions are not perceivable at very low luminance the normalization
is only applied to pixels whose intensity value is greater than 10%
of the global intensity maximum of the image. Pixels which do not
meet this requirement are set to zero. This ensures that hue varia-
tions at very low luminance do not contribute towards object sal-
iency. The normalized r; g; b values are then used to create four
broadly tuned color channels, red (R), green (G), blue (B) and yel-
low (Y) (Itti, Koch, & Niebur, 1998), according to

R ¼ r � g þ b
2

� �

G ¼ g � r þ b
2

� �

B ¼ b� r þ g
2

j k
Y ¼ r þ g

2
� jr � gj

2
� b

� �
ð17Þ

and the opponency signals RG; GR; BY and YB are then created as
follows:

RG ¼ bR� Gc
GR ¼ bG �Rc
BY ¼ bB � Yc
YB ¼ bY � Bc

ð18Þ



Fig. 5. (a) Overview of the feed forward grouping mechanism acting on the Intensity channel. Image pyramids are used to provide scale invariance. The first stage of
processing extracts object edges for angles ranging between 0 and 3p=4 radians in p=4 increments. Only the extracted edges orientated at 0 radians are shown. Next, bright
and dark objects are extracted from the intensity input image using ON-center and OFF-center center surround mechanisms. The center-surround (CS) pyramids are then
normalized before being combined with the edge information to assign border ownership to object edges. Border ownership activity is then integrated in an annular fashion
to generate a grouping pyramid. (b) The proto-object saliency algorithm. An input image is separated into Intensity, Color Opponency and Orientation channels. The activity
of each channel is then passed to the grouping mechanism. The grouping mechanism for both the intensity and color-opponency channels is identical to that shown in (a).
However, to ensure that the orientation channels respond only to proto-objects at a given angle, the grouping mechanism for the orientation channels differs slightly. In these
channels the ON-center center-surround mechanism has been replaced by an even Gabor filter (with a positive center lobe) and the OFF-center center-surround mechanism
has been replaced by an even Gabor filter (with a negative center lobe). These filters are tuned to the orientation of the channel and the width of their center lobes match the
zero-crossing diameter of the center-surround mechanisms used in the intensity and color-opponency channels. Like the center-surround mechanisms they replace, the
output of the Gabor filters provides an estimation of the location of light objects on dark backgrounds and of dark objects on light backgrounds; however, their response is
also modulated by the orientation of proto-objects in the visual scene. The outputs of the Gabor filters are then normalized and the algorithm continues as in (a). The resulting
grouping pyramids are then normalized and collapsed to form channel specific conspicuity maps. The conspicuity maps are then normalized, enhancing the activity of
channels with unique proto-objects and suppressing the activity of channels with multiple proto-objects. The normalized conspicuity maps are then linearly combined to
form the proto-object saliency map.
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The four orientation channels, Oa where a 2 f0;p=4;p=2;3p=4g
radians, are created using I as the input to the grouping algorithm.
Orientation selectivity is obtained by replacing the center-surround
mechanisms in the grouping algorithm with even Gabor filters ori-
entated at2 a. Specifically,

csonðx; yÞ ¼ exp � x02 þ c2
1y02

2r2
1

	 

cosðx1x0Þ

csoff ðx; yÞ ¼ � exp � x02 þ c2
1y02

2r2
1

	 

cosðx1x0Þ

ð19Þ

where x0 and y0 are the rotated coordinate system defined according
to

x0 ¼ x cosðaÞ þ y sinðaÞ
y0 ¼ �x sinðaÞ þ y cosðaÞ

ð20Þ

The spatial frequency, x1, of the Gabor filters is set so that the
width of the central lobe of the filters matches the zero crossing
diameter of the original center surround mechanisms. The result
of this is that CSD still codes for dark objects on light backgrounds
2 This is only done in the orientation channels. The intensity and color opponency
channels use the regular center surround operators as described in Section 3.1.
and CSL still codes for light objects on dark backgrounds; however
the activity in these maps is modulated by the orientation of the
proto-objects.

Each of the above feature channels is processed independently
by the grouping mechanism to form feature specific grouping pyr-
amids, Gi where i is the channel type. These grouping pyramids are
then collapsed to form proto-object conspicuity maps – �I for inten-
sity, �C for color-opponency and �O for orientation. This is achieved
through a second normalization, N 2ð�Þ, and a cross scale addition
� of the pyramid levels. N 2ð�Þ is identical to N 1ð�Þ except that it
operates on a single map. � is achieved by scaling each map to
scale k ¼ 8 and then performing a pixel-wise addition.

For the intensity channel, �I is generated according to

�I ¼ �k¼10
k¼1 N 2 Gk

I

� �
ð21Þ

�C is generated according to

�C ¼ �k¼10
k¼1 N 2 Gk

RG

� �
þN 2 Gk

GR

� �
þN 2 Gk

BY

� �
þN 2 Gk

YB

� �� �
ð22Þ

and the orientation conspicuity map is generated according to

�O ¼
X

a2f0� ;45� ;90� ;180�g
N 2 �k¼10

k¼1 N 2ðOaÞ
� �

ð23Þ

The conspicuity maps are then normalized and linearly com-
bined to form the proto-object saliency map S:



Table 1
Model parameters.

Parameter Value

c 0.5000
r 2.2400
x 1.5700
ri 0.9000
ro 2.7000
wb 1.0000
R0 2.0000
wopp 1.0000
rl 3.2000
cl 0.8000
xl 0.7854
M 10.0000
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S ¼ 1
3
N 2ð�IÞ þ N 2ð�CÞ þ N 2ð�OÞ
� �

ð24Þ

The parameters used in the proto-object saliency algorithm are
shown in Table 1.
3 The Itti, Koch, and Niebur (1998), AWS, Hou and proto-object saliency algorithms
were not designed to account for center bias. However, by more heavily connecting
graph nodes at the center of the saliency map, the GBVS algorithm explicitly
incorporates a center bias. To ensure a fair evaluation of the algorithms, the GBVS
algorithm was configured to have uniform connections across the saliency map,
eliminating the center bias.
4. Results

Saliency models are often designed to predict either eye-fixa-
tions or salient objects. Models do not generalize well across these
categories (Borji, Sihite, & Itti, 2013) and so comparisons of model
performance should be conducted between models of the same
class. Models designed to predict salient objects work by first
detecting the most salient location in the visual scene and then
segmenting the entire extent of the object corresponding to that
location (Borji, Sihite, & Itti, 2013). This differs from our model of
proto-object saliency which calculates saliency as a function of
proto-objects (as opposed to image features). The resulting sal-
iency map can then be used to predict eye-fixations. Consequently
our model will be tested against four algorithms which are also de-
signed to predict eye-fixations. The first algorithm we test against
is the much used Itti, Koch, and Niebur (1998) algorithm. Although
more recent models score better in their ability to predict eye-
fixations (Borji, Sihite, & Itti, 2012, 2013), it is biologically plausible
and this model shares many computational mechanisms (the input
color scheme, normalization operator and method to combine
component feature maps into the final saliency map) with ours.
It is thus useful to compare our model with the Itti, Koch, and Nie-
bur (1998) algorithm since any improvements of the performance
of our model can be attributed to the figure-ground organization in
the proto-object saliency map. The primary goal of our work is to
evaluate the influence of the representation of proto-object on sal-
iency computations, rather than to design a model that is opti-
mized for best eye-prediction performance, without regard to
biological relevance. Nevertheless, it is interesting to compare
the eye position prediction performance of our model with the best
performance of saliency models that have been optimized for this
purpose. We therefore compare our model with three other meth-
ods, the Graph Based Visual Saliency (GBVS) model (Harel, Koch, &
Perona, 2007), the Adaptive Whitening Saliency (AWS) model (Gar-
cia-Diaz, Fdez-Vidal, et al., 2012; Garcia-Diaz, Leborn, et al., 2012)
and the Hou model by Hou and Zhang (2008). These algorithms are
less biologically plausible than the Itti, Koch, and Niebur (1998)
algorithm and ours; however they offer state of the art perfor-
mance for feature based saliency algorithms (Borji, Sihite, & Itti,
2013). The AWS and Hou models were ranked first and second in
their ability to predict eye-fixations across a variety of image catego-
ries (Borji, Sihite, & Itti, 2012).

Fig. 6(a) shows the response of these algorithms to a vertical
bar. It can be seen that the highest activation in the proto-object
saliency map corresponds to the center of the bar, while in the four
feature based algorithms, the peaks of saliency tend to concentrate
at the edges of objects. Fig. 6(b) shows a simple application of the
proto-object saliency map, showing that it can detect pop-out
stimuli, as can all the other algorithms (data not shown).

To quantify the performance of the algorithms, in their ability to
predict perceptual saliency, two experiments were performed. The
first measures the ability of the algorithms to predict attention by
using eye fixations as an overt measure of where subjects are
directing their covert attention, This idea, first used by Parkhurst,
Law, and Niebur (2002) to quantify the performance of the Itti,
Koch, and Niebur (1998) algorithm, is based on the premotor the-
ory of attention (Rizzolatti et al., 1987) which posits that the same
neural circuits drive both attention and eye fixations. Numerous
psychological (Hafed & Clark, 2002; Hoffman & Subramaniam,
1995; Kowler et al., 1995; Sheliga, Riggio, & Rizzolatti, 1994,
1995), physiological (Kustov & Robinson, 1996; Moore & Fallah,
2001, 2004; Moore, Armstrong, & Fallah, 2003) and brain imaging
(Beauchamp et al., 2001; Corbetta et al., 1998; Nobre et al., 2000)
studies provide strong evidence for this link. Recent experiments
(Elazary & Itti, 2008; Masciocchi et al., 2009) have found that sub-
jective interest points are also biased by bottom up factors. Exper-
iment 2 investigates whether or not this bias is better explained by
proto-objects or features.

Both experiments used the image database of Masciocchi et al.
(2009) which consists of 100 images, with 25 images in each of
four categories (buildings, home interiors, fractals and landscapes).
For each image both fixation and interest data are available. Eye
fixation data was collected from 21 subjects during a free viewing
task. The images were presented to the subjects in a random order
and all trials began with the subject fixating at a cross located at
the center of the screen. Each image subtended approximately
30:4� � 24:2� of visual angle. Each image was displayed for 5 s
and subjects’ eye movements were recorded using an eye tracker.
Eye movements that travelled less than 1� in 25 ms, and were long-
er than 100 ms were counted as a single fixation. On average par-
ticipants made 12:89	 3:11 fixations per trial (i.e., within 5 s).
Interest point data was collected from 802 subjects in an online
experiment. Each subject was given a set of 15 images randomly
selected from the data set and the subjects were told to click on
the 5 most interesting points in the image. The experiment was
self-paced. For full details of how fixation and interest data was
collected see Masciocchi et al. (2009). Examples of the images
and their corresponding saliency maps are shown in Fig. 7.

To measure the saliency map’s performance, two popular met-
rics are used, the area under the Receiver Operating Characteristic
curve (Green & Swets, 1966) and the Kullback Leibler divergence
(Itti & Baldi, 2005, 2006). In their original forms these metrics
are extremely sensitive to edge effects caused by the way in which
image edges are handled during the filtering stages of the algo-
rithms (Zhang et al., 2008). These edge effects inadvertently intro-
duce different amounts of center bias to each algorithm. This gives
the algorithms varying (false) abilities to explain the center bias3

found in human fixation and interest data due to the effects of prim-
ing, the fact that the center of the screen is the optimal viewing point
(Tatler, 2007; Vitu et al., 2004) and that photographers tend to put
the subject in the center of the image (Parkhurst & Niebur, 2003;
Reinagel & Zador, 1999; Schumann et al., 2008; Tatler, 2007; Tatler,
Baddeley, & Gilchrist, 2005; Tseng et al., 2009). To provide a fair



(a)

(b)

Fig. 6. (a-i) Image of a vertical bar. (a-ii) Proto-object saliency map of the bar. (a-iii) Itti, Koch, and Niebur (1998) saliency map of the bar. (a-iv) GBVS saliency map of the bar.
(a-v) AWS saliency map of the bar. (a-vi) Hou saliency map of the bar. Red indicates high activity and blue the lowest activity. (b) Proto-object saliency maps for two feature
search tasks. In both cases the item described by the unique feature is awarded the highest saliency. Red indicates high activity and blue the lowest activity. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Examples of images and their associated eye-fixation maps, interest maps and saliency maps calculated using the three algorithms discussed in the text. Two images
are shown for each image category: buildings (a and b), fractals (c and d), home interiors (e and f) and landscapes (g and h). The eye fixation (interest) maps were generated by
combining the fixation (interest) points across all images and then convolving the combined points with a 2D Gaussian with a standard deviation of 27 pixels, the standard
deviation of the eye tracker error.
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comparison the metrics are modified to only use saliency values
sampled at human fixation (interest) points. This diminishes the
influence of edge effects as human eye fixations and interest points
are less likely to be near image edges. Furthermore, by only using
salient values sampled at fixation (interest) locations the center bias
effects all aspects of the metrics equally.

The modified Receiver Operating Characteristic (ROC) examines
the sensitivity (as a function of true and false positives) of the sal-
iency map to predict fixation (interest) points. To calculate an ROC
curve the saliency map is treated as a binary classifier, where pix-
els below a threshold are classified as not fixated and pixels above
a threshold are classified as fixated. By varying the threshold, and
using eye fixations as ground truth, an ROC curve can be drawn.
The area under the curve provides a metric as to how well the algo-
rithm performed, with an area of 1 meaning perfect prediction and
an area of 0.5 meaning chance; values below 0.5 correspond to
anti-correlation. Following Tatler, Baddeley, and Gilchrist (2005)
the eye fixation (interest) points for the image under consideration
are used to sample the saliency map when computing true posi-
tives and the set of all fixation (interest) points pooled across all
other images (drawn with no repeats) is used to sample the sal-
iency map when computing false positives. The ROC scores are
then normalized by the ROC score describing the ability of human
fixation (interest) points to predict other human fixation (interest)
points. To do this, the test subjects were randomly partitioned into
two equally sized groups. As in Masciocchi et al. (2009), the



Table 3
Significance of the ability of proto-object saliency to predict eye fixations and
subjective interest points compared to the ability of the feature based methods.

Algorithm Metric Fixation points Interest points

Significant p-Value Significant p-Value

Feature saliency ROC <10�9 <10�8

(Itti et al.) KLD <10�9 <10�12

Feature saliency ROC <10�7 <10�16

(GBVS) KLD <10�2 <10�7

Feature saliency ROC <10�5 <10�5

(AWS) KLD – –

Feature saliency ROC – –
(Hou) KLD – <10�2
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fixation points from one group were then convolved with a 2D
Gaussian (standard deviation 27 pixels, equal to the standard
deviation of the eye tracker errors) to generate a fixation map.
The average ROC score of the fixation map’s ability to predict the
remaining fixation points was then calculated. This process was
repeated 10 times and the average was used to perform the
normalization. The modified ROC metric is the most reliable
metric to use when quantifying a saliency map’s ability to predict
eye-fixations (Borji, Sihite, & Itti, 2012).

For the modified Kullback Leibler divergence (KLD) metric, the
method described in Zhang et al. (2008) is used. For a given image,
the KL divergence is computed between the histogram of saliency
sampled at fixation (interest) points for that image, against a histo-
gram of saliency sampled at the same fixation (interest) points but
from the saliency map of a different image. This is repeated 99
times, once for each alternative saliency map in the data set, and
the average result is the KLD score for that image. If the saliency
map performs better than chance, then the histogram of saliency
values computed at fixated (interesting) locations should have
higher values than the histogram of saliency values computed at
the same locations but sampled from a different saliency map. This
will cause a high KL divergence between the two distributions. If
the saliency map performs at chance then the KL divergence be-
tween the two histograms is low. The average KLD score, across
all images, is then normalized by the KLD score describing the abil-
ity of human fixation (interest) points to predict other human fix-
ation (interest) points. This was calculated in a similar way to the
average ROC score described above.

4.1. Experiment 1: Predicting fixation points

Table 2 shows the ability of the five algorithms to predict hu-
man fixation points as computed by the ROC and KLD metrics
and Table 3 shows the significance, in difference, of these results.
Significance was calculated using a paired t-test between the pro-
to-object model’s score and the score of the competing algorithm.
The results show that the AWS algorithm is significantly better
(p < 10�5) than the proto-object saliency algorithm as judged by
the ROC metric. There is no significance difference between the re-
sults of the proto-object and AWS algorithms as judged by the KLD
metric. The results also show that there is no significant difference
between the proto-object and Hou algorithms for both metrics and
that the proto-object based saliency algorithm is significantly bet-
ter at predicting fixation points than the Itti, Koch, and Niebur
(1998) and GBVS algorithms (p < 10�2 for the difference between
the KLD score for the proto-object algorithm and the GBVS algo-
rithm, p < 10�7 for all other cases).

4.2. Experiment 2: Predicting interest points

Table 2 shows the ability of the five algorithms to predict hu-
man interest points as computed by the ROC and KLD metrics
and Table 3 shows the significance, in difference, of these results.
The results show that the AWS algorithm is significantly better
Table 2
Average ability of the saliency maps to predict human eye fixations and subjective
interest points across all images.

Algorithm Fixation points Interest points

Area ROC KLD Area ROC KLD

Proto-object saliency 0.9208 1.3048 0.7874 0.4851
Feature saliency (Itti et al.) 0.8707 0.7197 0.7473 0.2696
Feature saliency (GBVS) 0.8668 1.1056 0.7111 0.3387
Feature saliency (AWS) 0.9483 1.2239 0.8100 0.4678
Feature saliency (Hou) 0.9213 1.1796 0.7828 0.4143
(p < 10�5) than the proto-object saliency algorithm as judged by
the ROC metric. There is no significance difference between the re-
sults of the proto-object and AWS algorithms as judged by the KLD
metric. The results also show that there is no significant difference
between the proto-object and Hou algorithms as computed by the
ROC metric, however the proto-object algorithm is significantly
better (p < 10�2) at predicting human interest points as judged
by the KLD metric. The proto-object saliency map scores signifi-
cantly higher (p < 10�7) in its ability to predict subjective interest
points than both the Itti, Koch, and Niebur (1998) and GBVS
algorithms.
5. Discussion

5.1. Proto-object saliency

In agreement with the work by Borji, Sihite, and Itti (2012) our
results show that the AWS and Hou algorithms are the top
performing feature based saliency models. However, contrary to
the results of Borji, Sihite, and Itti (2012), we find that the perfor-
mance of the Itti, Koch, and Niebur (1998) and GBVS algorithms is
approximately equal. The results also show that AWS algorithm
outperforms the proto-object algorithm (significantly according
to the ROC metric, not significantly according to the KLD metric),
but the proto-object algorithm is equal to (if not better than) the
Hou algorithm and that it significantly outperfoms both the GBVS
and Itti, Koch, and Niebur (1998) algorithms. When contrasting the
results of the algorithms it should be noted that the approach
taken in the design of the Itti, Koch, and Niebur (1998) and
proto-object models was to build models in as biologically
plausible a fashion as possible. This differs from the approach
taken in the design of the AWS, Hou and GBVS algorithms which,
although motivated by biology, take a higher level approach and
do not attempt to model specific visual functions.

The AWS algorithm performs so well for two main reasons.
Firstly, the Hou, GBVS, Itti and proto-object algorithms all use a
limited, fixed feature space. As a result, each algorithm’s perfor-
mance depends on how well the features used in the algorithms
match those found in the images being tested. In contrast, the fea-
ture space of the AWS algorithm is adapted to the statistical struc-
ture of each image. As a result the AWS algorithm uses the optimal
features for each image being tested, as opposed to the other algo-
rithms which use a fixed, non-optimal feature space for all images
in the data set.

A second factor which can explain the AWS algorithm’s perfor-
mance is that, although not explicitly designed into the AWS algo-
rithm, the AWS algorithm includes basic aspects of object based
attention. Figs. 2 and 3 of Garcia-Diaz, Leborn, et al. (2012) show
that the AWS algorithm exhibits early stages of figure-ground seg-
regation (Garcia-Diaz, Fdez-Vidal, et al., 2012; Garcia-Diaz, Leborn,
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et al., 2012). These results can be attributed to the whitening used
by the AWS algorithm. Whitening is one property of center-sur-
round mechanisms (Doi & Lewicki, 2005; Graham, Chandler, &
Field, 2004). Thus, the whitening stages of the AWS algorithm
are similar to filtering using center-surround mechanisms and
the output of the whitening stage of the AWS algorithm ap-
proaches that of the CSD and CSL center-surround cells in the pro-
to-object algorithm. If the normalization used in the AWS
algorithm correctly enhances the figure and suppresses the ground
in this output then the output saliency map from the AWS algo-
rithm will include a basic representation of proto-objects. How-
ever, because of the adaptive nature of the AWS algorithm, these
proto-objects may be at more optimal scales than the fixed pro-
to-object sizes used in our algorithm. Furthermore, unlike the pro-
to-object algorithm the AWS algorithm does not have any
competition between the figure-ground responses created during
whitening. Thus the saliency map from the AWS algorithm will
be blurrier than that of the proto-object algorithm. This can be
seen in Fig. 7. As mentioned above, blurrier maps tend to outper-
form sharper saliency maps (Borji, Sihite, & Itti, 2013).

It should be noted that although the AWS algorithm contains
basic notions of figure-ground organization we still classify it as
a feature based algorithm. The figure-ground representation in
the AWS algorithm is tightly coupled to the spatial location of fea-
tures in the image. The AWS algorithm does not include any mech-
anisms, such as the grouping cells in the proto-object algorithm, to
process the arrangement of features in a scene into tentative proto-
objects. Consequently, in scenarios where features and object are
decoupled, such as in the Kimchi, Yeshurun, and Cohen-Savransky
(2007) experiment shown in Fig. 1, the AWS algorithm is unable to
award the highest saliency to the object in the scene. Our proto-ob-
ject algorithm is the only model able to explain the Kimchi, Yeshu-
run, and Cohen-Savransky (2007) results.

The proto-object based model shares many computational
mechanisms with the Itti, Koch, and Niebur (1998) algorithm.
These results show that by incorporating perceptual scene
organization into the algorithm it is possible to match the
performance of sophisticated, non-biologically plausible models
such as the Hou model which uses predictive coding techniques
to calculate saliency. It should also be noted that in the proto-
object model the spread of activation in the saliency map is
localized to the figures in the images while the background
receives very low saliency values. In contrast, in the feature
based algorithms the activation of saliency is not localized to
the figures. This is especially evident in Fig. 7(c) and (d). Blurrier
saliency maps tend to outperform sharper saliency maps (Borji,
Sihite, & Itti, 2013).

The figure ground organization in the proto-object saliency
algorithm is a result of the G cells which integrate object features
into proto-objects using large annular receptive fields (see Fig. 4).
These receptive fields bias the grouping cell activity, and conse-
quently salient locations, to fall on the centroids and the medial
axis of the proto-objects (Ardila et al., 2012). An example of this
is shown in Fig. 6(a-ii) where the highest activation in the saliency
map corresponds to the center of the bar. Note that, in the feature
based algorithms, the peaks of saliency tend to concentrate at the
edges of objects. This is shown in Fig. 6(a-iii) through (a-vi). The re-
sults of the proto-object saliency map are confirmed by results ob-
tained by Einhauser, Spain, and Perona (2008) and Nuthmann and
Henderson (2010) who show that object centers are a better pre-
dictor of human fixations than object features.

In the Einhauser, Spain, and Perona (2008) study, subjects were
presented with 99 images. The test subjects were asked to perform
artistic evaluation, analysis of content and search on the data set
whilst their eye fixations were recorded. Immediately after an im-
age was presented, the subjects were asked to list objects which
they saw. A hand-segmented object based saliency map was
then created where the saliency of objects within the map was
proportional to the recall frequency of the objects across all test
subjects. From this, Einhauser, Spain, and Perona (2008) concluded
that saliency only has an indirect effect on attention by acting
through recognized objects. Consequently, they suggest that
saliency is not just a result of preprocessing steps to higher vision
but instead incorporates cognitive functions such as object
recognition.

In a complementary experiment, Nuthmann and Henderson
(2010) presented participants with 135 color images of real-world
scenes. The pictures were divided into blocks of 45 images and
while viewing each block, the subject was asked to either take a
memory test, perform a search task, or evaluate aesthetic prefer-
ences. Eye fixations were recorded and it was found that the Pre-
ferred Viewing Location (PVL) of an object is always towards its
center. In a second experiment the PVL of ‘‘saliency proto-objects’’,
generated using the Walther and Koch (2006) algorithm, was
investigated. A PVL existed for proto-objects which overlapped real
objects; however, no PVL was found for saliency proto-objects
which did not overlap real objects. Thus, when the influence of real
objects is removed from saliency proto-objects, little evidence for a
PVL remains. Consequently, Nuthmann and Henderson (2010) ar-
gue that saliency proto-objects are not selected for fixation and
attention. Instead they hypothesize that a scene is parsed into con-
stituent objects which are prioritized according to cognitive
relevance.

At first glance it may appear as if the findings of Nuthmann and
Henderson (2010) are contradictory to the work presented in this
paper; however a distinction must be made between the Walther
and Koch (2006) proto-objects and the proto-objects of this work.
Both are close to the notion of proto-objects as defined by Rensink
(2000), but their implementations and interpretations are funda-
mentally different. The Walther and Koch (2006) model uses the
Itti, Koch, and Niebur (1998) feature based saliency algorithm to
compute the most salient location in the visual field. The shape
of the proto-object at that location is then calculated by a spread-
ing of activation around the most conspicuous feature at that loca-
tion. The proto-objects are purely a function of individual
features—there is no notion of object in their proto-objects. In con-
trast, the proto-objects in this paper are represented by grouping
cells whose activity is dependent on not only the individual fea-
tures of an object but also on Gestalt principles of perceptual orga-
nization. The grouping cells provide a handle for selective attention
by not only providing the spatial location of potential objects with-
in a scene but also by acting as pointers to the features which con-
stitute an object, akin to how a symbolic pointer in a computer
program can point to a structure composed of many individual ele-
ments. When cast in the saliency framework of Section 3, the nor-
malized grouping cell activity provides a measure of how unique
an object is and consequently a measure of its saliency. This is in
line with recent neurophysiological results which show that border
ownership is computed independently of (top down) attention
(Qiu, Sugihara, & von der Heydt, 2007). This suggests that saliency
is a function of proto-objects and not the other way around, as
implicitly assumed in the Walther and Koch (2006) implementa-
tion. In line with Rensink (2000)’s proto-object definition, the
grouping cells are the highest output level of low level visual pro-
cesses and provide a purely feed forward measure of object based
attention. However, again following Rensink, grouping cells can
also act as the lowest level of top down processes. In fact, by using
a similar network of border ownership and grouping cells, Mihalas�
et al. (2011) have shown that grouping cells can explain many
psychophysical results of top down attention (this is discussed in
more detail below). Using this distinction, the experiments of
Nuthmann and Henderson (2010) do not exclude proto-objects
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as a mechanism through which object based attention can be
explained. Instead, their results bolster the growing literature
(Cave & Bichot, 1999; Duncan, 1984; Egly, Driver, & Rafal, 1994;
He & Nakayama, 1995; Ho & Yeh, 2009; Ito & Gilbert, 1999;
Matsukura & Vecera, 2006; Qiu, Sugihara, & von der Heydt, 2007;
Roelfsema, Lamme, & Spekreijse, 1998; Scholl, 2001; Wannig,
Stanisor, & Roelfsema, 2011) that supports the idea that attention
is object and not feature based.

Both Einhauser, Spain, and Perona (2008) and Nuthmann and
Henderson (2010) posit that their results can only be explained
through higher order neural mechanisms, such as object recogni-
tion, which are used to guide object based attention. While there
is no denying that attention has a strong top down component,
our the results provide an alternative explanation, namely that ob-
ject based saliency, acting through proto-objects, can also direct
attention. A recent study by Monosov, Sheinberg, and Thompson
(2010) shows that, in a visual search task, attention is applied be-
fore object recognition is performed. This agrees with a proto-ob-
ject based theory of attention as neurophysiological results show
that border ownership signals emerge 50–70 ms after stimulus
presentation (Qiu, Sugihara, & von der Heydt, 2007; Zhou, Fried-
man, & von der Heydt, 2000) while object recognition is a relatively
slower process occurring 120–150 ms after stimulus presentation
(Johnson & Olshausen, 2003).

5.2. Object based bias for interest

Experiments by Masciocchi et al. (2009) and Elazary and Itti
(2008) show that subjective interest points are biased by a bottom
up component. Using the same image database as that used in this
paper (see Section 4 for details), Masciocchi et al. (2009) investi-
gated the correlation between subjective interest points, eye fixa-
tions and salient locations generated using the Itti, Koch, and
Niebur (1998) saliency algorithm. Interestingly, Masciocchi et al.
(2009) found that participants agreed in which things were ‘‘inter-
esting’’ even though the interest point selection process was en-
tirely subjective and performed independently by all participants.
Furthermore, positive correlations were found between interest
points and both eye-fixations and salient locations. This suggests
that the selection of interesting locations is in part driven by bot-
tom up factors and that interest points can serve as an indicator
of bottom up attention (Masciocchi et al., 2009). In the Elazary
and Itti (2008) experiment, participants were not explicitly asked
to label interesting locations, instead interest was defined as the
property that makes participants label one object over another in
the LabelMe database (available at http://labelme.csail.mit.edu).
The Itti, Koch, and Niebur (1998) saliency algorithm was then ap-
plied to the database and its ability to predict interesting objects
was analyzed. Elazary and Itti (2008) found that saliency was a sig-
nificant predictor of which objects participants chose to label. In
76% of the images, the saliency algorithm finds at least one labeled
object within the three most salient locations of the image. This
indicates that interesting objects within a scene are not only
dependent on higher cognitive processes but also on low level vi-
sual properties (Elazary & Itti, 2008).

Both Masciocchi et al. (2009) and Elazary and Itti (2008) sur-
mise that the segmentation of a scene into objects is an important
factor in interest point selection. Our experiment 2 investigates
this by testing whether or not the bottom up bias of selective inter-
est is better explained through proto-objects or through features.
The results, see Section 4, show that proto-object based saliency
matches or outperforms feature based saliency algorithms (except
for the AWS algorithm) in its ability to predict interest points. This
indicates that the bottom up component of interest is not only
dependent on saliency but also on the perceptual organization of
a scene into tentative objects.
5.3. The interface theory of attention

The work presented in this paper uses a feed forward network
of B and G cells to compute figure ground organization and sal-
iency. In a complementary study, Mihalas� et al. (2011) demon-
strated that a recurrent model, using a similar network of B and
G cells, could perform top-down object based attention. When a
broadly tuned, spatial top-down signal was applied to the grouping
neurons representing a given proto-object, attention backpropa-
gated through the network enhancing the local features (B cells)
of the object — top down attention auto-localized and auto-
zoomed to fit the contours of the proto-object (Mihalas� et al.,
2011). Using this network Mihalas� et al. (2011) were able to repro-
duce the psychophysical phenomena described by Egly, Driver, and
Rafal (1994) and Kimchi, Yeshurun, and Cohen-Savransky (2007).

Together these two studies provide support for the ‘‘interface’’
theory of attention (Craft et al., 2007; Qiu, Sugihara, & von der Hey-
dt, 2007; Zhou, Friedman, & von der Heydt, 2000) where the neu-
ronal network that creates figure ground-organization provides an
interface for bottom-up and top-down selection processes. This is a
natural fit with coherence theory (Rensink, 2000), where the G cells
provide a handle or interface to the proto-objects for both bottom
up and top down processing. In the interface theory the magnitude
of attentional enhancement is not dependent on where in the cor-
tical hierarchy the attentional processing is performed but rather
on how involved the local circuits are in processing contextual
scene information (Kastner & McMains, 2007).
5.4. Grouping cell receptive fields and local features

An important aspect of the grouping algorithm are the large
annular receptive fields of the G cells which bias grouping activity
for figures exhibiting the Gestalt principles of continuity and prox-
imity. Although, there is no direct electrophysiological evidence
yet that shows that cells with such receptive fields exist, psycho-
physical evidence points to special integration mechanisms for
concentric circular patterns (Sigman et al., 2001; Wilson, Wilkin-
son, & Asaad, 1997).

Furthermore, there is neurophysiological evidence for neurons
selective for concentric gratings (Gallant et al. (1996)). As an alter-
native, the G cells do not need complete annular receptive fields
(Craft et al., 2007); instead their responses could be computed
through intermediate cells tuned to curved contour segments or
combinations of such segments (as was performed in our compu-
tations). Cells exhibiting such properties have been shown to exist
in extrastriate cortex (Brincat & Connor, 2004; Pasupathy & Con-
nor, 2001; Yau et al., 2013).

In this work grouping is assigned through the Gestalt principles
of proximity and continuity. Although excluded from this iteration
of the model, other Gestalt principles, such as symmetry are also
important. Indeed, a saliency map which uses local mirror symme-
try has been found to be a strong predictor of eye fixations (Koot-
stra, de Boer, & Schomaker, 2011). Furthermore, in this model,
border ownership assignment is purely a result of (estimated) G
cell activity and local orientation features. Additional features such
as T-junctions (Craft et al., 2007) and stereoscopic cues (Qiu & von
der Heydt, 2005) are also important for correct border ownership
assignment. For a more accurate description of perceptual scene
organization, future iterations of the model should include such
mechanisms.
6. Conclusion

A biologically plausible model of proto-object saliency has been
presented. The model is constructed out of basic computation

http://labelme.csail.mit.edu
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mechanisms with known biological correlates, yet is able to match
the performance of state of the art, non bio-inspired algorithms.
The performance of the algorithm strengthens the growing body
of evidence which suggests attention is object based. In addition,
the model was used to investigate whether the bottom up bias in
subjective interest is object or feature based. To the authors’
knowledge this is the first experiment of this kind. The results sup-
port the idea that the bias is object based. Lastly, the model sup-
ports the ‘‘interface’’ hypothesis which states that attention is a
result of how involved the local circuitry of perceptual organiza-
tion is in processing the visual scene.
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