

Attention to Objects and Perceptual Organization

Ernst Niebur Zanvyl Krieger Mind/Brain Institute Department of Neuroscience JHU

Students (Niebur lab)

Stefan Mihalas, Grant Gillary, Danny Jeck, Brian Hu, Sudarshan Ramenahalli

Collaborators

Andreas Andreou, Howard Egeth, Mounya Elhilali, Ralph Etienne-Cummings, Rudiger von der Heydt JHU

Eugenio Culurciello, Yale/Purdue U.

Christof Koch, Caltech/Allen Institute for Brain Science

Shihab Shamma, U. of Maryland at College Park

Jeremy Wolfe, Harvard U.

OBJECTIVE

Information overload impacts technological and biological systems. Example: Surveillance (but really *anything*}

Solution: Selective attention, i.e. sequential selection and processing of the most relevant information only

Our approach: Use mechanisms of perceptual organization to structure sensory input and guide attention according to primate neural representations

Different from other attentional approaches: organize sensory scene not by spatial relationships (pixels) but by perceptual (proto-)objects

OBJECTIVE

Information overload impacts technological and biological systems. Example: Surveillance (but really *anything*}

Solution: Selective attention, i.e. sequential selection and processing of the most relevant information only

Sparsity (in space and time!)

Our approach: Use mechanisms of perceptual organization to structure sensory input and guide attention according to primate neural representations

Different from other attentional approaches: organize sensory scene not by spatial relationships (pixels) but by perceptual (proto-)objects

Classical approach: Saliency map

(Koch & Ullman, 1985; Niebur & Koch, 1996; Itti, Koch & Niebur, 1998)

Saliency Map

Visual Scene

Saliency map is predictive of eye movements

Parkhurst et al, Vision Research 2002

Interest Maps

Conscious selection of "5 most interesting points" 15 images from database of 100 natural scenes 874 participants

Interest is highly correlated with fixations and with saliency map

Maschiochi et al, J. Vision 2009

"Tap at the first location you look at!"

Minimize top-down influences

Jeck et al, Vision Research 2017

Tap Maps

Result: Taps are highly significantly correlated with

- Fixations
- Interest
- Computational Saliency

Jeck et al, Vision Research

Saliency map: Limitations

Very successful but

•Fundamental elements are 'pixels' (~RGC activity) while biological attention operates on perceptual objects

How do we add the notion of *objects*?

Not trivial!

Rubin, N. <u>Nature Neuroscience</u> (2001)

Neuronal representation of image context in visual cortex

Border Ownership Coding In Primate Extrastriate Cortex

Zhou, H., H. S. Friedman, and R. von der Heydt. "Coding of border ownership in monkey visual cortex." J.Neurosci. 20.17 (2000): 6594-611.

Receptive Fields in V2 are Small

Cell 13jj7 (V2)

Zhou, H., H. S. Friedman, and R. von der Heydt. "Coding of border ownership in monkey visual cortex." J.Neurosci. 20.17 (2000): 6594-611.

Contrast invariance, size-invariance

Zhou, H., H. S. Friedman, and R. von der Heydt. "Coding of border ownership in monkey visual cortex." J.Neurosci. 20.17 (2000): 6594-611.

Access to a Variety of Cues

Consistent results are obtained with different features: contrast, outline figures, disparity, ...

Zhou, H., H. S. Friedman, and R. von der Heydt. "Coding of border ownership in monkey visual cortex." J.Neurosci. 20.17 (2000): 6594-611.

Access to a Variety of Cues

All pixels identical except in outlined areas

Consistent results are obtained with different features: contrast, outline figures, disparity, ...

Zhou, H., H. S. Friedman, and R. von der Heydt. "Coding of border ownership in monkey visual cortex." J.Neurosci. 20.17 (2000): 6594-611.

Response Latency

Zhou et al 2000

Vase/Face

(E. Rubin 1915)

Border ownership is mutually exclusive

Model Design Considerations

- Edges of objects may be owned on either of their two sides
- Border ownership cells respond preferentially for a single side of ownership
- Border ownership cells have broad access to image context with short, fixed latencies (this rules out models based on horizontal connections)
- Determination of border ownership occurs independently of high-level functions such as object recognition

Model Architecture

Craft et al J. Neurophysiol 2007

Grouping Cells: Multi-scale annulus-shaped receptive fields provide proximity grouping and convexity preference

fuzziness = **robustness**

Model Results: Size Invariance

Model Results: Consistency Across Shapes

Cell 13li1 (V2)

Model

