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“Compositional Models and the
Fundamental Problem of Vision”?



Hierarchical Models

 One of the hopes, and expectations, of
hierarchical models is that they can represent
complex structures in terms of compositions
of elementary components — shared parts.

e This should yield big gains in the complexity of
representation and inference.

 But how can we analyze and quantify this?



A Fundamental Problem of Vision

Complexity:
Set of images is almost infinite (Kersten 1987).
No. of objects is big 30,000 (Biederman 1984).

But the human brain can detect objects and
understand scenes within 150 msecs.

And we want computer vision systems to do the
same.



The Fundamental Problem

This lecture explores this fundamental problem
from the perspective of compositional models.

Quantify the gains of part sharing and executive
summary. (Recall objects have a hierarchical
distributed representation).

(1): We analyze compositional models and show
they can yield exponential gains in efficiency.

(Il) We perform a similar analysis for a novel
parallel implementation of compositional models.

(111) Speculations about the Visual Cortex.



Compositional Models:

® Examples: Graphical Models for Horses and Players.

B Executive Summary: High-level nodes encode
coarse descriptions of object. E.g. centroid position

M Detalls (e.g. leg positions) are specified by lower-
level nodes.

Figure 4. The AND/OR Graph Model (Zhu, Chen, Lin,
& Yuille, 2010). The Baseball player is an AND of the
head and torso, and left and right legs, but the head is
an OR of straight head and torso or an inclined head and

torso (top left).



Compositional Model of a Single Object

B Each Object is represented by a graphical
model.

B Generative for positions of parts.

P(%) = P(zn) | [ P(Zono)|z0; 7).
M Basic Building Blc;ck: Child-Parent Models:
P(Xchow) X, Av) = 0(Xy — £(Xcenw)) ) h(Xu; Ay)

B Generative model for data.

P(I|{z;: 1€ L}) = H P(I ) x H P(I(zx)|m),



|TExamples

M Left: T's, L’s, and their compositions.

B Right: Executive summary — quantified by a
Spatial decay factor q — lower resolution needed
for higher-levels of the hierarchy.

(a) (b)



Inference for a Single Object

M For each object, we can perform inference using
Dynamic Programming (message passing):

B Bottom-Up and Top-Down pass (cf
Inside/outside algorithm).




Compositional Inference: Bottom-Up

B DP Example: Level-2 state. 7 = (z, z1, 2, 11, 712, T21, T22).

B Inference Task Is to maximize:

log P(zy, T3|r) +log P(x1y, 712|71) + log P23, 72| 5)

P(I(z12)|7(x12)) P(I(z21)|7T(z21)) . log P(I(z22)|7(22))

+ log log !
P(I(z)m) 5 P(a)m) | P(I(xm)m)

P(I(x11)|7(z11))

+ log
P(I(z11)|m0)

® DP: bottom-up (first step) Computes set
{z,, ﬂé[:cl}} and {x, {.fPI:I;_,-}];

- P(I(zn)|T(z11)) P(I(x12)|7(212))
b(xy) = max {log P(xyy, T15|71) + log + log

| ] By O(x1) -.r“.-.m{ g P(xqy, 12|7) P(z11|70) P(I(z12)|70
- P(I(z2)|7(z21)) P(I(x22)|T(r2))
b(xo) = max {log P(xoy, T22|72) + log + log
A *:91-*:92{ & Plea, 2nlr) P(I(z12)[m0) P(I(z32)|70)

|| Repeat: () = max{log P(xy, z3|x) + &1(x1) + @2(x2)}

T1,T2



Compositional Inference: Top-Down
B Top-Down: Estimate *" = argmaxo(zx)

B Repeat:

(z7, z5) = arg {I;L}H;I]{lﬂg P(xy, xo|lx") + &1(x1) + @2(x2)}

B And so on to obtain: 11 L1z Taps Too-

M Intuition: propagate up hypotheses about the
states of subparts of the object. Increased
context as you rise up the hierarchy, less
ambiguity. Estimate coarse structure first ---
executive summary. Top-down uses high-level
context to resolve low-levels ambiguities.
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Inference: Illustration

B Bottom-Up
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Theories of the Visual Cortex

® Most theories of the visual cortex assume
bottom-up/feedforward processing — but some
advocate top-down generative approaches.

B Compositional models have aspects of both.
They are generative (e.d., synthesis and
attention). But allow rapid inference.

M Inference is done by propagating hypotheses
upward in a feedforward pass, followed by a top-
down pass to remove low-level ambiguities.

® “High-level vision tells low-level to stop
gossiping”.Murray, Kersten et al.’s fMRI study.
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Complexity of Inference for a Single Object

® \We can analyze the complexity of inference for a
single object — standard analysis of DP.

B Factors:

® (1) No. of Layers -- H.

® (i) No of children in parent-child ---r.

M (i) No. of parent-child configurations — C _r

B (lv) Spatial decay factor (ex. summary.) -- q

B Assumed to be the same at all levels of the
hierarchy.
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Multiple Objects: Part Sharing

M If parts and shared between objects we can
share the computation between many objects —
or many instances of the same object.

B Captured by hierarchical dictionaries:a,b,c,A,B.

® Model competition — at top-level — determines
which object is present (if any),

® No need to train a final classification stage! (Rev.)
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Part Sharing Example: L.Zhu et al. CVPR 2010

B Sharing of parts between 120 objects (horizontal)
W Left: Part Sharing (black)

B Right: Dictionaries — mean shapes only.
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Multiple Objects: Inferences

M Inference Is performed on the dictionaries with
model competition at top-level.

B Recall that a dictionary element at level | Is
composed (by parent-child relations) of
dictionary elements at level |-1

B The complexity of inference depends on the
number of dictionary elements.

W Exact inference — relations to UAI work on
techniques for speeding up inference on
graphs? (E.g., Darwiche and Chol).
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Parallel Implementation.: Convolutional
Compositions?
B Dynamic Progamming is naturally parallelized.

B Make copies of the dictionaries at different spatial
positions.

B Fewer copies at high-levels (executive summary).

B Non-Linear “Receptive Fields”:

lllllllllllllllllll
JJJJJJJJ

17



Parallel Implementation of DP

B The bottom-up pass is an AND-like operation
followed by an OR-like operation.

M The top-down pass selects the child
configuration with maximum score.

Eh mgm:-.x{]n_r_{.r-’{..-,,..-1] - (g ) 4 el ),

el F
l -
logPiz;, 22) + dqlzg) + de :_,-,-,_,_|JL

111::!{]ﬂj_ﬂpl:11: .'-3] | |'_'.l|::.l'_:: | r_'J;!:'J-:':

Bottom Up ~ o Top Down

logf{zy, 22) + dq () 4 -'.‘-f:[:;;_:}s

lop Pixy, x3) = oz )+ Palxs) log Plzy, z2) 4 a2z ) + oalzs)

() wg, Palze) 21, ¢1(2) zg, ol z2)
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Complexity for Single Objects.

® The complexity of DP — bottom-up pass is:
B D O size of image lattice

® C _r no. child-parent configurations.

B H no. of levels
M r no. of children (e.qg. r=3)

M g scale decrease factor (executive summary).

Viw = ¥ |Do|C, = [Dy|C\r™ Do|C,
Z|[| T (q/r) 0| Crr Ziqr = | l
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Serial and Parallel Impl. with Part Sharing

® If we do not share parts, then computation scales by
the no. M_H of objects.

B For serial Impl. — with part sharing — the complexity
depends on the dictionary size M_h at levels h:

H
Np, = |Do|Cr Z |,.-'Ls“|!,|i.|e,f'le.
h=1

® Parallel Impl — comp. time linear in no. level H.

M But requires no. “neurons”. Copies of dictionaries.

M Trade-off — speed neurons #

N, = Z |_'||.*’T h -!if'l'!|1_."[_||.
h=1
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Analysis: Inference Regimes

e The complexity gains depends on the no. of
shared parts: M_h at level h.

 Three Regimes:
* (i) The exponential growth regime (shape?)
 (ii) The empirical regime (CVPR 2010)

 (iii) The exponential decrease regime
(appearance?)



Exponential Growth Regime

* This regime is natural for shapes (at the low
levels, at least).

e Dictionary elements at one level can be
composed with most other dictionary

elements to form the dictionary at the next
level.

Result 1: If the number of shared parts scales exponentially by | M| o —jq then we can perform

inference for order g™ objects using part sharing in time linear in A, or with a number of neu-

rons linear in A for parallel implementation. By contrast, inference without part-sharing requires
exponential complexity.



Empirical Regime

e This regime was learnt by the unsupervised
algorithm (Thursday Talk). L.. Zhu et al. CVPR
2010.

 Note: similar to the exponential growth
regime for the first few levels, then size of
dictionaries decays quickly.

L

Result 2: If | Mj,| grows slower than 1/¢" and if | M| < r®~" then there are gains due to part
sharing using serial and parallel computers. This is illustrated in figure (7)(center panel) based on
the dictionaries found by unsupervised computational learning [19]. In parallel implementations,
computation is linear in H while requiring a limited number of nodes ("neurons™).



3'd Regime: Exponential Decay

e M_h decreases exponentially with h.

e This is the “appearance” regime?

e Intuition: low-level give detailed description:
e (i) Siamese cat fur, (ii) Cat fur, (iii) fur,.

e Executive summary in appearance.

£l
LEd% LA I.ll.l.l.rl.'l.‘l:!'l.-lr L= '—"I.I.I.I.Fl.]l.'l.-l LUJLI'—’LILJJJDJ

Result 3: If |My| = ™" then there is no gain for part sharing if serial computers are used, see
figure (7)(right panel). Parallel implementations can do inference in time which is linear in ‘H but
require an exponential number of nodes ("neurons™).



Complexity in Figures.

 These illustrate complexity for the three
domains.

(a) (b) ()



e Exponential Decay Regime

This regime is intriguing. It may corresponds to
representing the full appearance of objects, and
not just their edges.

Low-level dictionaries represent local appearance
patterns.

In the parallel impl, it requires a very large no. of
“neurons” at the lowest levels.

Implications for the brain? It suggests that there
should be many low-level dictionaries with many
local copies.

Note: 70% of neurons in the visual cortex are in



Summary

Complexity Analysis of Compositional Models.
Serial and Parallel Implementations.

Gains due to part sharing — compositionality —
depend on how the part dictionaries scale
with level. Three regimes.

Visual Cortex speculations: can we derive the
structure of the cortex from first principles —
as a hierarchical pattern recognition device
which is efficient for representation and
inference?
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