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Summary

e This talk describes work on detection and parsing visual objects. The
methods represent objects in terms of object parts encoding spatial
relations between them.

* We use deep convolutional neural networks (DCNNs) to make
proposals for detecting the object parts.

* We use graphical models to encode spatial relationships between
object parts and AND/OR graphs to share object parts between
different, but similar, objects (e.g., cow torso and horse torso).

e We also describe AND/OR graphs for parsing humans.



Compositional Strategy

e Deep Convolutional Neural Networks (DCNNs) have been extremely
successful for many visual tasks — such as object detection.

 But DCNNs are complicated “black boxes” and it is hard to understand
what they are doing. They do not have explicit representations of
object parts and the spatial relationships between them.

* An alternative strategy is to represent objects in terms of
compositions of object parts. DCNNs are trained to detect parts. Then
we use explicit graphical models — including AND/OR graphs —to
encode spatial relations and to enable part sharing.



Organization — Three Parts

e Part (I). Parsing Humans — joint detection.
e Xianjie Chen and Alan Yuille (NIPS 2014, CVPR 2015).

e Part (I). Parsing Animals -- Semantic Segmentation.

 Peng Wang, Xiaohui Shen, Zhe Lin, Scott Cohen, Brian Price, Alan
Yuille (ICCV 2015).

e Part (lll). Parsing Humans — Semantic Segmentation.
* Fangting Xia, Jun Zhu, Peng Wang, Alan Yuille (CVPR 2016).



Part | Parsing Human — Joint Detection

* In this project, the parts are joints (e.g., elbows, wrists, shoulders,...).

e Graphical models are used to represent spatial relationships between
the parts.

e Part sharing is used to enable efficient inference when the human is
occluded.

e X. Chen and A.L. Yuille (NIPS 2014, CVPR 2015).



Introduction

L Task is to estimate articulated human pose from a single
static image.




1 Image Dependent Pairwise Relations (IDPRs)

Intuition: We can reliably predict the relative positions of a part's
neighbors (as well as the presence of the part itself) by only observing

the local image patch around it.
We specify a graphical model for human pose with novel pairwise

relations that make adaptive use of local image measurements.

Lower Arm:L=  Upper Arm:___  Elbow: @ Wrist: @

U [ s &
LE JENIPNR Y 5]
L FRY &S ’
NNy aw Y




d DCNN for Image Dependent Terms

Require a method to extract information about pairwise part
relations, as well as part presence, from local image patches.

Deep Convolutional Neural Network (DCNN) is suitable for this, since
it is efficient and share features between different parts and part

relationships.




Performance Summary

State of the Art Performance
Our model combines the representational flexibility of graphical

models with the efficiency and statistical power of DCNNs.
Significantly outperforms the state of the art methods on the LSP

and FLIC datasets and also performs very well on the Buffy dataset
without any training on it.



The Graphical Model
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DCNN for Image Dependent Terms

- Appearance terms ¢(.|.;: @) and IDPR terms ¢(.|.;0) depend on the image.
- We use DCNN to learn the conditional probability distribution p(c, m.y(.)|I(1;); @) defined on the space|S|, where each
element corresponds to a part with all the types of its pairwise relationships, or the background.
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Inference

Dynamic programming + Distance Transform: O(T?LK)

L: # of locations, K: # of parts, T: # of pairwise types
Image Dependent Terms are efficiently calculated by a

single DCNN at all locations.
The computations common to overlapping regions are shared by
considering fully-connected layers as 1x1 convolutions.



Relationship to other models

Pictorial Structure (PS)
Recover PS by allowing one pairwise relation type, i.e., 1;; = 1
We use DCNN to learn data term instead of HOG filters.

Yang and Ramanan’s Mixtures-of-parts (MOP) [26]

MOP defines different “types” of part by its relative position with
respect to its parent.

Recover MOP by restricting each part in our model to only predict
the felative position of its parent, i.e., 1;; = 1 if 7 is not parent
of 7.

Conditional Random Fields (CRFs)

Related to CRFs literature on data dependent priors.
Efficiently model all the image dependent terms in a single DCNN.



Learning

Supervised learning by deriving pairwise type labels from
the annotated part (joint) locations by clustering.

Learn three sets of parameters:

Mean relative positions r of different pairwise relation types, by K-
means clustering.

Parameters 6@ of image dependent terms, by DCNN.

Weight parameters W/, by linear SVM.



Benchmark Performance

J LSP

Method Torso Head U.arms L.arms  Ulegs L.egs  Mean
Ours 92.7 87.8 69.2 55.4 82.9 77.0 75.0
Pishchulin et al. [16] 88.7 85.6 61.5 44.9 78.8 73.4 69.2
Ouyang et al. [14] 85.8 83.1 63.3 46.6 76.5 72.2 68.6
DeepPose* [23] - - 56 38 77 71 -

Pishchulin et al. [15] 87.5 78.1 54.2 33.9 75.7 68.0 62.9
Eichner&Ferrari [4] 86.2 80.1 56.5 37.4 74.3 69.3 64.3
Yang&Ramanan [26] 84.1 77.1 52.5 35.9 69.5 65.6 60.8

Table 1: Comparison of strict PCP results on the LSP dataset. Our method improves on all
parts by a significant margin, and outperforms the best previously published result [1] by
5.8% on average. Note that DeepPose uses Person-Centric annotations and is trained with
an extra 10,000 images.

= Two recent ECCV'14 papers, Kiefel&Gehler and Ramakrishna et al., also
report performance on the LSP dataset, and our performance is better.



J FLIC

Method U.arms L.arms Mean
Ours 97.0 86.8 91.9
MODEC [20] 84.4 52.1 63.3

Table 2: Comparison of strict PCP results on
the FLIC dataset. Our method significantly
outperforms MODEC [20].
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Figure 1: Comparison of PDJ curves of elbows
and wrists on the FLIC dataset. The legend
shows the PD.J numbers at the threshold of 0.2.



Datasets

(J Leeds Sports Poses (LSP) dataset: 1000 training and 1000
testing full-body human poses.

J Frames Labeled In Cinema (FLIC) dataset: 3987 training
and 1016 testing upper-body human poses.

J Buffy Stickmen dataset: 276 testing upper-body human
poses. We do not train on this dataset.




Diagnostic Experiments
J Terms Analysis

Method Torso Head U.arms L.arms U.legs L.legs Mean
Unary-Only 56.3 66.4 28.9 15.5 50.8 45.9 40.5
No-IDPRs 7.4 74.8 60.7 43.0 73.2 65.1 64.6
Full Model 92.7 87.8 69.2 55.4 82.9 77.0 75.0

Table 3: Diagnostic term analysis strict PCP results on the LSP dataset. The unary term
alone is still not powerful enough to get good results, even though it's trained by a DCNN
classifier. No-IDPRs method, whose pairwise terms are not dependent on the image, can get
comparable performance with the state-of-the-art, and adding IDPR terms significantly boost
our final performance to 75.0%.



J Cross-dataset Generalization

Method U.arms L.arms Mean o o e I TE!HS i
Ours* 96.8 80.0 929 i S v gl
Ours* strict 94.5 84.1  89.3 o

Yang [27] 07.8 68.6 83.2

Yang [27| strict 94.3 7.5 75.9 i i % i L — % i
S&pp 21 095.3 63.0 79.2 % "leilEllgu.J:udF“'nn;limrT'uﬂ:;JEH 02 % "vlll.':'il?ﬁa.i:udF"E;limr'lhm:;l:jH o2
FLPM [11] 03.2 60.6 76.9

Eichner [5] 03.2 60.3 76.8 Figure 2: Cross-dataset PDJ curves on Bufly

test subset. The legend shows the PDJ numbers
Table 3: Cross-dataset PCP results on Buffy at the threshold of 0.2. Note that both our
test subset. The PCP numbers are Buffy PCP  method and DeepPose [23] are trained on the
unless otherwise stated. FLIC dataset.

* Compared with Figure 1., the margin between our method and
DeepPose significantly increases in Figure 2., which implies that our
model generalizes better to the Buffy dataset.



Parsing People by Flexible Compositions. (Chen
and Yuille CVPR 2015).

* In realistic images many object parts are occluded.
* Previous graphical model are robust to only a few occlusions.
* Prior — observed nodes of graphical model are often connected.

e Strategy: extend the method used in NIPS 2014 to deal with
occlusion.



Full Graph Flexible Compositions

Figure 1: An illustration of the flexible compositions. Each con-
nected subtree of the full graph (include the full graph itself) is a

flexible composition. The flexible compositions that do not have
certain parts is suitable for the people with those parts occluded.



Figure 2: Motivation. (a): In real world scenes, people are usually significantly occluded (or truncated). Requiring the model to localize a

fixed set of body parts while ignoring the fact that different people have different degrees of occlusion {(or truncation) is problematic. (b):
The absence of body parts evidence can help to predict occlusion, e.g., the right wrist of the lady in brown can be inferred as occluded

because of the absence of suitable wrist near the elbow. However, absence of evidence is not evidence of absence. It can fail in some
challenging scenes, for example, even though the left arm of the lady in brown is completely occluded, there is still strong image evidence
of suitable elbow and wrist at the plausible locations due to the confusion caused by nearby people (eg., the lady in green). In both
situations, the local image measurements near the occlusion boundary (ie., around the right elbow and left shoulder), e.g., in a image
patch, can reliably provide evidence of occlusion.
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Figure 3: Different occlusion decoupling and spatial relationships
between the elbow and its neighbors, i e., wrist and shoulder. The
local image measurement around a part (e g., the elbow) can reli-
ably predict the relative positions of its neighbors when they are
not occluded, which is demonstrated in the base model [5]. In
the case when the neighboring parts are occluded, the local image
measurement can also reliably provide evidence for the occlusion.



Model

e Base Model: as before.
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Inference

* There are many different models — no. of connected subtrees of the
graph.

e But inference is efficient because of part-sharing.
* Inference is only twice the complexity of the base model:

' O(2T*LK)



Evaluation

e “We Are Family” (WAF) Dataset
e 525 images, six people per image on average. (350/175 train/test).

Method | AQP Torso Head U.arms L.arms mPCP
Ours 54.9 88.5 08.5 77.2 71.3 80,7
Multi-Person [“] | 80.0 86. 1 97.6 68.2 48.1 69.4
Ghiasiet. al. [ 7] 74.0 - - - - 63.6
One-Person [V] | 739 83.2 97.6 56.7 28.6 58.6

Table 1: Comparison of PCP and AOP on the WAF dataset.
Our method improves the PCP performance on all parts, and sig-

nificantly outperform the best previously published result [?] by
11.3% on mean PCP, and 4.9% on AOP.



Diagnostics

Method AQP Torso Head Ll.arms L.arms mPCP
Base Model [ ] 73.9 81.4 02.6 63.6 47.6 66.1
FC 2.0 87.0 08.6 12,7 67.5 T7.7
FC+HIDOD 4.9 88,5 08.5 71.2 71.3 8.7

Table 2: Diagnostic Experiments PCP and AOP results on the
WAF dataset. Using flexible compositions (i.e., FC) significantly
improves our base model [5] by 11.6% on PCP and 8.1% on AOP.
Adding IDOD terms (FC+IDOD:s, i.e., the full model) further im-
proves our PCP performance to 80.7% and AOP performance to
84.9%, which is significantly higher than the state of the art meth-
ods.



Figure 5: Results on the WAF dataset. We show the parts that are inferred as visible, and thus have estimated configurations, by our model.



From 2D to 3D.

(1) |

e Pose detection — with and with occlusion.
* Prior — connected parts — for occlusion (validated on WAF)
e Efficient inference despite occlusion — due to part sharing.

* Note: detection of pose is important for many applications.

E.g., estimating of 3D structure (C. Wang et al. 2014), action
recognition (C. Wang et al, 2013, 2014).




Summary of Part |: Parsing Humans -- Joints

* Detection of object parts (joints) in presence of occlusion. DCNNs for
detecting parts, graphical models to impose spatial relations, efficient
inference using dynamic programming.

* The detected parts can be used to estimate 3D structure of humans
from a single image and enable action recognition.

e Limitations. Objects are represented in terms of joints only. This
becomes problematic in some human configurations.



Part Il — Parsing Animals — Semantic Segmentation

e Detecting and Parsing of Animals. Semantic Segmentation.

* The parts are heads, arms, torsos, legs, tails.
* The parts are shared between different animals.

 We perform semantic segmentation —i.e. labeling the pixels of each
part.

 P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, A. Yuille. ICCV 2015.



The Task

Original Object mask Part mask
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Detect and Parse Animals:
Jointly infer the object segmentation and part
segments



Motivation

Detecting parts can improve object detection:
1Strongly supervised DPM [Azizpour et.al ECCV
2012]

1Detect what you can [X. Chen et.al CVPR 2014]

e

The same intuitions apply to segmentation,

1Parts need less context and can provide finer
boundaries

10ODbject needs long range context, but miss details.
1Parsing and segmenting objects in term of parts give
rich descriptions suitable for many visual tasks.



The Framework

p A

Input image
in scale: S,

Input image
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SCP potential
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FCRF

-Our method is performed using two stages:

-Object and Part potentials -- make proposals for parts.
-Fully connected CRF — spatial relations and part sharing.




Part Sharing:
Semantic compositional parts (SCP)
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We use part sharing to reduce the amount of computation.
Iop € {horse-head, horse-body, horse-leg, horse-tail, cow-head, cow-leg, cow-body, cow-tail}



SCP segments proposal

‘Parts are detected despite the difficulty of the data.




Joint FCRF: representing spatial relations
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Two layer neural network, with features from

-Context potential
-Relative spatial position
-Geodesic and Euclidean distance




Experiments

-Data (3 Dataset derived from our PASCAL part
[X. Chen et. al CVPR 2014))

1Horse-Cow Data

1The Quadrupeds Data

1Pascal part benchmark

L

-Comparison

1Semantic part segmentation (SPS) [J. Wang and A.L.
Yuille CVPR 2015]

JHypercolumn [Hariharan et.al CVPR 2015]

1FCN for object segmentation [Long et. al CVPR
2015]



"Horse-Cow Data

‘Data from SPS, segment horse and cow parts given
bounding box.

Horse
Bkg head body leg tail Fg IOU Pix. Acc

SPS [39] 79.14 47.64 69.74 38.85 - 68.63 - 81.45
HC[”!] 8571 5730 77.88 5193 37.10 78.84 6198 87.18
Ours 87.34 60.02 7752 5835 51.88 80.70 65.02  88.49
Cow
Bkg head body leg tail Fg [OU Pix. Acc
SPS [39] 78.00 40.55 61.65 36.32 - 71.98 - 78.97
HC[2I] 81.86 55.18 7275 4203 11.04 77.07 5257  84.43
Ours 85.68 58.04 76.04 51.12 15.00 82.63 57.18 87.00

Table 1. Average precision over the Horse-Cow dataset.



-The Quadrupeds Data

-5 animal classes from PASCAL

Object segmentation accuracy

Bkg Dog Cat Cow Horse Sheep I0U Pix. Acc

FCN 16s [27] 93.25 7430 78.62 61.88 56.56 67.63 72.04 93.00
FCN 8s [ 7] 93.55 7439 7852 60.81 58.39 69.15 7247 93.17

Jomt FCN(16s)  94.04 75.13 80.52 66.76 63.04 71.54 75.17 93.77
FCRF+FCN(16s) 93.88 77.10 80.92 68.76 63.40 6454 7457 9387
Ours final 94.40 79.03 83.04 74.82 69.94 70.59 78.64 94.71

Semantic part segmentation accuracy
Bkg Dog Cat Cow Horse Sheep IOU Pix. Acc

HC [21] 9283 4207 4399 3549 3859 3380 41.36 89.54

Ours final 94.46 45.63 47.81 42,7 49.60 3574 46.69 91.74
Table 2. Average precision over the Quadrupeds data.




-Pascal part benchmark

-Quadrupeds part segments from Pascal test set

Object segmentation accuracy
Bkg Dog Cat Cow Horse Sheep 10U Pix. Acc

FCN 8s [27] 9445 70.14 7545 6406 6475 69.06 7299 9390

Ours final 95.31 77.44 8047 7213 76.18 67.96 78.25 95.26

Semantic part segmentation accuracy
Bkg Dog Cat Cow Horse Sheep IOU Pix. Acc

HC [21] 0436 4124 4242 3522 45.00 38.86 43.11 90.64

Ours final 95.14 46.52 48.06 41.80 56.67 36.02 48.16 92.47

Table 3. Average precision over the part segmentation benchmark.



Qualitative results

Image FCN-8s [27] Ours object Object GT HC [21] Our part Part GT.



Summary Part 2: Animal Parsing, Semantic
Segmentation

Detect and semantically segment object parts.

Limitations: Occlusions, Small Ambiguous Parts
(e.q., Tails).



Part lll: Parsing Humans — Semantic Segmentation.
Pose-Guided Human Body Parsing with Deep-Learned
Features



Motivation

Part Proposal Generation
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Presenter
Presentation Notes
The purpose of this work is to parse human body parts with a unified And-Or graph model, by combining two different kinds of state-of-the-art part models (Xianjie’s pose joint estimation work and Peng’s FCNN part segmentation work). 
Left: pose joint prediction by Xianjie’s model; Right: pixel-wise part labeling by FCNN.
Pose-guided part segment proposal generation. Left: without pose information; Right: with pose information.
Part ranking and selection. Left: top-ranked part proposals without using pose and deep FCNN cues; Middle: top-ranked part proposals by using pose cues only; Right: top-ranked part proposals by using both pose and deep FCNN cues.
Final results. Left: without using pose and deep FCNN cues; Middle: using pose cues only; Right: using both pose and deep FCNN cues.



The Human Parsing Pipeline

Part Assembling by And-or Graph

Segment Generation Segment Feature Extraction Segment Ranking
and Selection
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Presenter
Presentation Notes
Our human parsing pipeline mainly consists of three successive steps: 
 Pose-guided part segmental proposal generation (‘Segment Generation’ in the figure); 
 Part segment proposal ranking and selection; 
 Part Assembling by And-Or graph.

The features used for representing part segment proposals can be three categories:
 Traditional appearance features (second-order pooling feature, skin color feature);
 Pose-based feature (The pose context Feature);
 Deep-learned feature (The deep FCNN potential feature).


The AOG model for part assembling
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The AOG Model
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Presenter
Presentation Notes
Left panel: Illustration on the structure of vertices in AOG. (a) leaf vertex; (b) non-leaf vertex. The symbols of OR, AND and T represent the Or-node, And-node and terminal node respectively. Please see Eqn. (5) and Eqn. (6) about the notations of model parameters.

Right panel: Score function of our AOG model. Equ.(4): the global scoring function of AOG; Equ.(5): the scoring function of unary term; Equ.(6): the scoring function of pair-wise term; Equ. (7) and Equ. (8) correspond to the terms of parent-child pairwise edges and side-way edges.


The Pose Context Feature
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The Unary Part Prototypes Learned
from Pose Context Feature

(1



Presenter
Presentation Notes
The learned part types/clusters (6 in total) for face class. 
 frontal face or back face; 
 frontal/back face on the left; 
 side face on the left. The other 3 unshown clusters correspond to the symmetric patterns w.r.t. the ones shown above.



The Pairwise Part Prototypes Learned
Fromm Pose Context Feature

(3



Presenter
Presentation Notes
The learned types (8 in total) for a part pair upper-clothes and lower-clothes. 
(1) the person with short sleeved upper-clothes and short pants. 
(2) the person with short sleeved upper-clothes and long pants. 
(3) the person with long sleeved upper-clothes and long pants. The other 5 types correspond to different viewpoints of the ones shown above.



APR

The Effect of Pose Cues for Part
Segment Proposal Generation

5 Average Part Recall of Segment Pool (APR)

Average Oracle Pixel Accuracy (OPA)
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The Recall and Average loU of Our Segment Proposals

hair | face | u-cloth | I-cloth | arms | legs | shoes | mean
Recall | 0.88 10.90| 0.99 | 099 |0.86|0.87| 0.67 | 0.88
loU |0.73]0.74| 0.85 | 0.86 |0.67 {0.72] 0.56 | 0.73
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Presentation Notes
To evaluate the effectiveness of pose cues for part segment proposal generation, we compare our pose-guided segment proposal method with the baseline
proposal algorithm, i.e. the RIGOR algorithm [10], which is a faster substitute of the CPMC proposal [3] typically used by previous parsing approaches [7].

For evaluating the proposal algorithms, two standard criteria are used, i.e. average part recall (APR) and average part oracle IoU (AOI). The first measures how much portion of the ground truth segments is covered by the proposals, and the second measures the best IoU we can achieve given the proposals.

In this figure, we show the results on Penn-Fudan test data. Specifically, we plot the APR and AOI w.r.t. the number of proposals up to 2000 segments. As
shown in the figure, compared with the RIGOR algorithm, ours (RIGOR + POSE) significantly improves the quality of part segment proposal by over 10% in average, which
contributes much to our final performance.

For each image, we select around 800 non-similar segments from the 2000 proposals. In the table, we list the APR and AOI score of the segment pool composed of the
selected 800 segments, capable of achieving the accuracy as high as that of the original 2000 proposals.


The Effect of Various Features (Comb.)
for Part Proposal Ranking and Selection

hair | face | u-cloth | I-cloth | arms | legs | shoes | mean

57.1153.5| 709 | 709 |26.6 204 ]| 15.6 | 45.0

02pFskin 1 e el66.9| 80.0 | 814 | 5461553 453 | 64.6

| 61.7158.6| 732 | 727 1299|234 175 | 48.1
(D+PCF 1 00 l66.4| 80.6 | 823 | 564|543 458 | 65.1
(2)+C- 6181589 732 | 719 398 448 265 | 53.8
PCF 699 (664! 805 | 82.4 |5581(59.1] 47.4 | 65.9

(3)+deep |64.4(59.0( 774 | T7.1 [ 41.4(43.6| 35.1 | 56.9
potential 70.7166.6| 822 | 834 |55.9|59.3| 488 | 60.7

Top-1 (upper row) and top-10 (lower row) AOI scores of part ranking models
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Presentation Notes
Comparison of four part models by average part oracle IoU (AOI) score (%) for top-1 ranked segment (top) and top-10 ranked segments (bottom). 
Models are numbered as (1) to (4), from top to bottom.
(1): o2p + skin
(2): o2p + skin + PCF (pose context feature)
(3): o2p + skin + PCF + C-PCF (coded pose context feature)
(4): o2p + skin + PCF + deep potential (deep FCNN feature)



Investigating The Effect of AOG for

Part Assembling

hair | face | u-cloth | arms | I-cloth | legs | Avg

Naive assembling | 62.353.5| 77.8 |36.9| 783 |28.2|56.2
Basic AOG 63.11529 | 77.1 |38.0| 78.1 |35.9|57.5
Ours 63.256.2| 78.1 |40.1| 80.0 |45.5|60.5

Ours (w/o pruning) | 63.2156.2| 78.1 [40.1| 80.0 |45.8]60.5

Naive assembling: using only the unary terms and basic geometric common sense
constraints (e.g. upper-clothes and lower-clothes must be adjacent).

Basic AOG: using only the unary terms and the parent-child pairwise terms, without the

side-way pairwise terms between parts.

Ours: using all potentials together (including the unary terms, the parent-child pairwise
terms, and the side-way pairwise terms).
Ours (w/o pruning): the results of our model without greedy pruning. The pruning only

brings ignorable decrease in performance while it reduces the inference time from 2

min. to 1 sec. per image.




Comparison to The State of The Art

hair | face |u-cloth|arms |l-cloth|legs |shoes | Avg®

FCN-32 [17]150.2(33.7| 694 |13.8| 66.7 [14.2] 25.2 |141.3
FCN-16[17]|48.7{49.1| 70.2 [33.9| 69.6 [29.9| 36.1 | 50.2
P&S [20] 140.0142.8| 75.2 (247 73.0 |46.6| - |504
SBP [2] (449(60.8] 748 |26.2| 71.2 |42.0| - |53.3
DDN [18] (43.2|57.1| 77.5 |27.4| 75.3 [52.3| - |56.2
Ours 63.2(56.2| 78.1 [40.1| 80.0 (45.5]| 35.0 | 60.5

Comparison of our approach with other state-of-the-art algorithms over the
Penn-Fudan dataset. The Avg means the average without shoes class since it
did not included in other algorithms.




Qualitative Results




Qualitative Result Comparison Between
Our Method and FCNN

FCN-32 FCN-16 Qurs



Some Failure Cases of Our Method

Failure cases of our algorithm on Penn-Fudan dataset. For each case, the original
image (with pose prediction), ground truth, and our parsing result are displayed
from left to right.



Summary of Part lll: Human parsing — semantic
segmentation

e Parsing humans is more difficult than parsing animals —
because human’s wear clothes, and there are many choices of

clothes.

e QOur approach uses deep networks for joints (X. Chen and A.L.
Yuille), pose-context features, appearance cues (including deep
networks for large parts).

e AND/OR graph is used to allow us to model the large number
of possibly configurations of humans.



Summary

* This talk illustrated a research where we represent objects as
compositions of object parts.

* We use deep convolutional neural networks (DCNNs) to make
proposals for the parts. The parts can either be human joint (e.g.,
elbows) or animal parts (e.g., head and torso).

* Graphical model are used to capture spatial relations between object
parts and to enable part sharing (e.g., horse torso and cow torso).

* This approach gives state of the art results on benchmarked datasets.
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