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i INtroduction: mathematical Theories of Vision

= Want a Mathematical (Computational)
Theory of Vision that:

= (1) /ets us to build computer vision
systems that work in the real world.

= (Il) serves as an ldeal Observer mode/
for evaluating biological vision.

= (Il) motivates models of neural
processing.



i Introduction: Visual Realism.

s Claim: mathematical theories of vision
need to model the visual environment.

= What are the ecological (Gibson) or
natural constraints (Marr)?

s Claim: Designing a system that works
with real Images helps tell you what the
real hard problems are.




i Introduction: Image Parsing

= Task: take an input image and parse it
INto Its constituent components.

= Components are objects (faces) and
generic regions (shading, texture).

s Analogous to parsing a sentence “The
cat sat on the mat” into nouns, verps,
efc. (precise connections later).



ilntroduction: Example
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i Bayesian Inference: Expected Loss

= Parsing must estimate a representation
W* (objects...) from the image |I.

s What is the best rule (algorithm) d(.) to
give solution W* = d(l)?

= Pick rule d(.) to minimize expected loss
R(d) = sum P(W,I) L(W,d(I))

= L(W,d(1)) Is penalty for wrong answer.
s Depends on visual environment P(W,1).




iBayesian Inference: cenerative Models.

= Best rule is select W* that maximizes P(W,1)/P(]).

= Can express P(W,1)/P(1) as (Bayes Rule):
PW1)/P(1) = P(IIW) P(W)/P(1),

where:
(1) P(1|W) Is the probability of generating the image from W.
(i) P(W) is the prior on W.



iBayesian Inference: Sinha’s Figure
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iBayesian Inference: Key Issues

(1) Modeling. How to model P(1|W) and
P(W) for real images and scenes?

P(I/W) Is like computer graphics. But
need mathematical models.

(1) /nference. How to compute W*?



il\/lodellng P(I|]W) & Generation.

s Probabilistic Context Free Grammar (CFG).

= Tree structure. Single node at top represents
the entire image region.

= Probability of splitting a region into two.

= Probability of labeling a region — face, text,
generic.

= Probability of generating intensity values in
each regions.

s (Prob. CFG's used for speech & language).



iModeIing: Probabilistic CFG.
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Probability of Split: / \
Bounaary of Spiit.

Region1l  Region 2

Probability of Reqgion Label:
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i Modeling: Prob. Images & Labels.

= Generic Regions: (i) constant, (i) clutter,
_(iii) texture, (iv) shadina.

@) Y R
= Require models:

P( I(x,y) [ label, parameters) (Tu & Zhu 02).

e.g. Gaussian for intensity in constant
regions. parameters mean, variance.

(Zhu & Yuille 1996)



i Modeling: Synthesis from models

/nput. region bounaaries,
Reqion labels,
Reqion parameters.

segmentation synthesig

synthesis




* Modeling: Synthesis of Objects

= Faces (front-on) and Text. |
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iModeIing: P(1]W) and P(W).

Image decomposed {R;:i=1,.,N} st.u;', R; =R,
/nto regions. RiNR;=0Vi#j I; =0R,;

Probability of image

/s product of prob. p(I|W) =TI;¥ L1 p(IR,10;,1;)
of each region image.

Region labels |,
Region parameters @,

Also prior probabilities P(W) for shapes of reqions, parameters
of face and text modadels.




i)ference: Estimate W* from |

s [raditional models of vision are feedforward
via intermediate level representations.

Image 2> 2-1/2D Sketch > Objects. (Marr).

= Problem: often very hard to construct
these intermediate representations (on
real images)

s Claim: /ntermediate level vision Is ill-posed
and ambiguous (hard to detect edges),
but figh level vision is well-posed (easy to
detect faces).



Inference: Rapid Detection Faces/Text.

= There exist learning algorithms (e.g.
Adaboost) that can be trained to detect

faces and text In unconstramed Images.

a. the first two face features

b.an example of face detection
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Error rate still too high:

Face 65 26 162 | 355,960,040
Face 918 14 162 | 355,960,040
Face 7542 1 162 | 355,960,040
Text 118 27 35 20,183,316
Text 1879 5 35 20,183,316

But much better than

Table 1

: Performance of AdaBoost at different thresholds.

error rate for edges!




ilnference: Feedforward/Feedback.

= Claim: low-level visual cues are
ambiguous but fast. (Feedforward).

= High-level models are reliable but

slow (Feedback).

m High-level models needs to search over
all parameters of models.

m Except — low-level cues for faces/text
can be fast (AdaBoost).




i Inference: Generative Feedback

= Searching through high-level models can be
done in a Bayesian spirit by “analysis through
synthesis” Grenander/Mumford.

s Sample from the generative model P(1/W)
until you find the W* that best generates the
image. Too slow!

= Mumford advocated this as a model for the
brain — feedback connections.




i Inference: DDMCMC

s Data Driven Markov Chain Monte Carlo
(DDMCMC). Tu & Zhu.

= A fast way to do Analysis by Synthesis.

» Feedforward: low-level cues to propose high-
level models (and model parameters).

s Feedback: high-level models generate the
Image and get validated.

s Attraction. Can prove that the DDMCMC wiill
converge to best W*. But how fast?




i Inference: DDMCMC

= Search for W* by making moves in the solution space
(split region, change label, etc. etc).

= Propose move with prob: g(W = W'|I)
= Accept move with probability

p(WII)y qg(W' — W I})
p(WII) W — W/ I)"

a(W — W) = min(1,

= The g’s are low-level cues (heuristics) which determine the
speed of the algorithm but don’t affect the final answer.



. propose/accept.

= “Man proposes, God disposes”.
Sir Edwin H. Landseer R.A.



ilnference: DDMCMC & Segmentation.

segnientation by
DDMOMC

DDMCMC using generic
region modadels only is
most effective way to
segment images (Tu/Zhu)

Evaluated on the
Berkeley dataset.
Ground truth from
Berkeley students.

input,

riainal
segTrentation

=
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Errors often due to lack of knowledge of objects.



i Inference: Image Parsing

= Use DDMCMC algorithm (feedforward
and feedback).

= Generative models of generic regions
and objects (faces, text).

s Proposals for faces and text from
AdaBoost learning algorithm.

= Proposals for generic regions as for
segmentation (edges, clustering, etc.)




Inference: Moves in Solution Space.




iFeedforward/Feedback IN Brain.

“High-level tells Low-Level to shut up”?
Or “High-level tells Low-Level to stop qossiping’.
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iReSUItSZ AdaBoost.

Boxes show faces & text
detected by AdaBoost at
fixed threshold.

Impossible to pick a

threshold that gives no it TEW |
false positives/negatives Al

on these two images. 9

- -"——“‘—'——-

Boxes show high probability
proposals for faces & text.




i?esults: cooperation/explain away

The different reqion models

can cooperate to explain the &
/mage.

Generic “shaded region”
processes detect the dark

glasses, so the face model % & B = | O
doesn’t need to “explain” Al . AN ]
that part of the data c. Synthesis 1 d. Synthesis 2

Advanced object models
could allow for glasses.



‘L Results: Scales, Cooperation.

a. Input image b. Region layer ¢. Dbject layer d. Synthesis image
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Multiple scales.

WOR LD PLAYER 200

Soccer Image. I‘ I i

Parking Image. &
Glasses/Shaded. == # (a7
9 detected as a =%
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(cooperative).




i Results. Reject and Explain away.

Street: Face mode/
/s used to reject fake

Cooperativity — shadows ol
. —Westwood| EE—E— Westwoud

on text explained as —el—a |

shaded regions.

Westwood: shaded
region models needed
to explain away glasses.




i Summary: (1)

Image Parsing.: combines segmentation,
detection, and recognition in a Bayesian
framework.

Feedforward proposals and feedback
acceptance/rejection.

Non-traditional — no intermediate-leve/
representation (no data thrown away).

Does this relate to the feedforward and
feedback loops in the brain?



i Summary Il: Technical.

= 1. Generative Models P(1|W) (generic
regions, faces, text...) and priors.

Modeling the visual environment.

m 2. Probablilistic Context Free
Grammars.

= 3. DDMCMC.

s 4. Proposals — AdaBoost — smart
heuristics.



iSummary 1

= Are there limits to this approach?

= Can we add more objects, proposals,
etc, and build a general purpose vision

machine?

s Need to study the visual environment
and moadel it mathematically.

s Need to determine rapid search
proposals (also environment driven).
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