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Deep Networks

* | have a love-hate relationship with Deep Networks.
* Their performance is extremely good for some visual tasks.

e Their lack of intepretability is worrying. Need to understand and
diagnose them.

* They are a very rich and constantly evolving class of techniques.
* They are very useful, but are not sufficient to solve vision.
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What can Deep Nets Do?

 Deep Nets, and other Machine Learning tools, have given huge
progress for many vision tasks.

* Hierarchical Feature Representation.
 The output is a differentiable function of
the input and the weights.
* This enables learning the weights by
Stochastic gradient descent.

11111 000

Examples: Face Recognition, Text Recognition, Medical Image Analysis
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Several Parts

e Part 1. Example. The FELIX project.

e Part 2. Why are Deep Networks Deep? GUNN.

e Part 3. Combining Deep Networks with Random Forests
e Part 4. Few-Shot Learning

e Part 5. Unsupervised Deep Networks.

* Part 6. Attacking Deep Nets.

e Part 7. When is Big Data not enough?



C Y L JOHNS HOPKINS

UNIVERSITY

Several Parts

e Part 1. Examples

e Part 2. Why are Deep Networks Deep? GUNN.

e Part 3. Combining Deep Networks with Random Forests
e Part 4. Few-Shot Learning

e Part 5. Unsupervised Deep Networks.

* Part 6. Attacking Deep Nets

e Part 7. When is Big Data not enough?



OHNS HOPKINS

=X
=
Part 1. Example W oivesi

cal imaging CT cancer detection

_n
rm
r
O
S,
Q.
D
O
cr
3
™
=

(@)
=
E=
(©
| -
|_

; - f.. ’:‘f — \, "ﬂ_\‘\\I

Professional Knowledge
o)) =
= T W
+ i+ - P
O —

—_—— — [ /%
= \_ R X
e 4 el O

Image .Sc_an Medical Image Data Testing Results Professional Diagnosis



The Team

Medical School Engineering School




GRONORCRY

Data coIIection/annotgti{on -
(@) Q)
— >
CT Images o S
B E 2
= e S Ohh = E
- e ;) S =
- e e 2 o
- e e e ) =
- 0“ =
Annotated abdominal organs
Liver
‘ Spleen
Pancreas $— y - Gallbladder
i £
Kidney — vodenum
E B Small bowel
— Colon

Blood vessels




JOHNS HOPKINS

UNIVERSITY

Part 1. Example

FELIX Multi-organ segmentation

Manual segmentation Deep network prediction

Aorta Celiac AA Duodenum IVC Kidney R Pancreas

Adrenal Gland Colon Gallbladder ~ Kidney L Liver SMA Spleen Veins

Small Bowel Stomach
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Part 1. Example

FELIX Multi-organ segmentation

Average Accuracy: Dice Similarity Coefficient(%o)
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FELIX: Detecting Cancer Tumors PDACs

e Strategy: Detection by Segmentation.

* Segment the healthy Pancreas, the tumors (PDACs), the dilated ducts.
Makes predictions for where the Radiologist should pay attention.

e Quality of segmentation decreases for tumors and dilated ducts —
DICE scores 60-70% for tumors, 50-60% for dilated ducts.

* But classification performance has extremely high sensitivity and
specificity.
 False positives: “focal fat”, lack of accuracy in detecting dilated ducts.

* False negatives: PDACs on the borders of the dataset (e.g., very small,
location).
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Part 2. Deep Network Architectures

Gradually Updated Neural Networks (GUNN)

 Deep Networks keep getting deeper? Why?
 From 5 layers in AlexNet to 1001 layers in ResNet.

* Why are more layers good? Why is depth good?

Siyvuan Qiao

* Intuition: many layers are good because each new layer introduces
more nonlinearities (e.g., ReLu’s) and increases the receptive field
size, which improves performance.

*S. Qiao, Z. Zhang, W. Shen, B. Wang, and A. Yuille. ICML 2018.

C C \' L
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Part 2. Deep Network Architectures

The Standard Deep Net Design

* Deep Nets, e.g., the VGG-network (right) =z 2oz
consist of a cascade of convolutional ,
layers.

112x 112 x 128

///,//56|x 56 x 256
/ 28 x 28 x 512

Tx7x512

1{1:;(14}:512 ) 1x1 %4096 1x 1% 1000

e Each layer consists of a set of channels.

1 convolution+RelU
) max pooling
fully nected+RelLU
softmax

e All channels in a layer are updated
simultaneously based on input from the
channels in the previous layer.

 Neurons in all channels have same number of non-linearities (e.g., one)

and same receptive field sizes.
C C Vv L



JOHNS HOPKINS
‘ll:' UNIVERSITY

Part 2. Deep Network Architectures

Why use the Standard Design?

e Suppose that the goal of Deep Nets is to have large “effective depth”
with many nonlinearities and a large range of receptive field sizes.

* Can we get large effective depth without needing many layers?

* GUNN presents an alternative way to get large effective depth, with
only a small number of layers, by ordering the channels and updating
them gradually, so that channels can receive input from their own
layer.

e This greatly increases the number of nonlinearities and the sizes of the
receptive fields when we add a new layer.
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Gradually Updated Neural Networks

e Standard DNN: All channelsare ¢ GUNN: The later channels receive input
updated simultaneously. from the earlier updated channels

e All channels have the same * They have more non-linearities and bigger
number of non-linearities and receptive fields.
receptive field sizes.

Channel 1 Channel 1 Channel 1
Channel 2 Channal 2 ( Channel 2

Channel 3 | m Channel 3

- Channel 1
-/ Channel 2
Channels ' Channel 3

Simultaneously Updated
Convolutional Network

2 of Input & 1 of Input &
1 of Output 2 of Output Output |

Gradually Updated

Convolutional Network

Figure 2. Comparing Simultaneously Updated Convolutional Network and Gradually Updated Convolutional Network. Left is a traditional
convolutional network with three channels in both the input and the output. Right is our proposed convolutional network which decomposes

the original computation into three sequential channel-wise convolutional operations. In our proposed GUNN-based architectures, the
updates are done by residual learning (He et al., 2016a), which we do not show in this figure.
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GUNN reduces symmetry and overlap singularities

* Deep Nets have hidden symmetries.
e |.e., there are many equivalent ways to represent the same input output function.
* This is wasteful. Maybe Deep Nets are badly designed?

e These hidden symmetries makes their energy landscape complex, giving
many equivalent minima which are separated by saddle points.

e In particular, there are overlap singularities where two neurons “collapse” (compute
the same function) which causes delays in learning.

e By contrast, GUNN has much fewer symmetries:

e Because the channels have different non-linearities, and it can be mathematically
proven (see paper) that overlap singularities are greatly reduced because it is much
harder for two neurons in GUNN to collapse.
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Part 2. Deep Network Architectures

GUNN reduces overlap singularities

* This leads to improved learning
=» Faster convergence. Better performance.
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Figure 3. Training dynamics on CIFAR-10 dataset. - Y, L
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Part 2. Deep Network Architectures

GUNN: Results on ImageNet

* Single-crop classification errors (%) on the ImageNet validation set.
The test size of all the methods is 224 x 224. (*indicates GUNN.)

Method # layers # params top-1 top-5
VGG-16 (Simonyan & Zisserman, 2014) 16 138M 28.5 9.9
ResNet-50 (He et al., 2016a) 50 25.6M 24.0 7.0
ResNeXt-50 (Xie et al., 2017) 50 25.0M 22.2 6.0
__DenseNet-264 (Huang et al,, 2017b) | 264 | 33.0M___ | 22.15 | ! 6.12
i SUNN-18" 18 28.9M 26.16 8.48
i GUNN-18" 18 28.9M 21.65 5.87 i
ResNet-101 (He et al., 2016a) 101 44.5M 22.0 6.0
ResNeXt-101 (Xie et al., 2017) 101 44.1M 21.2 0.0
DPN-98 (Chen et al., 2017) 98 37.™ 20.73 2.37
_SE-ResNeXt-101 (Huetal,, 2017) | 101 | 49.0M | 20.70 | 5.01
| Wide GUNN-187 18 ] 456M | 2059 [ 5.52 |
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Part 3: Random Forests and Deep Networks

e Random Forests are a very successful for classification.
e This is like the game of twenty questions.
e You ask a sequence of questions to get the answer.
e Particularly useful if the data is inhomogeneous.

e But what are the questions for an image?

 We can use deep networks to ask the questions.

* Application: Age estimation, but can be applied to survival
analysis in medicine, and many others.

Wei Shen

e Deep Networks can be combined with random forests.
[1] W Shen et al. Label Distribution Learning Forests. NIPS. 2017.

[2] W. Shen et al. Deep Regression Forests for Age Estimation. CVPR 2018.

C C \' L
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Part 3. Random Forests and Deep Networks

A random forest is made from Decision Trees

e A Decision Tree for To ‘play tennis’ or not?

Your data /

gets smaIIer sunny rain

-’\

high normal true false

TR

Each split node is a test on
one attribute

Possible attribute values

overcast of the node

Yes

Yes | Leaf nodes are the decisions
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Part 3. Random Forests and Deep Networks

Application: Age Regression

e How old are they? Both are 40!
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 |tis hard to estimate people’s age from facial images.

* Inhomogeneous Data: large variations in facial appearance between people of
same age. Human faces mature at different rates: bone growth, skin wrinkles, etc.

* We combine deep networks with random regression forests.
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Part 3. Random Forests and Deep Networks

Deep Regression Forests (DRFs)

* We propose Deep Regression Forests (DRFs) — a novel regression algorithm
inspired by differentiable decision trees (Kontschnieder et al. 2015).

e Differentiable regression forests partitions the data so that each leaf node only has
to learn a simple regression function.

e This enables the Deep Regression Forest to learn complex regression
functions.

* The partition is “soft” because the decision trees (= the random forests)
are differentiable w.r.t. the parameters of the trees.

e The differentiable decision trees (=>random forests) can be learnt together
with the convolutional layers.
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Part 3. Random Forests and Deep Networks

Learning a Differentiable Regression Tree

e Our goal is to learn a probability distribution p(y[x:T) = ZP((IX: O)m(y)
* P(l|x; ®)is the probability of reaching leaf node . el

* |t depends on parameters ® that are the weights of deep networks and
determine the probability of splits of the differentiable decision tree.

e m(y) is the regression probability at each leaf node.
 We learn @ and m(y).

@(+)is an index function to bring the ¢(n)-th
output of function f(x, ©) in correspondence

with split node n

f:x — RYis a real-valued feature learning function

O leaf nodes £ € L each £ holds a distribution T, C C V L
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Part 3. Random Forests and Deep Networks

Experimental Results

e Dataset

 Morph: 55,000 images from
about 13,000 people

e FGNET: 1002 facial images of
82 individuals

e CACD: 160,000 facial images
of 2,000 celebrities

CACD
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Part 3. Random Forests and Deep Networks

Summary Deep Regression Forests

* Deep nets can be combined with random forests for regression,
thereby combining the strengths of both methods.

e This builds on differentiable decision trees (Kontscheider et al. 2015).

e Technically, their work can be extended to this richer class of problems — label
distribution learning and regression — by observing that their update
algorithm is a special case of variational bounding.

* This leads to state-of-the-art results on age regression and can be
applied to many other problems.
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Part 4. Few-Shot Learning

What if there is too little data available for training? This is called few-shot learning.

Sxploit many-shot learning (standard learning) on a big dataset and few-shot on small
ataset.

For example, we know how to recognize many objects — pufg, jay, hen —and then we want to
learn a new object — snail, corgi (Queen of England’s dogs) from a few examples (1 or 5).

This is probably how children learn.
* They take a lot of time to start learning.
e But after they have learnt a critical amount, they learn very fast from very few examples.

*Siyuan Qjao et al. Few-Shot Image Recognition.... CVPR. 2018.
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Part 4. Few-Shot Learning

Few-Shot Learning for Recognizing Objects

* Training the weights (parameters) Plarge Drew
for many-shot object categories — Pug Jay Hen  Snail  Corgi
e.g., pug, jay, hen--in a large SoftMax O o ...... Q _Q ...... O
dataset Dy, by Deep Networks. R O S

e -.“- ::::

* Itis hard to train the weights for e
. . Activations | \__/ \_/J '
the few-shot categories -- snail, e O O O
corgi -- in the small dataset 25, X

Figure 1: Illustration of pre-training on Diue (black) and

* We cannot learn the weights few-shot novel category adaptation to Dy, (green). The

direct]y beca use there is not green circles are the novel categories, and the green lines
represent the unknown parameters for categories in Cley.
enough data.
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Few-Shot Learning

e What we know:

i. Activations of the penultimate Deep
Net layers for many-shot categories

In @Iarge

ii. The final weights (parameters) for
the multi-shot categories in Dy,

iii. The activations of the final Deep Net

for the few-shot categories in D5,

 What we need -- the parameters for

the few-shot categories.
We need the green arrows.
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Figure 1: Illustration of pre-training on Diue (black) and
few-shot novel category adaptation to Dy, (green). The
green circles are the novel categories, and the green lines
represent the unknown parameters for categories in Cley.
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Part 4. Few-Shot Learning

Key Idea: Relate the activations to the weights

* We plot the t-SNE of activations (left) and weights (right).

* These plots look very similar. This is surprising, may give insight into
Deep Networks.

* This suggests that there is a mapping function from activations to
weights. We learn this mapping by modelling it as a neural network.

* |In other words, we train a neural network to predict the parameters
of another neural network that classifies the few-shot categories.
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Part 4. Few-Shot Learning

Few-Shot Learning Summary

* There is an empirical relationship between the activations of the
deep network features at the penultimate level and the weights of
the decision layer of the network.

 This relationship can be exploited for few-shot learning.

 We learn the relationship from the big dataset, where we have many
examples of each category, and apply this relationship to estimate the final
weights for the categories in the small dataset.

 This significantly improves the state-of-the-art on several few-shot
datasets. E.g., ImageNet with 900 multi-shot objects and 100 few-

shot objects.
C C Vv L
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Unsupervised Deep Networks E -l

 Annotation is very hard for some visual tasks — e.g., optical flow and
depth estimation.

* For people interested in biology — it seems impossible that
humans/primates learn from fully supervised data.

e But recent work trains Deep Networks — e.g., for optical flow — by
only requiring coarse statistics of the optical flow — e.g., local
smoothness. Loss function depends on statistics of flow within local
neighborhoods.

e Similarly can train Deep Networks without supervision to estimate
rigid depth from ego-motion.

* In short — uses 1980°’s computer vision to train Deep Networks.
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Part 5: Unsupervised Deep Networks
Unsupervised Deep Networks B @
AT
e Recent work Chenxu Luo et al (Baidu-JHU collaboration). Peng Wang.

e Use unsupervised Deep Networks to learn, and learn to combine,
different cues:

* (1) Optical Flow
e (2) Structure from Rigid Motion
e (3) Shape-from-X

e Use a Holistic Motion Parser (HMP) to combine these cues — intuition
3D depth makes prediction for optical flow, inconsistency gives
“dynamic objects”, structure from motion helps train shape-from-X.
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Part 5: Unsupervised Deep Networks

Unsupervised Deep Networks

* Input: Image Sequences without Annotation.

e OQutput: Estimated Depth. Estimated Optical Flow. Estimated Object
Model Mask.

e Evaluation: KITTI dataset — cars driving in streets.

Fig. 1: (a) image, (b) our estimated depth, (c) our estimated optical flow, (d) our moving object mask, (e) depth from Yang et al. [5], (f) optical
flow from Wang et al. [0], (g) segmentation mask from Yang ef al. [7]. We show significant improvement of all tasks over other SOTA methods.
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Unsupervised Deep Networks

I — (& —

MotionNet
Fs—ht
Il'“"m — | HMP
FlowNet F,
—s

Fig. 2: Pipeline of our framework. Given a pair of consecutive frames, i.e.target image [; and source image [, a FlowNet is used to predict
optical flow F from I; to I,. Notice here FlowNet is not the one in [17]. A MotionNet predicts their relative camera pose T, . A single view
DepthNet estimates their depths D; and D, independently. All the informations are put into our Holistic 3D Motion Parser (HMP), which
produce an segmentation mask for moving object S, occlusion mask, 3D motion maps for rigid background M and dynamic objects M.
Finally, we apply corresponding loss over each of them. Corresponding loss are added afterwards for training different networks. (Details in
Sec. 3.2.2)
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Unsupervised Deep Networks: Summary

e Can use simple 1980’s computer vision models to train Deep
Networks. (Smirnakis and Yuille 1994 — similar, but no follow-up).

 Combining different visual cues consistently (“holistically”) leads to
strong performance.

e Suggests strategies that a visual system interacting with the 3D world
might be able to bootstrap itself by unsupervised learning exploiting
simple assumptions about the world.

e (David Mumford speculation — in Knill and Richards 1996)
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Part 5: Attacking Deep Networks

e Attacking Deep Networks is a way to understand them and to strengthen
them.

e Distinction: Local Attacks and Structured Attacks.

e Local Attacks. Very small changes to images can cause a deep network
to make very big mistakes.

* More Structured Attacks. These are much larger changes to the images.
Like partially occluding objects. Or changing the viewpoint.



Part 5. Attacking Deep Networks ey Gy JOHNS HOPKINS
Attacking Deep Nets for Semantic Segmentatlon
and Object Detection g

* Deep Nets attacks are not only for classification.
e Attack turns Dogs into Cows.

Segmentation
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*Cihang Xie, Jianyu Wang, Zhishuai Zhang et al. ICCV 2017. C C vV L
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Attacking Deep Nets for Semantic Segmentation
and Object Detection

e AN turns Train into Airplane with shape ICCV.

e AN turns blank Image into Bus with shape 2017.

Original image Perturbation Combined image Segmentation

Il airplane
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Part 5. Attacking Deep Networks B

Defending against adversarial noise

* Defense Strategy: defeat

adversarial attaCkS by Inpu}t{l:age Resiz;(cilmage Padded Image
randomization. e ‘ ™
e Random resizing and —
random padding. /:

* No additional training or \ “““ - | ow
fine-tuning, little

computation, can be used |

T an Em o e e e . E e e e

T o e om e e o o ms e e s oEs s s e s

: Classification
in conjunction with other —
defense methods. — — Randomly
Resizing Padding Select One
 But more recent attacks e e rattern
can beat this defense. A *Cihang Xie et al. ICLR 2018.
new Arms Race. 2" prize among 110 defense teams in NIPS 2017.

C C \' L
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Attacking Deep Networks: Local and Structured

* It is possible that local attacks can be dealt with using defenses which
strengthen the Deep Network.

e (E.g., FAIR-JHU team. Cihang Xie et al. 1st place in the Adversarial
Defense track of the Competition on Adversarial Attacks and Defenses
2018 (CAAD2018).

* But local adversarial attacks are only the tip of the iceberg.
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Part 5. Attacking Deep Networks

More Structured Attacks: Occlusion.

a W

PR ;1) 'cl"l' I

;r A Jrf

=)

Figure 1: Caption: Adding occluders causes deep network to fail. Left Panel: The occluding motorbike turns a monkey into a
human. Center Panel: The occluding bicycle turns a monkey into a human and the jungle turns the bicycle handle into a bird.
Right Panel: The occluding guitar turns the monkey into a human and the jungle turns the guitar into a bird.

*Jianyu Wang et al. Annals of Mathematical Sciences. 2018.

C C .V and L
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Part 5. Attacking Deep Networks

Vehicle Parts with Occlusion: Defend against Occlusion

e Label Parts (e.g., wheel, headlight) on Vehicles.
* Add occlusion at three levels of complexity.

* Can we detect the parts even if the models have been trained without
any occlusion?

 Yes (partially): two defenses using visual concepts (BMVC 2017 CVPR
CalY. S '
AZ .
f | Pt EQ
e wi

matarivke
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Part 5. Attacking Deep Networks

DeepVote

» DeepVote is an end-to-end Deep Network for detecting semantic parts, which is robust
to occluders and context.

e DeepVote can exploit context if it is helpful, but switch off context if is not.

Input Image pool-4 Features Visual Concept Map Semantic Part Map
2000909 . = Voting R .

veciet @ @ O © @ © layer E layer r% e
TXXYX Y .E*I N
X XXXX =

WxHx3 W' x H x 512 W'x H x K W'x H x |§|

Figure 2. The overall framework of DeepVoting (best viewed in color). A car image with two wheels (marked by red frames, one of
them is occluded) is fed into VGGNet [21], and the intermediate outputs are passed through a visual concept extraction layer and a voling
layer. We aggregate local cues from the visual concept map (darker blue indicates more significant cues), consider their spatial relationship
to the target semantic part via voting, and obtain a low-resolution map of semantic parts (darker red or a larger number indicates higher
confidence). Based on this map, we perform bounding box regression followed by non-maximum suppression to obtain the final results.

*Zhishuai Zhang, Cihang Xie, Jianyu Wang et al. DeepVote... CVPR. 2018.
C C Y L
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DeepVote: Results

&)

 DeepVote is equivalent to Faster-RCNN (FR) if there is no occlusion.

* DeepVote significantly outperforms FR when there is occlusion.

e All methods are trained without occluded examples.

OHNS HOPKINS
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No Occlusions L1 L2 L3
Category EVCIDVC| VT | FR [ DV |[DV+|( VT | FR [ DV |[DV+)| VT | FR | DV [DV+|| VT | FR [ DV | DV+
airplane 15.8 |26.6 |30.6]|569]590(60.2 |(23.2(354]|40.6|40.6 || 193|27.0131.4|32.3|15.1|20.1125.9|254
bicvele 580 1523 |T78|90.6| 898908 || 71L.7|77.0) 835|852 || 66.3(62.0078.7|79.6|54.3141.1]163.0|62.5
bz 238 1251 | 551|863 T4 BL3| 313|555 569|65.8 | 193(40.1) 441|546 9.5]|25.8|30.8|40.5
car 252 1365 |63.4|83.9|80.4| 806 | 35948 8156.1|57.3)|23.6[3091400(41L.7|| 13.8(198]27.3|294
moforbike || 32.7 (292 |53.4|63.7|65.2|69.7 || 44.1142.2]51.7|55.5||34.7|324 414|434} 24.1|20.1]29.4| 31.2
train 123 | 12.8 |355]|599]594(61.2|(21.7(30.6]33.6|43.7|) S4|17.7198|298]| 3.7|109|13.3|22.2
mean 28.0 (304 |53.1|73.6(72.0{74.0 ) 35.0[48.3153.7| 58.0 )| 28.6 | 35.0042.6| 46.9 ) 20.1|23.00 31.6| 35.2)

Table 1. Left 6 columns: Comparison of detection accuracy (mean AP, 7%) of KVC, DVC, VT, FR, DV and DV+ without occlusion.

Right 12 columns: Comparison of detection accuracy (mean AP, %0) of VT, FR, DV and DV+ when the object is occluded at three different
levels. Note that DV+ is DeepVoting trained with context outside object bounding boxes. See the texts for detals.
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Part 5. Attacking Deep Networks

Explaining DeepVote Results

e DeepVote can partially explain its detection results. l.e. the cues that it
has used to detect the semantic parts.

e Preliminary follow-up work (in progress) gives improved interpretability

S B T i 2T
: =l List of voted VC's:
e 1. #1602 20T = 0,393
(&, Ay = (00)
2. #245: score = 0.091

List of vated v 's:
1. #0735z 2oore = D020
(Ax, Ay} = (0, —&)
2. #235: score = (UD1 2

List of vated W 's:
1. Bo76: score = 0023
(e, Ay = (+1,4+2)
2. #o3E: score = 0L015
(o, Ayl = (+5,+1) W hr Ayh = (43 -2) {hx, Ayd = (0, +4]
3. #pgi: score = 0L053 3. #ioi: score = 0UD13 -l 3. #232: score = 0.007
B (Ar Av) = (48,43) ViFom g 3 (Ar, Ay} = (+3,48)  VO# 2 {Az, Ay} = (—5,-3) '

Figure 6. DeepVoting allows us to explain the detection results. In the example of heavy occlusion (the third column), the target semantic
part, i.e., the licence plate on a car, is fully occluded by a bird. With the help of some visual concepts (blue dots), especially the T3-rd VC
{also displaved in Figure 5), we can infer the position of the occluded semantic part (marked in red). Note that we only plot the 3 VC's
with the highest scores, regardless the number of voting VIC's can be much larger.
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Several Parts

e Part 1. Examples

e Part 2. Why are Deep Networks Deep? GUNN

e Part 3. Combining Deep Networks with Random Forests
e Part 4. Few-Shot Learning

e Part 5. Unsupervised Deep Networks

* Part 6. Attacking Deep Networks

e Part 7. When is Big Data not enough?
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When is Big Data Not Enough?
Fundamental limits of current methods?

e Limits 1: there are limits to the functions that Deep Nets can learn
and represent.

e Limits 2: there are weakness of Deep Nets to adversarial examples
and other attacks.

e Limits 3: there are limits to annotated datasets and big data.
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Limits 1: Deep Net limits

Limits to what Deep Nets can represent.

e Ultimately Deep Nets remain “memorization” methods. They
can store and interpolate between examples. But they cannot,
as yet, abstract and extrapolate to unseen data. Humans have
no difficulty recognizing a blue tree, even if they have never
seen one.

e Deep Nets are very sophisticated regression methods. But, like
all regression methods, they can only learn some regression
functions (continuous and discrete).

e Hard to classify exactly what regression functions can be
learnt. Intuitively, they are suitable for visual tasks that can
solved by storing enough templates. Don’t ask the Deep Net to

do too much.
C C V L
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Limits 1: Deep Net limits

Limits to what Deep Nets can represent.

e Deep Nets can learn to remember patterns but cannot understand the
causal rules that generate these patterns.

e Astronomy — Deep Nets could learn to provide a description of the planets
in solar system (similar to Ptolomy’s Epicycles) but they cannot discover the
underlying causes of these patterns (Newton’s Laws). Hence they cannot
generalize knowledge of our solar system to other solar systems.

e For vision: computer graphic models generate images from geometry,
material properties (reflectance), and viewpoints. Underlying causes.
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Limits 3: Limits to Annotated Datasets UNIVERSITY

Limits to Annotated Datasets

e (1). They bias the research community toward vision problems for which
there are high-profile annotated datasets.

* Annotation is easy for some vision tasks — object detection/classification
(“is there a cat in this box?”) — but hard for others (e.g., depth estimation).

e (2). The image datasets are only partly representative of the complexity of
natural images.

e Rare, but important, events may not occur in the datasets — “is there a
baby in the road”? Or they will occur very infrequently..

e (3). It is impossible to follow the principles of experimental design and vary
the factors in an experiments systematically.

e E.g., detecting a chair as we vary factors like: (i) viewpoint, (ii) lighting, (iii)
material properties.
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For some vision tasks datasets may never be
big enough for current Deep Nets!

* For complex visual problems, the amount of data needed to train and
test vision algorithms may become exponentially large as the
complexity of the visual task increases.

* An image can be constructed in a combinatorial number of ways:
objects, locations, lighting, etc.

* The basic assumptions of Machine Learning will break down. Training
and test datasets will not be big enough to represent the space of

Images.



Limits 3: Limits to Annotated Data

Example: synthetize images by Computer G_r%:.mics

Real Data
(Pascal3D+([2])

~10K Images




Limits 3: Limits to Annotated Data

Images from synthesized computer graphics model.

Wis W
- T

Camera Pose(4).

Sythesized data: INFINITE image space

.cene Layout(3):

azimuth #light source. =0 Background
elevation type(point, dire Foreground
tilt(in-plane rotation) omni) Position(Occlusion)
distance position

L color
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imits 3: Limjts to Ann )ated Data ]
orser we 37 ow occlusion and construct scence

using multiple objects.

* An object can be occluded in an exponential number of ways.

DrESeni Due

* An image can be constructed in a combinatorial number of ways:
objects, locations, lighting, etc.
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Limits 3: Limits to Annotated Data

Text Captioning: Exponentially Complex?

e Text captioning means giving a text caption to an image (see below).
e Big progress by several groups (including mine), written up in the New York Times.
e But this task is arguably too difficult for complex images..

e There are infinitely many possible images. 20,000 objects, placed in an exponential number of
configurations, with occlusion, in 1,400 different types of scenes.

a close up of a bowl of food on a train 1s traveling down the a pizza sitting ontop of a
a table tracks in a city table next to a box of pizza

e Junhua Mao et al. Deep Captioning... ICLR. 2015.
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Experimental Design: UnrealCV //http:unrealcv.org/

e Using Computer Graphics you can systematically vary the stimulus
parameters.

e Example 1: Can a Deep Net trained on ImageNet really detect sofas?
Vary lighting and material properties: (W. Qiu & A. Yuille. ECCV. 2016).

E — Azimuth g0 yas 450 225 270
. Elevation

1 . 0 - 0713 0.769 0.930 0.319

30 0.900 1.000 0.588 1.000 0.710

60 0.255 0.100 0.148 0.296 0.649

Table 1. The Average Precision (AP) when viewing the sofa from different viewpoints.
Observe the AP varies from 0.1 to 1.0 showing the sensitivity to viewpoint. This is per-
Fig. 4‘ Inlages “rith (liﬂ:ercnt camera hcight and diﬂ'erent sofa COIOI‘. 1121]’)5 because the biases in the training cause Faster-RCNN to favor SI)CCiﬁC \’iC\‘\f‘[)OilltS.

e Example 2: Stress-Testing Algorithms: Sensitivity of Stereo algorithms to
hazard factors such as specularity, textureless regions, etc. Y. Zhang et al.
3Dvision. 2018.



Virtual Scenes with varying hazardous factors.

egions Transparency Disparity Jumps

e Stress-test stereo algorithms by varying hazardous
factors. 8 levels for each factor.

Non-Lambertian surfaces

(a) Specularity (b) Texturelessness (c) Transparency
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When big data and Deep Nets are not enough

* We need new algorithms that can generalize/extrapolate away from
the training examples. Compositional part models, factorize shape
and appearance, generative models.

e E.g., recognize an object from novel viewpoint, with novel material
properties, with unknown occluders.

e We must be able to learn from limited size datasets. But be able to
test over infinite datasets.

e Exploit computer graphics data. UnrealCV

* Testing over infinite data is impractical. But we can exploit attacks to
explore the data by finding the worst examples.

=» Let your worst enemy test your algorithm. C Y L
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Cognitive Science and Neuroscience

Guidance from Cognitive Science & Neuroscience

 The human visual system is much more flexible and general purpose
than any computer vision algorithm.
e Humans can generalize to situations they have not seen.
 They can extrapolate much better than deep networks.
e Humans have causal understanding of images.
e And humans use less than 1 watt for computation.

e Cognitive Science aims at understanding human abilities.

* |t can provide challenges to Computer Vision. Computer Vision should mimic
human’s cognitive abilities.

e This will probably require computer vision theories which understand the
causal structure of the world and the data.
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Conclusion

* Big data and Deep Nets are extremely powerful tools for many vision
applications. They are, and will be, hugely successful for important
real world tasks. They are rapidly developing and evolving.

e Risks that Al will soon take over from humans are science fiction.
Current Deep Nets and Big Data will break down in the face of
exponential complexity.

e Developing Al systems with human-like capabilities will take time. It
will require better understanding of human intelligence. Al, Cognitive
Science, and Neuroscience should develop together.
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