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Deep Networks

• I have a love-hate relationship with Deep Networks.
• Their performance is extremely good for some visual tasks.
• Their lack of intepretability is worrying. Need to understand and 

diagnose them.
• They are a very rich and constantly evolving class of techniques.
• They are very useful, but are not sufficient to solve vision.
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What can Deep Nets Do?
• Deep Nets, and other Machine Learning tools, have given huge 

progress for many vision tasks.
• Hierarchical Feature Representation.
• The output is a differentiable function of

the input and the weights.
• This enables learning the weights by 
Stochastic gradient descent. 

Examples: Face Recognition, Text Recognition, Medical Image Analysis
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Several Parts

• Part 1. Example. The FELIX project.
• Part 2. Why are Deep Networks Deep? GUNN.
• Part 3. Combining Deep Networks with Random Forests
• Part 4. Few-Shot Learning
• Part 5. Unsupervised Deep Networks.
• Part 6. Attacking Deep Nets.
• Part 7. When is Big Data not enough?
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FELIX project: medical imaging CT cancer detection
Part 1. Example
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FELIX Multi-organ segmentation
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Part 1. Example
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Part 1. Example

Average Accuracy: Dice Similarity Coefficient(%)
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FELIX: Detecting Cancer Tumors PDACs 
• Strategy: Detection by Segmentation.
• Segment the healthy Pancreas, the tumors (PDACs), the dilated ducts. 

Makes predictions for where the Radiologist should pay attention.
• Quality of segmentation decreases for tumors and dilated ducts –

DICE scores 60-70% for tumors, 50-60% for dilated ducts.
• But classification performance has extremely high sensitivity and 

specificity.
• False positives: “focal fat”, lack of accuracy in detecting dilated ducts.
• False negatives: PDACs on the borders of the dataset (e.g., very small, 

location).
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Gradually Updated Neural Networks (GUNN) 

• Deep Networks keep getting deeper? Why?
• From 5 layers in AlexNet to 1001 layers in ResNet.

• Why are more layers good? Why is depth good?

• Intuition: many layers are good because each new layer introduces 
more nonlinearities (e.g., ReLu’s) and increases the receptive field 
size, which improves performance.

*S. Qiao, Z. Zhang, W. Shen, B. Wang, and A. Yuille. ICML 2018.

Part 2. Deep Network Architectures
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The Standard Deep Net Design

• Deep Nets, e.g., the VGG-network (right) 
consist of a cascade of convolutional 
layers.

• Each layer consists of a set of channels.

• All channels in a layer are updated 
simultaneously based on input from the 
channels in the previous layer.

Part 2. Deep Network Architectures

• Neurons in all channels have same number of non-linearities (e.g., one) 
and same receptive field sizes.
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Why use the Standard Design?

• Suppose that the goal of Deep Nets is to have large “effective depth” 
with many nonlinearities and a large range of receptive field sizes.

• Can we get large effective depth without needing many layers?

• GUNN presents an alternative way to get large effective depth, with  
only a small number of layers, by ordering the channels and updating 
them gradually, so that channels can receive input from their own 
layer.

• This greatly increases the number of nonlinearities and the sizes of the 
receptive fields when we add a new layer.

Part 2. Deep Network Architectures
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Gradually Updated Neural Networks
• Standard DNN: All channels are 

updated simultaneously.
• All channels have the same 

number of  non-linearities and 
receptive field sizes.

Part 2. Deep Network Architectures

• GUNN: The later channels receive input 
from the earlier updated channels

• They have more non-linearities and bigger 
receptive fields.
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GUNN reduces symmetry and overlap singularities

• Deep Nets have hidden symmetries. 
• I.e., there are many equivalent ways to represent the same input output function.
• This is wasteful. Maybe Deep Nets are badly designed?

• These hidden symmetries makes their energy landscape complex, giving 
many equivalent minima which are separated by saddle points. 

• In particular, there are overlap singularities where two neurons “collapse” (compute 
the same function) which causes delays in learning.

• By contrast, GUNN has much fewer symmetries: 
• Because the channels have different non-linearities, and it can be mathematically 

proven (see paper) that overlap singularities are greatly reduced because it is much 
harder for two neurons in GUNN to collapse. 

Part 2. Deep Network Architectures



Computational Cognition, Vision, and Learning

GUNN reduces overlap singularities

• This leads to improved learning
Faster convergence. Better performance.

Part 2. Deep Network Architectures
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GUNN: Results on ImageNet

• Single-crop classification errors (%) on the ImageNet validation set. 
The test size of all the methods is 224 × 224. (∗indicates GUNN.)

Part 2. Deep Network Architectures
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Part 3: Random Forests and Deep Networks
• Random Forests are a very successful for classification. 

• This is like the game of twenty questions.
• You ask a sequence of questions to get the answer.
• Particularly useful if the data is inhomogeneous.

• But what are the questions for an image?
• We can use deep networks to ask the questions.

• Application: Age estimation, but can be applied to survival 
analysis in medicine, and many others.

• Deep Networks can be combined with random forests.
[1] W Shen et al. Label Distribution Learning Forests. NIPS. 2017.
[2] W. Shen et al. Deep Regression Forests for Age Estimation. CVPR 2018.
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A random forest is made from Decision Trees
• A Decision Tree for To ‘play tennis’ or not?

Part 3. Random Forests and Deep Networks
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Application: Age Regression
• How old are they? Both are 40!

• It is hard to estimate people’s age from facial images. 
• Inhomogeneous Data: large variations in facial appearance between people of 

same age. Human faces mature at different rates: bone growth, skin wrinkles, etc.
• We combine deep networks with random regression forests.

Part 3. Random Forests and Deep Networks
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Deep Regression Forests (DRFs)
• We propose Deep Regression Forests (DRFs) – a novel regression algorithm 

inspired by differentiable decision trees (Kontschnieder et al. 2015).
• Differentiable regression forests partitions the data so that each leaf node only has 

to learn a simple regression function.

• This enables the Deep Regression Forest to learn complex regression 
functions.

• The partition is “soft” because the decision trees ( the random forests) 
are differentiable w.r.t. the parameters of the trees.

• The differentiable decision trees (random forests) can be learnt together 
with the convolutional layers. 

Part 3. Random Forests and Deep Networks
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Learning a Differentiable Regression Tree
• Our goal is to learn a probability distribution
• is the probability of reaching leaf node l.
• It depends on parameters       that are the weights of deep networks and 

determine the probability of splits of the differentiable decision tree.
• is the regression probability at each leaf node.
• We learn      and          .

Part 3. Random Forests and Deep Networks
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Experimental Results

• Dataset
• Morph: 55,000 images from 

about 13,000 people

• FGNET: 1002 facial images of 
82 individuals

• CACD: 160,000 facial images 
of 2,000 celebrities

Part 3. Random Forests and Deep Networks
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Summary Deep Regression Forests

• Deep nets can be combined with random forests for regression, 
thereby combining the strengths of both methods.

• This builds on differentiable decision trees (Kontscheider et al. 2015).
• Technically, their work can be extended to this richer class of problems – label 

distribution learning and regression – by observing that their update 
algorithm is a special case of variational bounding.

• This leads to state-of-the-art results on age regression and can be 
applied to many other problems.

Part 3. Random Forests and Deep Networks
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Part 4. Few-Shot Learning
• What if there is too little data available for training? This is called few-shot learning.

• Exploit many-shot learning (standard learning) on a big dataset and few-shot on small 
dataset.

• For example, we know how to recognize many objects – pug, jay, hen – and then we want to 
learn a new object – snail, corgi (Queen of England’s dogs) from a few examples (1 or 5).

• This is probably how children learn. 
• They take a lot of time to start learning. 
• But after they have learnt a critical amount, they learn very fast from very few examples.

*Siyuan Qiao et al. Few-Shot Image Recognition…. CVPR. 2018.



Computational Cognition, Vision, and Learning

Few-Shot Learning for Recognizing Objects
• Training the weights (parameters) 

for many-shot object categories –
e.g., pug, jay, hen-- in a large 
dataset  Dlarge by Deep Networks.

• It is hard to train the weights for 
the few-shot categories -- snail, 
corgi -- in the small dataset  Dfew. 

• We cannot learn the weights 
directly because there is not 
enough data.

Part 4. Few-Shot Learning

Dlarge Dfew
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Few-Shot Learning

• What we know:
i. Activations of the penultimate  Deep 

Net layers for many-shot  categories 
in Dlarge

ii. The final weights (parameters) for 
the multi-shot  categories in Dlarge

iii. The activations of the final Deep Net 
for the few-shot categories in Dfew

• What we need -- the parameters for 
the few-shot categories.
We need the green arrows.

Dlarge Dfew

Part 4. Few-Shot Learning
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Key Idea: Relate the activations to the weights

• We plot the t-SNE of activations (left) and weights (right).
• These plots look very similar. This is surprising, may give insight into 

Deep Networks.
• This suggests that there is a mapping function from activations to 

weights. We learn this mapping by modelling it as a neural network.
• In other words, we train a neural network to predict the parameters 

of another neural network that classifies the few-shot categories.

Part 4. Few-Shot Learning
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Few-Shot Learning Summary

• There is an empirical  relationship between the activations of the 
deep network features at the penultimate level and the weights of 
the decision layer of the network.

• This relationship can be exploited for few-shot learning. 
• We learn the relationship from the big dataset, where we have many 

examples of each category, and apply this relationship to estimate the final 
weights for the categories in the small dataset.

• This significantly improves the state-of-the-art on several few-shot 
datasets. E.g., ImageNet with 900 multi-shot objects and 100 few-
shot objects.

Part 4. Few-Shot Learning
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Unsupervised Deep Networks
• Annotation is very hard for some visual tasks – e.g., optical flow and 

depth estimation.
• For people interested in biology – it seems impossible that 

humans/primates learn from fully supervised data. 
• But recent work trains Deep Networks – e.g., for optical flow – by 

only requiring coarse statistics of the optical flow – e.g., local 
smoothness. Loss function depends on statistics of flow within local 
neighborhoods.

• Similarly can train Deep Networks without supervision to estimate 
rigid depth from ego-motion.

• In short – uses 1980’s computer vision to train Deep Networks.

Part 5: Unsupervised Deep Networks



Computational Cognition, Vision, and Learning

Unsupervised Deep Networks

• Recent work Chenxu Luo et al (Baidu-JHU collaboration). Peng Wang.
• Use unsupervised Deep Networks to learn, and learn to combine, 

different cues:
• (1) Optical Flow
• (2) Structure from Rigid Motion
• (3) Shape-from-X
• Use a Holistic Motion Parser (HMP) to combine these cues – intuition 

3D depth makes prediction for optical flow, inconsistency gives 
“dynamic objects”, structure from motion helps train shape-from-X.
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Unsupervised Deep Networks

• Input: Image Sequences without Annotation.
• Output: Estimated Depth. Estimated Optical Flow. Estimated Object 

Model Mask.
• Evaluation: KITTI dataset – cars driving in streets.
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Unsupervised Deep Networks

• Deep Network Architecture



Computational Cognition, Vision, and Learning

Unsupervised Deep Networks: Summary

• Can use simple 1980’s computer vision models to train Deep 
Networks.  (Smirnakis and Yuille 1994 – similar, but no follow-up).

• Combining different visual cues consistently (“holistically”) leads to 
strong performance. 

• Suggests strategies that a visual system interacting with the 3D world 
might be able to bootstrap itself by unsupervised learning exploiting 
simple assumptions about the world. 

• (David Mumford speculation – in Knill and Richards 1996)
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Part 5: Attacking Deep Networks
• Attacking Deep Networks is a way to understand them and to strengthen 

them.

• Distinction: Local Attacks and Structured Attacks.

• Local Attacks. Very small changes to images can cause a deep network 
to make very big mistakes.

• More Structured Attacks. These are much larger changes to the images. 
Like partially occluding objects. Or changing the viewpoint.
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Attacking Deep Nets for Semantic Segmentation 
and Object Detection
• Deep Nets attacks are not only for classification.

• Attack turns Dogs into Cows.

*Cihang Xie, Jianyu Wang, Zhishuai Zhang et al. ICCV 2017.

Part 5. Attacking Deep Networks
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Attacking Deep Nets for Semantic Segmentation 
and Object Detection
• AN turns Train into Airplane with shape ICCV.
• AN turns blank Image into Bus with shape 2017.

Original image Perturbation Combined image Segmentation
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Part 5. Attacking Deep Networks



Computational Cognition, Vision, and Learning

Defending against adversarial noise
• Defense Strategy:  defeat 

adversarial attacks by 
randomization. 

• Random resizing and 
random padding.

• No additional training or 
fine-tuning, little 
computation, can be used 
in conjunction with other 
defense methods.

• But more recent attacks 
can beat this defense. A 
new Arms Race.

Part 5. Attacking Deep Networks

*Cihang Xie et al. ICLR 2018.
2nd prize among 110 defense teams in NIPS 2017.
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Attacking Deep Networks: Local and Structured

• It is possible that local attacks can be dealt with using defenses which 
strengthen the Deep Network. 

• (E.g., FAIR-JHU team. Cihang Xie et al. 1st place in the Adversarial 
Defense track of the Competition on Adversarial Attacks and Defenses 
2018 (CAAD2018).

• But local adversarial attacks are only the tip of the iceberg.
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More Structured Attacks: Occlusion.
• You can fool the Deep Net by adding occlusion or changing context.

*Jianyu Wang et al. Annals of Mathematical Sciences. 2018.

Part 5. Attacking Deep Networks
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Vehicle Parts with Occlusion: Defend against Occlusion
• Label Parts (e.g., wheel, headlight) on Vehicles.
• Add occlusion at three levels of complexity.
• Can we detect the parts even if the models have been trained without 

any occlusion?
• Yes (partially): two defenses using visual concepts (BMVC 2017, CVPR 

2018).

Part 5. Attacking Deep Networks
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DeepVote
• DeepVote is an end-to-end Deep Network for detecting semantic parts, which is robust 

to occluders and context.
• DeepVote can exploit context if it is helpful, but switch off context if is not. 

*Zhishuai Zhang, Cihang Xie, Jianyu Wang et al. DeepVote… CVPR. 2018.

Part 5. Attacking Deep Networks
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DeepVote: Results

• DeepVote is equivalent to Faster-RCNN (FR) if there is no occlusion.
• DeepVote significantly outperforms FR when there is occlusion.
• All methods are trained without occluded examples.

Part 5. Attacking Deep Networks
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Explaining DeepVote Results

• DeepVote can partially explain its detection results. I.e. the cues that it 
has used to detect the semantic parts.

• Preliminary follow-up work (in progress) gives improved interpretability

Part 5. Attacking Deep Networks
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When is Big Data Not Enough?
Fundamental limits of current methods?
• Limits 1: there are limits to the functions that Deep Nets can learn 

and represent. 
• Limits 2: there are weakness of Deep Nets to adversarial examples 

and other attacks.
• Limits 3: there are limits to annotated datasets and big data.
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Limits to what Deep Nets can represent.
• Ultimately Deep Nets remain “memorization” methods. They 

can store and interpolate between examples. But they cannot, 
as yet, abstract and extrapolate to unseen data. Humans have 
no difficulty recognizing a blue tree, even if they have never 
seen one.

• Deep Nets are very sophisticated regression methods. But, like 
all regression methods, they can only learn some regression 
functions (continuous and discrete). 

• Hard to classify exactly what regression functions can be 
learnt. Intuitively, they are suitable for visual tasks that can 
solved by storing enough templates. Don’t ask the Deep Net to 
do too much.

Limits 1: Deep Net limits
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Limits to what Deep Nets can represent.

• Deep Nets can learn to remember patterns but cannot understand the 
causal rules that generate these patterns.

• Astronomy – Deep Nets could learn to provide a description of the planets 
in solar system (similar to Ptolomy’s Epicycles) but they cannot discover the 
underlying causes of these patterns (Newton’s Laws). Hence they cannot 
generalize knowledge of our solar system to other solar systems.

• For vision: computer graphic models generate images from geometry, 
material properties (reflectance), and viewpoints. Underlying causes.
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Limits to Annotated Datasets
• (1). They bias the research community toward vision problems for which 

there are high-profile annotated datasets. 
• Annotation is easy for some vision tasks – object detection/classification 

(“is there a cat in this box?”) – but hard for others (e.g., depth estimation).
• (2). The image datasets are only partly representative of the complexity of 

natural images. 
• Rare, but important, events may not occur in the datasets – “is there a 

baby in the road”? Or they will occur very infrequently..
• (3). It is impossible to follow the principles of experimental design and vary 

the factors in an experiments systematically.
• E.g., detecting a chair as we vary factors like: (i) viewpoint, (ii) lighting, (iii) 

material properties.
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For some vision tasks datasets may never be 
big enough for current Deep Nets!
• For complex visual problems, the amount of data needed to train and 

test vision algorithms may become exponentially large as the 
complexity of the visual task increases.

• An image can be constructed in a combinatorial number of ways: 
objects, locations, lighting, etc.

• The basic assumptions of Machine Learning will break down. Training 
and test datasets will not be big enough to represent the space of 
images. 



Example:  synthetize images by Computer Graphics

Real Data
(Pascal3D+[2])
~10K images

Synthetic Data
(Rendered from ShapeNet[3])

~2.4M images
(controlled camera pose, object 

models, other parameters at 
random)

58

Limits 3: Limits to Annotated Data



Images from synthesized computer graphics model.

Camera Pose(4):
azimuth
elevation
tilt(in-plane rotation)
distance

Lighting(4):
#light sources
type(point, directive, 
omni)
position
color
...

Texture(1) Material(1) Scene Layout(3):
Background
Foreground
Position(Occlusion)

Suppose we simply sample 103 possibilities of each parameter listed...

Sythesized data: INFINITE image space

59
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Worse if we allow occlusion and construct scence
using multiple objects.

• An object can be occluded in an exponential number of ways.

• An image can be constructed in a combinatorial number of ways: 
objects, locations, lighting, etc.
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Text Captioning: Exponentially Complex?
• Text captioning means giving a text caption to an image (see below).
• Big progress by several groups (including mine), written up in the New York Times.
• But this task is arguably too difficult for complex images..
• There are infinitely many possible images. 20,000 objects, placed in an exponential number of 

configurations, with occlusion, in 1,400 different types of scenes.

• Junhua Mao et al. Deep Captioning… ICLR. 2015.
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Experimental Design: UnrealCV //http:unrealcv.org/

• Using Computer Graphics you can systematically vary the stimulus 
parameters.

• Example 1: Can a Deep Net trained on ImageNet really detect sofas?
Vary lighting and material properties: (W. Qiu & A. Yuille. ECCV. 2016).

• Example 2: Stress-Testing Algorithms: Sensitivity of Stereo algorithms to 
hazard factors such as specularity, textureless regions, etc. Y. Zhang et al. 
3Dvision. 2018.



Virtual Scenes with varying hazardous factors.

● Stress-test stereo algorithms by varying hazardous 
factors. 8 levels for each factor.

63
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When big data and Deep Nets are not enough

• We need new algorithms that can generalize/extrapolate away from 
the training examples. Compositional part models, factorize shape 
and appearance, generative models.

• E.g., recognize an object from novel viewpoint, with novel material 
properties, with unknown occluders.

• We must be able to learn from limited size datasets. But be able to 
test over infinite datasets. 

• Exploit computer graphics data. UnrealCV

• Testing over infinite data is impractical. But we can exploit attacks to 
explore the data by finding the worst examples.

 Let your worst enemy test your algorithm.
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Guidance from Cognitive Science & Neuroscience
• The human visual system is much more flexible and general purpose 

than any computer vision algorithm.
• Humans can generalize to situations they have not seen. 
• They can extrapolate much better than deep networks.
• Humans have causal understanding of images.
• And humans use less than 1 watt for computation.

• Cognitive Science aims at understanding human abilities. 
• It can provide challenges to Computer Vision. Computer Vision should mimic 

human’s cognitive abilities. 
• This will probably require computer vision theories which understand the 

causal structure of the world and the data.

• .

Cognitive Science and Neuroscience
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Conclusion
• Big data and Deep Nets are extremely powerful tools for many vision 

applications. They are, and will be, hugely successful for important 
real world tasks. They are rapidly developing and evolving.

• Risks that AI will soon take over from humans are science fiction. 
Current Deep Nets and Big Data will break down in the face of 
exponential complexity. 

• Developing AI systems with  human-like capabilities will take time. It 
will require  better understanding of human intelligence. AI, Cognitive 
Science, and Neuroscience should develop together.
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