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Introduction to Linear Image Processing

Image Sciences in a nutshell

Image Processing
Image to Image

Imaging
Physics to Image

Computer Graphics
Symbols to Image

Computer Vision
Image to Symbols







Introduction to Linear Image Processing

Image Denoising
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Image Denoising

Key assumption: clean image is smooth
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Moving Average in 2D

Slide Source: S. Seitz
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Moving Average in 2D
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Denoising: first application of averaring filter
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Denoising: tenth application of denoising filter
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Denoising: application of larger box filter
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Weighted averaging
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Weighting kernel

Gaussian function:
2 2
A
202

9o (T,y) =

2702 .

Standard deviation, o: determines spatial support

oc=2
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Moving average
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Gaussian blur
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Image Processing

f= v —=e(f)

image filter image
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Linear Image Processing
nearty 1) (auf + Bh) = o) (f) + B0 (h)
o(Sot] = S
k k

Translation Invariance fc(gj) — f(gj _ C)

Y (f) = (N

Linear, Translation-Invariant (LTI) system
fe(z) —  gr(z)

Zakfk(x —c) — Zakgk(x — ¢)
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Linear Image Processing

f= v —=e(f)

image filter image

%

From time-invariance: useful bases.
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Linear Image Processing

f= v —=e(f)

image filter image

CL()b() (m) —> CL()h() (ZE)
+a1b1(x) — +arhi(x)

+apbr(xr) — +aphg(x)

From time-invariance: useful bases.
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Linear algebra reminder

N
uck
Basis: N linearly independent vectors {Vz’}a 1 = 1, e ooy N

Expansion on basis: W = g CiVi

1, 1=

Orthonormal basis: V;:.V.) = .
(Vi> V) 0, otherwise

Expansion coefficients: <V,,;7 11> — C;

Expansion: u — Z(Vz', u>Vz'

1
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Canonical basis
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Canonical basis for 2D signals

(

n p—
otherwise

Kronecker delta dk n| =
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Canonical basis for 2D signals

(

n p—
otherwise

Kronecker delta dk n| =
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Canonical basis for signals: expansion

Signal expansion: g[n] — Z dek [n]

|dentify terms: 0] []C] — Ck

Rewrite: dk [n] — d[n _ k]
n =20

otherwise

Unit sample function

Sifting property: g[n] — Z g[k]d[n — ]{i]
k
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Canonical basis for signals and LTI filters

unit d[n

din — k

Impulse response
sample

Translation-invariance

Any signal: g[n] —

By linearity:

Y (9) = > _glklhln — k] = g[n] * hn)

Output of any LSI filter for any input:
convolution of input with filter’s impulse response
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Convolution — discrete and continuous

2D convolution sum:

f[nlv n2]

Z g[kla kQ]h[nl — kl) ng — kQ]
k1,k2

g[nlv n2] x h[nla n2]

2D convolution integral:

f(z,y)

// (a,b)h(x — a,y — b)dadb

z,y)
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Linear Image Processing

f= v —=e(f)

image filter image

CL()b() (m) —> CL()h() (ZE)
+a1b1(x) — +arhi(x)

+apbr(xr) — +aphg(x)

From time-invariance: useful bases.
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Associative property & efficiency

Associative Property: f % [g % h] — [f % g] X h

Separability of Gaussian:

>
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Associative property & accuracy
Associative Property: f k [g k h] p— [f *k g] *k h

Derivative of Gaussian:

O
* Iz

approximate
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Associative property & multi-scale processing

Associative Property: f % [g % h] — [f % g] X h

Semi-group property of Gaussian:
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ing kernel

famh &
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Denoising: 10t application of denoising kernel

A
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Distributive property & efficiency
Distributive property: f X

Steerable fliter:  go (5’37 y) —

I % gg = cos(0)(I * gg) + sin(6)(

o [

W. Freeman and E. Adelson, ‘The design and use of steerable filters’, PAMI, 1991
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Linear algebra reminder: eigenvectors
M:NxN

Eigenvectors: MV?L — )\iviy — 1, e

Full-rank, real and symmetric: eigenbasis

u= Z(Vk,u> Vi

N——
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Eigenvectors and eigenfunctions

Eigenvector: MV — )\V

Eigenfunction:
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Eigenfunctions for LTI filters

LTifitter: 4 (g) [n] = ) h[k]g[n — K]
K

Let's guess: by, [n] = exp (jwn) = cos(wn) + j sin(wn)

ltworks: ¢ (by,) [n] = Z h{nlb,|n — k]
k
— 3" Al exp (ol — K)
k

— Z hlk] exp (—jwk) exp (jwn)
k

= H(w)by,|n]

Frequency response: H(w) = th] exp (—jwk)
k
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Expansion on harmonic basis

From orthonormality: 11 — E <11, Vk>Vk
k

Inner product for complex functions: <f, g> —

Discrete-time: F(w) — <f; bw> —

Continuous-time: F (CU) .
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Change of basis

Canonical expansion: u E Ur€r
k

Eigenbasis expansion: u

Rotation matrix from eigenbasis:
T T [

C =1u Vl‘...‘VN]

V

Fourier transform: change of basis
Rotation from canonical basis to eigenfunction basis
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Fourier Analysis
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Fourier synthesis equation

Continuous-time;

1 R e .
flz,y) = 4—7T2/ / F(w, wo)ed 1z +w2e) doqy,

Discrete-time:

1 27 27 .
f[na m] — m / / F(wl,wg)ej(wan“wzm)dwldwg
0 0
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Convolution theorem of Fourier transform

Input expansion: / F(w)ejwndw
w

Output: / F(w)w (ewn) dew

w
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Linear Image Processing

f= v —=e(f)

image filter image

CL()b() (m) —> CL()h() (ZE)
+a1b1(x) — +arhi(x)

+apbr(xr) — +aphg(x)

From time-invariance: useful bases.
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Convolution theorem

Fourier Analysis Fourier Synthesis

Y(w) = H(w)X(w)




Introduction to Linear Image Processing

Convolution theorem and efficiency

Fast Fourier Transform Fast Fourier Transform
Y(w)=Hw)X(w)
O(NK) — O(NlogN)
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Moving average

Frequency
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Modulation property and Gabor filters

Modulation property: f(il?) < F(UJ)

f(x2)e?Y® = F(w — w,)

- 1 2 (wi4w?)o?
Gaussian: s e 5

Frequency
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Modulation property and Gabor filters

Modulation property: f(il?) < F(w)

f(x2)e?Y® = F(w — w,)

- 1 22 4y2 (wg—kwg)aQ
Gaussian: 302 LS e 5

(& 202
QT2
1 22442 ., . . 02 ((wg—wS)2 4 (wy —wS)?)
Gabor: ﬁe_ 502 'ej(wwx—l-wyy) e 5 Y
O

Time ‘, Frequency
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2D Gabor filterbank

Consider many combinations of |w| and  Zw

Frequency responce

isocurves

Vertical Frequency

Horizontal Frequency
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2D Gabor filterbank and texture analysis
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2D Gabor filterbank and texture analysis
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Summary

Linear Time-Invariant filters
Convolution

Fourier Transform
(Derivative-of) Gaussian filters
Steerable filters

Gabor filters

Thursday’s lecture: Pyramids, Scale-Invariant Blobs/Ridges, SIFT,
HOG, Log-polar features, Harmonic analysis on surfaces...

Further reading:

Fast recursive filters:
Recursively implementing the Gaussian and its Derivatives - R. Deriche, 1993

Recursive implementation of the Gaussian filter. |. Young, L. Vliet, 1995
Fast IIR Isotropic 2D Complex Gabor Filters with Boundary Initialization,
A Bernardino, J. Santos-Victor, TIP, 2006

Wavelets:
A Wavelet Tour of Signal Processing, S. Mallat, 2008




