
Linear filtering and basis functions (I)

I We put these models into the context of the literature on linear filtering
and Fourier analysis. This is an advanced section that gives greater
understanding but is not required for a basic introduction.

I As discussed earlier, simple cell models apply linear filters to images and
cells at different spatial locations, performing convolution ∗ by applying
the same filter ~w across the image:

S(~x) = ~w ∗ I (~x) =
∑
~y

w(~x − ~y)I (~y).

I It is also convenient to approximate this (take the continuum limit) and
express it as an integral:

S(~x) =

∫
~y

w(~x − ~y)I (~y)d~y .

I This continuum limit is a good approximation, if the summation
∑
~y is

over a dense set of positions ~y , and enables certain type of analysis (e.g.,
showing that a center-surround cell model sums, approximately, to zero).



Convolving by a Gaussian and derivatives of a Gaussian

Convolving an image by a linear filter produces an output image S(~x) whose
form depends on the type of filter ~w . For example, if w(~x) is a Gaussian
function G(~x ;σ) = 1

2πσ2 exp{−(x2
1 + x2

2 )/(2σ2)}, then convolution effectively
just smooths the image by taking a linear weighted average. If ~w is a derivative
of the Gaussian in the x1 direction, w(~x) = d

dx1
G(~x ;σ), then this filter gives a

large response to edges, positions ~y where the intensity I (~y) changes abruptly,
and has small responses in places where the image intensity changes slowly.



Linear filtering, basis functions: Fourier analysis (I)

We can better understand images, and linear filtering, by using functional
analysis. This states that an image, or any signal, can be expressed uniquely as
a weighted sum of basis functions:

I (~x) =
∑

i

αi bi (~x), (1)

where the bi (~x) are basis functions and the {αi} are coefficients. These basis
functions are usually chosen to be orthonormal, so that

∑
~x bi (~x)bj (~x) = δij

(= 1 if i = j and = 0 if i 6= j). If the basis functions are orthogonal, then the
coefficients α can be obtained by:

αi =
∑
~x

I (~x)bi (~x). (2)



Superposition

I The principle of superposition states that we can determine the output S
as a weighted combination of the outputs of the basis functions:

S(~x) =
∑

i

αi Si (~x), where Si (~x) =
∑
~y

w(~x − ~y)bi (~y). (3)

I This implies that if we know the response Si (.) to each basis function
bi (.), then we can predict the response to any input. This is an attractive
property that if it holds, enables us to measure the receptive field of a
linear neuron, or a thresholded linear neuron, from a limited set of stimuli.



Linear filtering, basis functions: Fourier analysis (II)

Fourier analysis deals with a special class of basis functions. These are
sinusoids, i.e., of form sinωx , cosωx . The α’s are the fourier transform of the
image. If we restrict ourselves to an image defined on a lattice (i.e., so that
x1, x2 each take a finite number of values, as on a digital camera), then this is
the discrete fourier transform. But if we allow x1, x2 to take continuous values,
then we get the fourier transform:

I (~x) =
1

2π

∫
Î (~ω) exp{−i~ω · ~x}d~ω (4)

Î (~ω) =
1

2π

∫
I (~x) exp{i~ω · ~x}d~x (5)

Here exp{i~ω · ~x} = cos(~ω · ~x) + i sin(~ω · ~x). Note that if I (.) is symmetric,
I (~x) = I (−~x), then Î (~ω) is also symmetric, Î (−~ω) = Î (~ω). Observe that
equations (4, 5) correspond to equations (1, 2) for special choices of the basis
functions (and changing from discrete to continuous ~x).



Linear filtering, basis functions: Fourier analysis (III)

Fourier analysis is particularly important because it gives us a way to represent
nonlocal structure of images in terms of frequencies ω. The high frequencies
(large |~ω|) represent image patterns that change rapidly, while the lower
frequencies (small |~ω|) represent slowly changing patterns. In particular, if an
image pattern is periodic, like the stripes on a zebra, then it can be expressed
in form:

I (~x) =
∑

n

An cos(2πn~ω0 · ~x),

where ~ω0 is the basic frequency and n denotes integers. Then the Fourier
transform is only nonzero at integer multiples of the basic frequency ~ω = ~ω0.
Hence periodic image patterns, such as textures, have very simple descriptions
in Fourier space.



Linear filtering, basis functions: Fourier analysis (IV)

I If we blur the image, by convolving with a Gaussian G(~x ;σ), to obtain

G ∗ I (~x), then the high frequencies of the image ~I will be smoothed out.
By the convolution theorem, the Fourier transform of G ∗ I (~x) is the

product of the Fourier transforms of G and ~I . The F.T. of a Gaussian is
also a Gaussian exp{−|~ω|2(σ2/2)}. Hence we can express the convolved
image as a weighted combination of sinusoids, where the high-frequency
weights are decreased by exp{−|~ω|2(σ2/2)}:

~I (~x) =
1

2π

∫
Î (~ω) exp{−i~ω · ~x} exp{−|~ω|2(σ2/2)}d~ω.

I If we increase the blurring, by increasing the variance σ2, we will make the
high-frequency coefficients small. Blurring the image can be obtained by
defocusing your eyes so that the image is seen out of focus. The receptive
fields of cells occurs at a range of different scales, corresponding to
convolving with Gaussians of different variances.



Linear filtering, basis functions: Fourier analysis (V)

The superposition principle, combined with the use of basis functions, shows
that we can determine the receptive fields of linear neurons by stimulating
them with sinusoids. Sinusoids can be used as basis functions, and
superposition can be used to predict the response to stimuli that have not been
seen yet (i.e., as superpositions of those stimuli to which the response is
known). This, however, is rarely done.


