
Bayes Decision Theory

Chenxi Liu

2018/09/20

!1



Guessing a lady’s age

• You asked a girl “What’s your age?”


• She said “What’s your guess?”


• Somehow you have narrowed down to 
either 20 or 30. Which one should you 
answer?
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What factors help you decide?

• Cue 1: Appearance (for simplicity, just consider eye size as single feature)


• Cue 2: Prior knowledge about age distribution


• Cue 3: Reward/penalty if you got the answer correct/wrong
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Edge detection 

• For every pixel in the image, you would like 
to classify if it is edge or not
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Edge detection
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changes	caused	by	
texture	patterns textures

changes	correspond	to	
object	boundaries



What factors help you decide?

• Cue 1: Appearance (filter response discussed in last lecture)


• Cue 2: Prior knowledge about edge percentage


• Cue 3: Reward/penalty if you got the answer correct/wrong
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Same framework for both

• These two scenarios are actually very similar in nature: we want to make 
the “optimal” decision!


• Bayes decision theory is a framework for making optimal decisions in the 
presence of uncertainty
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Notations
• Input:              (e.g. features/filter responses of the image)


• Output:              (e.g. +1 for 20 years old/edge is present; -1 for 30 years 
old/edge is not present)


• A probability distribution            generates the input and output


• A decision rule


• Loss function                captures the cost of making decision        if the 
real answer is 

x ∈ 𝒳

y ∈ 𝒴

P(x, y)

̂y = α(x)

L(α(x), y) α(x)
y
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Notations

• The risk is specified by 


• The Bayes rule is 


• The Bayes risk is

R(α) = ∑
x,y

P(x, y)L(α(x), y)

α̂ = arg min
α

R(α)

min
α

R(α) = R(α̂)
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Deriving Bayes decision rule

• Usually we don’t have the explicit distribution       ; instead, we have a 
limited number of samples sampled from this distribution


• Therefore, in practice we minimize the following empirical risk:

P(x)

R̂(α) =
1
m

m

∑
i=1

∑
y

P(y |xi)L(α(xi), y) xi ∼ P(x)
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Deriving Bayes decision rule

• This basically means for every     that we see, we wish to minimize the risk 
it invokes


• Therefore, the “optimal” decision rule is:

xi

∑
y

P(y |xi)L(α(xi), y)

α̂(xi) = arg min
α ∑

y

P(y |xi)L(α(xi), y) = arg min
α ∑

y

P(xi |y)P(y)L(α(xi), y)
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Binary decision problems

• Four possibilities:


• The expected “risk” of predicting 1:


• The expected “risk” of predicting -1:

L(α(x) = 1,y = 1) = Tp

L(α(x) = 1,y = − 1) = Fp

L(α(x) = − 1,y = 1) = Fn

L(α(x) = − 1,y = − 1) = Tn

TpP(y = 1 |x) + FpP(y = − 1 |x)

FnP(y = 1 |x) + TnP(y = − 1 |x)
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Binary decision problems
• We should predict 1 instead of -1 when its expected “risk” is smaller:

TpP(y = 1 |x) + FpP(y = − 1 |x) < FnP(y = 1 |x) + TnP(y = − 1 |x)

(Fn − Tp)P(y = 1 |x) > (Fp − Tn)P(y = − 1 |x)

P(y = 1 |x)
P(y = − 1 |x)

>
Fp − Tn

Fn − Tp

P(x |y = 1)P(y = 1)
P(x |y = − 1)P(y = − 1)

>
Tn − Fp

Tp − Fn

P(x |y = 1)
P(x |y = − 1)

>
Tn − Fp

Tp − Fn

P(y = − 1)
P(y = 1)
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Binary decision problems

• Log-likelihood ratio test:


• The intuition is that the evidence in the log-likelihood must be bigger than 
our prior biases while taking into account the penalties paid for different 
types of mistakes

log
P(x |y = 1)

P(x |y = − 1)
> log

Tn − Fp

Tp − Fn
+ log

P(y = − 1)
P(y = 1)
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Guessing a lady’s age
• Cue 1: Appearance


• Given she is 20 years old (+1), the 
probability of the observed eye size is 
30%; Given she is 30 years old (-1), this 
probability is 20%.


• Cue 2: Prior knowledge about age 
distribution


• Suppose there was a baby boom 30 
years ago; so in the current female 
population, 30% are age 30 and only 
20% are age 20.

!15



Guessing a lady’s age

• Cue 3: Reward/penalty if you got the 
answer correct/wrong


• If you guessed right, perfect, no hard 
feelings


• If you guessed 20 and the truth is 30, 
you pay a small cost


• If you guessed 30 and the truth is 20, 
you pay a BIG cost
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Guessing a lady’s age

• Recall: you should predict 1 (20 years old) 
instead of -1 (30 years old) when the 
following holds:


• Indeed,

P(x |y = 1)
P(x |y = − 1)

>
Tn − Fp

Tp − Fn

P(y = − 1)
P(y = 1)

0.3
0.2

>
0 − 1

0 − 100
0.3
0.2
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Special case 1: MAP

• If the loss function penalizes all errors by the same amount, 


• then the Bayes rule corresponds to the maximum a posteriori estimator 

L(α(x), y) = K1 α(x) ≠ y

L(α(x), y) = K2 α(x) = y

α(x) = arg max
y

P(y |x)
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Special case 1: MAP

• In binary decision problems, this means we should predict 1 instead of -1 
when


• In n-class setting, if                      , then the “risk” of choosing class j is

P(y = 1 |x)
P(y = − 1 |x)

>
Fp − Tn

Fn − Tp
= 1

K1 = 1,K2 = 0

∑
y

P(y |x)L(α(x), y) = ∑
y≠j

P(y |x) = 1 − P(y = j |x)

α(x) = arg min
y

(1 − P(y |x)) = arg max
y

P(y |x)
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Special case 2: MLE

• If, in addition, the prior is a uniform distribution, 


• then Bayes rule reduces to the maximum likelihood estimate 

P(y) = C ∀y

α(x) = arg max
y

P(x |y)

!20



Edge detection

• We have derived that we should predict a 
pixel is edge (1) instead of non-edge (-1) 
when  
 
 
 
 
 
 

log
P(x |y = 1)

P(x |y = − 1)
> log

Tn − Fp

Tp − Fn
+ log

P(y = − 1)
P(y = 1)

= T
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Edge detection
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Edge detection

• We have derived that we should predict a 
pixel is edge (1) instead of non-edge (-1) 
when 


• But what if we don’t want to pick exact 
values for penalties                      ?

log
P(x |y = 1)

P(x |y = − 1)
> log

Tn − Fp

Tp − Fn
+ log

P(y = − 1)
P(y = 1)

= T

Tn, Fp, Tp, Fn
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Edge detection

• When the threshold is small:


• Very easy to predict pixel as edge


• High true positive rate (close to 1); High 
false positive rate (close to 1)


• When the threshold is large:


• Very hard to predict pixel as edge


• Low true positive rate (close to 0); Low 
false positive rate (close to 0)

log
P(x |y = 1)

P(x |y = − 1)
> T
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ROC curve

• The receiver operating characteristic (ROC) 
curve tries to capture this trade-off between 
true positive rate and false positive rate


• Which point corresponds to very small/
large threshold? 


• Which curve is the best?
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Take-home messages

• You probably already knew it is wise to guess a younger age…


• But now you can explain your action under Bayes decision theory!


• And pretty much the same thing goes on for edge detection and a lot 
other computer vision and machine learning tasks


• We have mostly focused on binary classification, but straightforward 
extensions exist for multi-way classification
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