Bayes Decision Theory

Chenxi Liu

2018/09/20

Guessing a lady's age

- You asked a girl "What's your age?"
- She said "What's your guess?"
- Somehow you have narrowed down to either 20 or 30 . Which one should you answer?

What factors help you decide?

- Cue 1: Appearance (for simplicity, just consider eye size as single feature)
- Cue 2: Prior knowledge about age distribution
- Cue 3: Reward/penalty if you got the answer correct/wrong

Edge detection

- For every pixel in the image, you would like to classify if it is edge or not

Edge detection

What factors help you decide?

- Cue 1: Appearance (filter response discussed in last lecture)
- Cue 2: Prior knowledge about edge percentage
- Cue 3: Reward/penalty if you got the answer correct/wrong

Same framework for both

- These two scenarios are actually very similar in nature: we want to make the "optimal" decision!
- Bayes decision theory is a framework for making optimal decisions in the presence of uncertainty

Notations

- Input: $x \in \mathscr{X}$ (e.g. features/filter responses of the image)
- Output: $y \in \mathscr{Y}$ (e.g. +1 for 20 years old/edge is present; -1 for 30 years old/edge is not present)
- A probability distribution $P(x, y)$ generates the input and output
- A decision rule $\hat{y}=\alpha(x)$
- Loss function $L(\alpha(x), y)$ captures the cost of making decision $\alpha(x)$ if the real answer is y

Notations

- The risk is specified by $R(\alpha)=\sum_{x, y} P(x, y) L(\alpha(x), y)$
- The Bayes rule is $\hat{\alpha}=\arg \min R(\alpha)$
- The Bayes risk is $\min _{\alpha} R(\alpha)=R(\hat{\alpha})$

Deriving Bayes decision rule

- Usually we don't have the explicit distribution $P(x)$; instead, we have a limited number of samples sampled from this distribution
- Therefore, in practice we minimize the following empirical risk:

$$
\hat{R}(\alpha)=\frac{1}{m} \sum_{i=1}^{m} \sum_{y} P\left(y \mid x_{i}\right) L\left(\alpha\left(x_{i}\right), y\right) \quad x_{i} \sim P(x)
$$

Deriving Bayes decision rule

- This basically means for every x_{i} that we see, we wish to minimize the risk it invokes $\sum P\left(y \mid x_{i}\right) L\left(\alpha\left(x_{i}\right), y\right)$
- Therefore, the "optimal" decision rule is:

$$
\hat{\alpha}\left(x_{i}\right)=\arg \min _{\alpha} \sum_{y} P\left(y \mid x_{i}\right) L\left(\alpha\left(x_{i}\right), y\right)=\arg \min _{\alpha} \sum_{y} P\left(x_{i} \mid y\right) P(y) L\left(\alpha\left(x_{i}\right), y\right)
$$

Binary decision problems

- Four possibilities:

$$
\begin{array}{ll}
L(\alpha(x)=1, y=1)=T_{p} & L(\alpha(x)=-1, y=1)=F_{n} \\
L(\alpha(x)=1, y=-1)=F_{p} & L(\alpha(x)=-1, y=-1)=T_{n}
\end{array}
$$

- The expected "risk" of predicting 1: $T_{p} P(y=1 \mid x)+F_{p} P(y=-1 \mid x)$
- The expected "risk" of predicting -1: $\quad F_{n} P(y=1 \mid x)+T_{n} P(y=-1 \mid x)$

Binary decision problems

- We should predict 1 instead of -1 when its expected "risk" is smaller:

$$
\begin{gathered}
T_{p} P(y=1 \mid x)+F_{p} P(y=-1 \mid x)<F_{n} P(y=1 \mid x)+T_{n} P(y=-1 \mid x) \\
\left(F_{n}-T_{p}\right) P(y=1 \mid x)>\left(F_{p}-T_{n}\right) P(y=-1 \mid x) \\
\frac{P(y=1 \mid x)}{P(y=-1 \mid x)}>\frac{F_{p}-T_{n}}{F_{n}-T_{p}} \\
\frac{P(x \mid y=1) P(y=1)}{P(x \mid y=-1) P(y=-1)}>\frac{T_{n}-F_{p}}{T_{p}-F_{n}} \\
\frac{P(x \mid y=1)}{P(x \mid y=-1)}>\frac{T_{n}-F_{p}}{T_{p}-F_{n}} \frac{P(y=-1)}{P(y=1)}
\end{gathered}
$$

Binary decision problems

- Log-likelihood ratio test:

$$
\log \frac{P(x \mid y=1)}{P(x \mid y=-1)}>\log \frac{T_{n}-F_{p}}{T_{p}-F_{n}}+\log \frac{P(y=-1)}{P(y=1)}
$$

- The intuition is that the evidence in the log-likelihood must be bigger than our prior biases while taking into account the penalties paid for different types of mistakes

Guessing a lady's age

- Cue 1: Appearance
- Given she is 20 years old $(+1)$, the probability of the observed eye size is 30%; Given she is 30 years old (-1), this probability is 20%.
- Cue 2: Prior knowledge about age distribution
- Suppose there was a baby boom 30 years ago; so in the current female population, 30% are age 30 and only
 20% are age 20.

Guessing a lady's age

- Cue 3: Reward/penalty if you got the answer correct/wrong
- If you guessed right, perfect, no hard feelings
- If you guessed 20 and the truth is 30 , you pay a small cost
- If you guessed 30 and the truth is 20, you pay a BIG cost

Guessing a lady's age

- Recall: you should predict 1 (20 years old) instead of -1 (30 years old) when the following holds:

$$
\frac{P(x \mid y=1)}{P(x \mid y=-1)}>\frac{T_{n}-F_{p}}{T_{p}-F_{n}} \frac{P(y=-1)}{P(y=1)}
$$

- Indeed,

$$
\frac{0.3}{0.2}>\frac{0-1}{0-100} \frac{0.3}{0.2}
$$

Special case 1: MAP

- If the loss function penalizes all errors by the same amount,

$$
\begin{array}{ll}
L(\alpha(x), y)=K_{1} & \alpha(x) \neq y \\
L(\alpha(x), y)=K_{2} & \alpha(x)=y
\end{array}
$$

- then the Bayes rule corresponds to the maximum a posteriori estimator

$$
\alpha(x)=\arg \max P(y \mid x)
$$

Special case 1: MAP

- In binary decision problems, this means we should predict 1 instead of -1 when

$$
\frac{P(y=1 \mid x)}{P(y=-1 \mid x)}>\frac{F_{p}-T_{n}}{F_{n}-T_{p}}=1
$$

- In n-class setting, if $K_{1}=1, K_{2}=0$, then the "risk" of choosing class j is

$$
\begin{gathered}
\sum_{y} P(y \mid x) L(\alpha(x), y)=\sum_{y \neq j} P(y \mid x)=1-P(y=j \mid x) \\
\alpha(x)=\arg \min _{y}(1-P(y \mid x))=\arg \max _{y} P(y \mid x)
\end{gathered}
$$

Special case 2: MLE

- If, in addition, the prior is a uniform distribution,

$$
P(y)=C \quad \forall y
$$

- then Bayes rule reduces to the maximum likelihood estimate

$$
\alpha(x)=\arg \max P(x \mid y)
$$

y

Edge detection

- We have derived that we should predict a pixel is edge (1) instead of non-edge (-1) when

$$
\log \frac{P(x \mid y=1)}{P(x \mid y=-1)}>\log \frac{T_{n}-F_{p}}{T_{p}-F_{n}}+\log \frac{P(y=-1)}{P(y=1)}=T
$$

Edge detection

Figure 21: The probability of filter responses conditioned on whether the filter is on or off an edge $-P(f \mid y=1), P(f \mid y=-1)$, where $f(x)=|\vec{\nabla} I(x)|$. Left: The probability distributions learned from a data set of images. Right: The smoothed distributions after fitting the data to a parametric model.

Edge detection

- We have derived that we should predict a pixel is edge (1) instead of non-edge (-1) when

$$
\log \frac{P(x \mid y=1)}{P(x \mid y=-1)}>\log \frac{T_{n}-F_{p}}{T_{p}-F_{n}}+\log \frac{P(y=-1)}{P(y=1)}=T
$$

- But what if we don't want to pick exact values for penalties $T_{n}, F_{p}, T_{p}, F_{n}$?

Edge detection

$$
\log \frac{P(x \mid y=1)}{P(x \mid y=-1)}>T
$$

- When the threshold is small:
- Very easy to predict pixel as edge
- High true positive rate (close to 1); High false positive rate (close to 1)
- When the threshold is large:
- Very hard to predict pixel as edge
- Low true positive rate (close to 0); Low false positive rate (close to 0)

ROC curve

- The receiver operating characteristic (ROC) curve tries to capture this trade-off between true positive rate and false positive rate
- Which point corresponds to very small/ large threshold?
- Which curve is the best?

Take-home messages

- You probably already knew it is wise to guess a younger age...
- But now you can explain your action under Bayes decision theory!
- And pretty much the same thing goes on for edge detection and a lot other computer vision and machine learning tasks
- We have mostly focused on binary classification, but straightforward extensions exist for multi-way classification

