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We can claim that we know what the visual system does once we can predict neural responses to arbitrary stimuli, including those seen in
nature. In the early visual system, models based on one or more linear receptive fields hold promise to achieve this goal as long as the
models include nonlinear mechanisms that control responsiveness, based on stimulus context and history, and take into account the
nonlinearity of spike generation. These linear and nonlinear mechanisms might be the only essential determinants of the response, or
alternatively, there may be additional fundamental determinants yet to be identified. Research is progressing with the goals of defining a
single “standard model” for each stage of the visual pathway and testing the predictive power of these models on the responses to movies
of natural scenes. These predictive models represent, at a given stage of the visual pathway, a compact description of visual computation.
They would be an invaluable guide for understanding the underlying biophysical and anatomical mechanisms and relating neural
responses to visual perception.
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The ultimate test of our knowledge of the visual system is predic-
tion: we can say that we know what the visual system does when
we can predict its response to arbitrary stimuli. How far are we
from this end result? Do we have a “standard model” that can
predict the responses of at least some early part of the visual
system, such as the retina, the lateral geniculate nucleus (LGN),
or primary visual cortex (V1)? Does such a model predict re-
sponses to stimuli encountered in the real world?

A standard model existed in the early decades of visual neuro-
science, until the 1990s: it was given by the linear receptive field.
The linear receptive field specifies a set of weights to apply to
images to yield a predicted response. A weighted sum is a linear
operation, so it is simple and intuitive. Moreover, linearity made
the receptive field mathematically tractable, allowing the fruitful
marriage of visual neuroscience with image processing (Robson,
1975) and with linear systems analysis (De Valois and De Valois,
1988). It also provided a promising parallel with research in vi-
sual perception (Graham, 1989). Because it served as a standard
model, the receptive field could be used to decide which findings
were surprising and which were not: if a phenomenon was not
predictable from the linear receptive field, it was particularly wor-
thy of publication.

Research aimed at testing the linear receptive field led to the
discovery of important nonlinear phenomena, which cannot be
explained by a linear receptive field alone. These phenomena

have been discovered at all stages of the early visual system, in-
cluding the retina (for review, see Shapley and Enroth-Cugell,
1984; Demb, 2002), the LGN (for review, see Carandini, 2004),
and area V1 (for review, see Carandini et al., 1999; Fitzpatrick,
2000; Albright and Stoner, 2002). They have forced a revision of
the models based on the linear receptive field. In some cases, the
revised models have achieved near standard model status, for
example, the model of Shapley and Victor for contrast gain con-
trol in retinal ganglion cells (Shapley and Victor, 1978; Victor,
1987) and Heeger’s normalization model of V1 responses (Hee-
ger, 1992a). By and large, however, the discovery of failures of the
linear receptive field has deprived the field of a simple standard
model for each visual stage.

This review aims to help move the field toward the definition
of new standard models, bringing the practice of visual neuro-
science closer to that of established quantitative fields such as
Physics. In these fields, there is wide agreement as to what con-
stitutes a standard theory and which results should be the source
of surprise.

The review is authored by the speakers and organizers of a
mini-symposium at the 2005 Annual Meeting of the Society for
Neuroscience. We are all involved in a similar effort: we construct
models of neurons and test how accurately they predict the re-
sponses to both simple laboratory stimuli and complex stimuli
such as those that would be encountered in nature. How accurate
are the existing models when held to a rigorous test? By what
standards should we judge them? Do they generalize to large
classes of stimuli? How should the models be revised?

The review is organized along the lines of the mini-
symposium, with each speaker addressing the question “Do we
understand visual processing?” at one or more stages of the visual
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hierarchy. We begin with Background, in which we summarize
some notions that are at the basis of most functional models in
early vision. Demb follows with an evaluation of standard models
of the retina (see below, Understanding the retinal output). Mante
formalizes an extension to the linear model of LGN neurons to
account for luminance and gain control adaptation effects (see
below, Understanding LGN responses). The successes and failures
of cortical models are addressed by Tolhurst (see below, Under-
standing V1 simple cells) and Dan (see below, Understanding V1
complex cells). Gallant discusses novel model characterization
techniques and their degree of success in areas V1 and V4 (see
below, Evaluating what we know about V1 and beyond). Finally,
Olshausen argues that our understanding of V1 is far from com-
plete and proposes future avenues for research (see below, What
we don’t know about V1). In Conclusion, we isolate some of the
common ideas and different viewpoints that have emerged from
these contributions.

Background
At the basis of most current models of neurons in the early visual
system is the concept of linear receptive field. The receptive field
is commonly used to describe the properties of an image that
modulates the responses of a visual neuron. More formally, the
concept of a receptive field is captured in a model that includes
a linear filter as its first stage. Filtering involves multiplying the
intensities at each local region of an image (the value of each
pixel) by the values of a filter and summing the weighted image
intensities. A linear filter describes the stimulus selectivity for a
neuron: images that resemble the filter produce large responses,
whereas images that have only a small resemblance with the filter
produce negligible responses. For example, tuning for the spatial
frequency of a drifting grating is described by the center–sur-
round organization of filters in the retina and LGN (Fig. 1A)
(Enroth-Cugell and Robson, 1966), whereas orientation tuning
in V1 is described by filters that are elongated along one spatial
axis (Fig. 1B) (Hubel and Wiesel, 1962).

Basic models of neurons at the earliest stages of visual process-
ing (retina, LGN, and V1 simple cells) typically include a single
linear filter (Enroth-Cugell and Robson, 1966; Movshon et al.,
1978b), whereas models of neurons at later stages of processing
(V1 complex cells and beyond) require multiple filters (Fig. 1C)
(Movshon et al., 1978b; Adelson and Bergen, 1985; Touryan et
al., 2002).

The second stage of these models describes how the filter out-
puts are transformed into a firing rate response. This transforma-
tion typically takes the form of a static nonlinearity (e.g., half-
wave rectification), a function that depends only on its
instantaneous input. In addition, many models implicitly assume
that firing rate is expressed into spike trains via a Poisson process.

Although the receptive field has been described thus far as a set
of weights arranged in space (Fig. 1), in reality, the concept of
receptive field involves three dimensions: two dimensions of
space and the dimension of time. The full spatiotemporal recep-
tive field of a neuron specifies what weight is given to each loca-
tion in space at each instant in the recent past. When only the
temporal evolution of the response is considered for a given spa-
tial position (Fig. 2), the receptive field is commonly referred to as
a temporal weighting function.

Whether they are specified in space, time, or jointly in space
and time, receptive fields are typically endowed with ON and OFF
subfields (Fig. 1, white and black regions). An ON region is one in
which a bright light evokes a positive response and a dark light
evokes a negative response. An OFF region does the opposite. In

the early days, these regions were called “excitatory” and “inhib-
itory” (Hubel and Wiesel, 1962). However, this name is mislead-
ing: their sign has to do with the relative contrast of light, not to
the operation of synaptic excitation and inhibition. For instance,
an OFF region will deliver substantial excitation in response to a
dark stimulus (Hirsch, 2003).

The advantage of assuming an initial linear processing stage is
that it enables the experimenter to recover a full model of a neu-
ron within the time constraints of an experiment. Recovering the
filter weights involves presenting a sufficiently rich stimulus set to
the cell (e.g., white noise, flashed gratings, or natural images) and
correlating the response of the neuron with the pixel intensities in
the images that immediately preceded spikes. For neurons early
in the visual system, a single linear filter is often extracted by
presenting a random noise stimulus and computing the mean
pixel intensity before each spike, the spike-triggered average

Figure 1. Basic models of neurons involved in early visual processing. In all models, the
response of a neuron is described by passing an image through one or more linear filters (by
taking the dot product or projection of an image and a filter). The outputs of the linear filters are
passed through an instantaneous nonlinear function, plotted here as firing rate on the ordinate
and filter output on the abscissa. A, Simple model of a retinal ganglion cell or of an LGN relay
neuron. The model includes a linear filter (receptive field) with a center–surround organization
and a half-wave rectifying nonlinearity. Images that resemble the filter produce large firing rate
responses, whereas images that resemble the inverse of the filter or have no similarity with the
filter produce no response. B, Model of a V1 simple cell as a filter elongated along one axis and
a half-wave squaring nonlinearity. As in A, only images that resemble the filter produce high
firing rate responses. C, The energy model of a V1 complex cell. The model includes two phase-
shifted linear filters whose outputs are squared before they are summed. In this model, both
images that resemble the filters and their inverses produce high firing rates.
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(Chichilnisky, 2001). Similar approaches are followed in the sec-
tions below on the retina, lateral geniculate nucleus, and V1 sim-
ple cells. At later stages of visual processing, the responses of
multiple linear filters can be accounted for by looking at the
higher-order correlations between random stimuli and the re-
sponse of a neuron (Simoncelli et al., 2004). This is the approach
followed below in Understanding V1 complex cells. Novel nonlin-
ear mapping techniques provide a bridge between these ap-
proaches (see below, Evaluating what we know about V1 and
beyond).

Understanding the retinal output
The retina contains a complex network of cells, divided into an
estimated �60 – 80 cell types: 3– 4 photoreceptors, �40 –50 in-
terneurons, and �15–20 ganglion cells, whose spike trains trans-
mit visual information to the rest of the brain (Masland, 2001;
Sterling and Demb, 2004; Wässle, 2004). No predictive model
will suffice for all types of ganglion cell, because some cells have
“conventional” center–surround receptive fields (Fig. 1A) (Kuf-
fler, 1953; Enroth-Cugell and Robson, 1966), whereas others
have specialized properties, including direction selectivity and
intrinsic photosensitivity (Berson, 2003; Taylor and Vaney, 2003;
Dacey et al., 2005). As a starting point, predictive models have
focused on four ganglion cell types: the ON- and OFF-center
versions of sustained (X/parvocellular type) and transient (Y/
magnocellular type) cells. These four cell types express relatively
simple receptive fields, they project via the LGN to visual cortex,
and they can, with some caveats, be modeled in a relatively
straightforward way. For the purpose of the predictive models in
question, we could ignore all of the complexity of retinal cir-
cuitry; the goal is simply to achieve a thorough understanding of
how light at the cornea corresponds to spiking responses in the
ganglion cell.

Perhaps surprisingly, most retinal studies have not attempted
to “go all the way” and predict responses to natural movies, but
rather they have focused on a simple dynamic laboratory stimu-
lus: white noise. A white-noise stimulus is created by drawing
intensity values from a Gaussian distribution, defined by a mean
and an SD of intensity, every �10 –20 ms (Fig. 2). White noise
contains approximately equal energy over a range of temporal
frequencies (Zaghloul et al., 2005). The relatively flat temporal
frequency spectrum is a nice feature for characterizing the
receptive field, but this flat spectrum differs markedly from
natural scenes, in which there is decreasing stimulus energy at
higher temporal frequencies (Simoncelli and Olshausen,
2001). Nevertheless, the response to white noise presents a
serious challenge for predictive models and reveals several
important nonlinearities.

To take an example, we could perform a simple experiment in
which we stimulate a cell with a spot of light over the receptive
field center and modulate the spot intensity with white noise
(Zaghloul et al., 2005). In this case, we build a model of the
temporal response of the cell only [although this approach can
easily be extended to model the full spatiotemporal-chromatic
response (Chichilnisky, 2001)]. The first step is to build a linear
model of the response of the cell. To do so, we cross-correlate the
spike response with the white-noise stimulus (Sakai and Naka,
1995; Chichilnisky, 2001). The result is a linear filter that repre-
sents the weighting function of the cell (see above, Background).
Then, at any instant in time, we can generate the linear response
by multiplying the stimulus by the temporal weighting function,
pointwise, and summing the result (Fig. 2). To generate the linear
response at the next moment, we advance the temporal weighting
function in time and repeat the process. Under certain condi-
tions, the linear model alone predicts the cone photoreceptor
response to a white-noise stimulus (Rieke, 2001; Baccus and
Meister, 2002). However, the linear model fails for ganglion cell
responses because of several nonlinearities (Shapley and Victor,
1978; Victor, 1987; Chichilnisky, 2001; Kim and Rieke, 2001;
Baccus and Meister, 2002; Zaghloul et al., 2003, 2005).

One major nonlinearity is the spike threshold. Resting dis-
charge of ganglion cells can be as low as 0 spikes/s or as high as 80
spikes/s, but a value of 10 –20 spikes/s is common (Kuffler et al.,
1957; Troy and Robson, 1992; Passaglia et al., 2001). A non-

Figure 2. The LNP model of the spike response in a retinal ganglion cell. A model of an ON
Y-type ganglion cell was generated from 100 s of response to a white-noise stimulus, contrast
was 0.1, extracellular recording in in vitro guinea pig retina; methods as described by Zaghloul et
al. (2005). The model generates a linear filter (weighting function) and a static nonlinearity
(Chichilnisky, 2001). To predict the response to a novel dataset, the stimulus is passed through
the filter to generate the linear model of the response. The filter is shown at a time when it
closely matched the stimulus (gray box), and so the linear model response is large (�63 in
linear model units; gray circle). The linear model is translated to a spike rate using a static
nonlinearity that works like a “lookup table” (shown in box). The point in the linear model at
�63 is translated to a spike rate of 117 spikes/s. The bottom trace shows the spike rate (black
line) to 1.5 s of the novel stimulus (of 2.7 s total). The test stimulus was repeated 20 times, and
the data were averaged and binned (bin, 20 ms). The gray line shows the output of the LNP
model (bin, 20 ms). The gray circle shows the LNP model value at 117 spikes/s at the same time
shown above for the linear model. The r 2 between the data and model was 0.81.
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optimal stimulus will reduce the firing rate, but firing rates can-
not go negative, and so there is a point at which spiking responses
are “clipped.” Furthermore, an optimal stimulus will increase the
spike rate, but spike rates cannot be infinitely high. In a 10 ms
period, a cell could fire at most approximately four spikes (or 400
spikes/s) because of the �1–2 ms refractory period after each
spike. Thus, the clipping (“rectification”) and the maximum rate
(“saturation”) represent two notable nonlinearities. These non-
linearities can, to some degree, be modeled as “static,” meaning
that the linear response can be passed through an input– output
function that is invariant over time (Fig. 2) (Chichilnisky, 2001).
The combination of a linear filter and a static nonlinearity creates
the linear–nonlinear (LN) model of spiking (Figs. 1A, 2). This
model predicts the spike rate but not actual spike times; spiking is
modeled as a Poisson process, defined by a rate (with equal mean
and variance), but spike times are otherwise random. Thus, the
model can most properly be termed the linear–nonlinear–Pois-
son (LNP) model of spiking (Paninski et al., 2004).

Despite its simplicity, the LNP model works rather well at
predicting spike rates. In practice, one can generate the linear
prediction of the response using the method described above.
One can estimate the static nonlinear function by plotting the
linear prediction of the response versus the actual response and
fitting a smooth function (Chichilnisky, 2001). One way to test
the model is to build the linear and nonlinear stages based on one
dataset and then test how well the model predicts the response to
a novel test stimulus (with the same contrast and mean lumi-
nance as the stimulus used to generate the model). On such tests,
the LNP model predicts the new dataset nearly as well as does a
maximum likelihood “gold standard” (Chichilnisky, 2001; Kim
and Rieke, 2001; Zaghloul et al., 2003). Another measure is the
amount of variance captured by the model (r 2). In Figure 2, the
LNP model captured 81% of the variance in the spike response. A
similar LN model works equally well on subthreshold membrane
voltage or current responses (Kim and Rieke, 2001; Rieke, 2001;
Baccus and Meister, 2002; Zaghloul et al., 2003, 2005).

We could feel rather satisfied by the ability of the LNP model
to predict the response to a novel test stimulus. However, model
performance would degrade quickly if we changed almost any
aspect of the test stimulus. For example, imagine that we changed
the contrast (the SD of the Gaussian distribution of luminance
values). Increasing contrast reduces the sensitivity of the linear
filter (height) and shortens the integration time (width) (Shapley
and Victor, 1978; Smirnakis et al., 1997; Benardete and Kaplan,
1999; Chander and Chichilnisky, 2001; Kim and Rieke, 2001;
Zaghloul et al., 2005). Thus, to model the response at the new
contrast, we would need to use a new filter. However, in many
cases, we can model the response at the new contrast with the
same nonlinear function as before (Chander and Chichilnisky,
2001; Kim and Rieke, 2001; Zaghloul et al., 2005). Still, to predict
the response to multiple contrasts, we would need to know the
linear filter for each contrast.

Even if we knew the linear filter for all contrast levels, we
would have another problem. Each of our linear filters was cal-
culated using a white-noise stimulus with a contrast level that
remained constant during the filter measurement. As soon as we
move to a natural stimulus, we can expect that the contrast would
change continuously, and so we would need to know how the
linear filter changed dynamically over time with the contrast
level. There is some evidence that that the filter changes rapidly
after a change in contrast, in �10 –100 ms (Victor, 1987; Baccus
and Meister, 2002); however, other measures suggest a slower
change over seconds (Kim and Rieke, 2001). Furthermore, there

are cases in which switching contrast to a new level changes not
only the filter but also the static nonlinearity (Baccus and Meister,
2002). This introduces a complication for the LNP model be-
cause, even if the LNP model is useful at a given, steady contrast
level, we must consider that both the linear and nonlinear stages
would change dynamically as contrast varied over time in a nat-
ural movie.

The above example considers the response to a luminance
modulation in time, a one-dimensional problem, but of course a
natural movie varies over time in two dimensions of space (plus
there is the issue of color). When we consider space, two compli-
cations arise. First, transient (Y-type) ganglion cells combine
subregions of their receptive field nonlinearly, apparently be-
cause of nonlinearities at the output of presynaptic bipolar cells
(Demb et al., 2001). Furthermore, there are nonlinear signals
passed across the retina from outside the classical (center–sur-
round) receptive field that are not captured by the LNP model
(Demb et al., 1999; Roska and Werblin, 2001; Olveczky et al.,
2003). Some models have characterized these nonlinear influ-
ences using quantitative approaches (Shapley and Victor, 1978;
Victor, 1979). However, it is not clear at present how well these
models would predict responses to natural stimuli. Furthermore,
certain ganglion cells adapt to the pattern of light over space or
time, such that the linear filter becomes less sensitive to the most
predictable features of the stimulus (Hosoya et al., 2005). For
example, this type of adaptation would increase sensitivity to
horizontal features after prolonged exposure to vertical features.
This pattern adaptation will need to be considered in future pre-
dictive models.

One direction to push the LNP model is to generate a more
realistic pattern of spiking than Poisson output. In fact, ganglion
cells, unlike cortical cells, fire spikes much more reliably than a
Poisson process (Berry et al., 1997; Reich et al., 1997; Kara et al.,
2000; Demb et al., 2004; Uzzell and Chichilnisky, 2004). For ex-
ample, a stimulus that evokes, on average, a burst of nine spikes
will show an SD (across repeated trials) of approximately one
spike rather than the Poisson value of three spikes (i.e., variance
of 9, equal to the mean). One recent approach used a novel
method for fitting a model that includes a linear filter followed by
an integrate-and-fire spike generator (Paninski et al., 2004). To
model realistic patterns of spiking, the spike generator includes a
recovery function, after each spike, mimicking a refractory pe-
riod (Keat et al., 2001; Paninski et al., 2004). One result of this
approach is that the apparent contrast-dependent change in the
linear filter width as measured by the LNP model may be an
artifact related to the refractory period in the data (Pillow and
Simoncelli, 2003). However, intracellular studies, which measure
the continuous subthreshold potential, suggest that some
amount of the contrast-dependent change in filter width may be
real (Kim and Rieke, 2001; Zaghloul et al., 2005).

Even given all of the above complications, it is surprising that
more retinal studies have not attempted to predict the response to
a natural movie. One group tested their model on a full-field
stimulus that was modulated by a natural sequence of light fluc-
tuation, and the model did a reasonable job (van Hateren et al.,
2002). The model was based on a linear filter approach and in-
cluded feedback gain controls, to account for adaptation to the
mean intensity and contrast, and a rectifying nonlinearity to
model the spike threshold. In fact, many “bursts” of spiking
evoked during the stimulus were captured by the model, al-
though there was clearly room for improvement. Furthermore,
the study did not test the predictive power of the model on novel
datasets. Still, the results were generally encouraging.
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What are the next steps for predictive modeling in the retina?
Clearly, there are many questions left unanswered by the LNP
model. A major question is how we can predict the linear filter at
any instant in time, given the previous statistics of the stimulus. A
working hypothesis suggests that the retina adapts separately to
contrast (“contrast adaptation”) and the mean intensity (“light
adaptation”). So one advance would be to further understand the
rules by which the previous mean intensity and contrast influence
the filter (see below, Understanding LGN responses). However,
this hypothesis suggests that the mean and contrast are the only
relevant parameters and that these parameters control filter ad-
aptation independently; both of these assumptions require addi-
tional validation. Also, this theory ignores possible adaptation to
higher-order stimulus statistics (Hosoya et al., 2005). Further-
more, once we get past photoreception and into the retinal cir-
cuit, cells no longer adapt to light statistics; rather, they adapt
based on changes in neurotransmitter release over time as well as
intrinsic cellular properties. Thus, it will be important to further
understand cellular mechanisms for adaptation. Intracellular re-
cordings suggested that contrast adaptation occurs partly at the
level of synaptic input and partly at the level of ganglion cell spike
generation, suggesting an adaptive mechanism intrinsic to the
ganglion cell (Kim and Rieke, 2001, 2003; Zaghloul et al., 2005).
Further understanding cellular mechanisms for adaptation could
provide key insights into the optimal architecture of a predictive
model. In other words, we should amend the statement at the
beginning of this section about ignoring retinal circuitry: knowl-
edge of the circuitry could indeed guide the development of an
appropriate predictive model.

In summary, the response to a dynamic laboratory stimulus,
white noise, can be predicted fairly well using a simple linear
model followed by a static nonlinearity. Rapid changes in stimu-
lus statistics, as would occur in a natural movie, requires addi-
tional understanding of the rules by which the linear and nonlin-
ear stages adapt over time. Furthermore, there are advances to be
made in modeling spike times, as opposed to rates, and we need
to further understand the multiple ganglion cell types beyond the
four types considered here. To many in the field of visual neuro-
science, predicting responses in the retina seems much simpler
than predicting responses in an extrastriate area, such as V4, and
there is clearly truth to this notion. Nevertheless, there is still a
ways to go before we can predict retinal responses to an arbitrary
stimulus.

Understanding LGN responses
The LGN occupies a strategic position, a strait through which
most retinal signals must pass to reach visual cortex. The stron-
gest retinal input to the LGN originates from ganglion cells of the
X/parvocellular type and of the Y/magnocellular type. These two
cell types have been studied extensively (see above, Understand-
ing the retinal output) and together constitute �50% of ganglion
cells in the cat and �80% in primates (Rodieck et al., 1993; Mas-
land, 2001; Wässle, 2004). Additional input to LGN relay cells
originates from other geniculate neurons, from subcortical struc-
tures, and from cortex (Guillery and Sherman, 2002).

It would be highly desirable to obtain a complete description
of how LGN neurons respond to visual stimuli. Such a descrip-
tion would summarize the computations performed by the reti-
nal and thalamic circuitry and amount to a full understanding of
the visual inputs received by primary visual cortex.

The main determinant of the responses of LGN neurons is the
linear receptive field, whose broad attributes are similar to those
of the afferent retinal ganglion cells. The receptive field is com-

posed of a center and of a larger surround, whose responses in-
teract subtractively (Fig. 1A). Both center and surround have a
biphasic temporal weighting function (Fig. 2), i.e., they weigh
contributions from the recent and less recent past with opposite
polarity (Cai et al., 1997; Reid et al., 1997). The linear receptive
field accurately predicts the basic selectivity of LGN neuron mea-
sured with gratings. For instance, the spatial profile of the recep-
tive field predicts the selectivity for spatial frequency (Kaplan et
al., 1979; So and Shapley, 1981; Shapley and Lennie, 1985),
whereas the temporal weighting function predicts the selectivity
for temporal frequency (Saul and Humphrey, 1990; Kremers et
al., 1997; Benardete and Kaplan, 1999). The linear receptive field
does not describe only responses to simple laboratory stimuli but
also captures the basic features in the responses to complex video
sequences (Dan et al., 1996).

The shape of the temporal weighting function of LGN neu-
rons depends on two strong nonlinear adaptive mechanisms that
originate in retina: luminance gain control and contrast gain con-
trol (see above, Understanding the retinal output) (Shapley and
Enroth-Cugell, 1984). These gain control mechanisms affect the
height (i.e., the gain) and width (i.e., the integration time) of the
temporal weighting function. Luminance gain control (also
known as light adaptation) occurs primarily in retina. It matches
the limited dynamic range of neurons to the locally prevalent
luminance (light intensity). Gain and integration time are re-
duced for locations of the visual field where mean luminance is
high and increased where mean luminance is low (Dawis et al.,
1984; Rodieck, 1998). Contrast gain control begins in retina
(Shapley and Enroth-Cugell, 1984; Victor, 1987; Baccus and
Meister, 2002) and is strengthened at subsequent stages of the
visual pathway (Kaplan et al., 1987; Sclar et al., 1990). It regulates
gain and integration time on the basis of the locally prevalent
root-mean-square contrast, the SD of the stimulus luminance
divided by the mean luminance. Gain and integration time are
reduced for locations of the visual field in which contrast is high
and increased in which contrast is low.

These gain control mechanisms dampen the impact of sudden
changes in the mean luminance or contrast of a scene such as
those brought about by eye movements. This effect is illustrated
in Figure 3, A and B, by the responses of an LGN neuron in an
anesthetized, paralyzed cat (Mante et al., 2005). Stimuli were
drifting gratings of optimal spatial frequency. Several seconds
after the onset of a grating, either mean luminance (at constant
contrast) or contrast (at constant mean luminance) was suddenly
increased. LGN responses are barely affected by the change in
luminance (Fig. 3A) and only weakly affected by the change in
contrast (Fig. 3B). Indeed, consider the responses predicted at
high luminance from the linear receptive field measured at low
luminance (Fig. 3A, red curves) and the responses predicted at
high contrast from the linear receptive field measured at low
contrast (Fig. 3B, red curves). The linear predictions are larger
and slower than the measured responses, indicating that gain and
integration time are reduced when luminance or contrast are
increased. This reduction in gain and integration time is com-
pleted within a cycle of the drifting grating, demonstrating that
the gain control mechanisms operate in �100 ms (Enroth-Cugell
and Shapley, 1973a; Saito and Fukada, 1986; Victor, 1987;
Lankheet et al., 1993a; Yeh et al., 1996; Baccus and Meister, 2002;
Lee et al., 2003; Mante et al., 2005). This fast timescale suggests
that gain control mechanisms reduce the impact of eye move-
ments, which place the receptive field of neurons in the early
visual system over regions of widely different mean luminance
and contrast (Mante et al., 2005).
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Although the gain control mechanisms
are likely to play a major role during natu-
ral vision, most efforts to predict the re-
sponses of LGN neurons to natural stimuli
have been limited to assuming a fixed lin-
ear receptive field (Dan et al., 1996) and
have omitted the effects of gain control.
There are several reasons for this omission.
First, existing models of gain control are
limited in scope: they operate only on sim-
plified stimuli such as gratings, and they
lack a definition of luminance and contrast
that applies to arbitrary stimuli. Second,
with few exceptions (Troy and Enroth-
Cugell, 1993), luminance gain control and
contrast gain control were typically only
studied in isolation. During natural vision,
however, luminance and contrast vary in-
dependently of each other (Mante et al.,
2005). Thus, a general model of gain con-
trol should predict the shape of the tempo-
ral weighting function at every possible
combination of luminance and contrast.

Nonetheless, many of the components
needed to build a general model of gain
control have already been described indi-
vidually. For instance, studies have sepa-
rately modeled the effects of luminance
gain control (Fuortes and Hodgkin, 1964;
Baylor et al., 1974; Brodie et al., 1978;
Shapley and Enroth-Cugell, 1984; Purpura
et al., 1990) and of contrast gain control
(Shapley and Victor, 1981; Victor, 1987;
Carandini et al., 1997; Benardete and
Kaplan, 1999) on the temporal weighting function of neurons in
the early visual system. Many models share the same simple de-
sign: the temporal weighting function is obtained by convolving a
fixed temporal weighting function with a variable filter, whose
parameters depend on luminance or contrast. This design can be
easily extended to predict the temporal weighting function at any
combination of luminance and contrast. Indeed, a recent study of
LGN responses demonstrated that the effects of luminance gain
control and contrast gain control are independent of each other
(Mante et al., 2005). Thus, the temporal weighting function can
be described by convolving the fixed weighting function with two
variable filters, one that depends on luminance and the other that
depends on contrast.

These studies provide a number of clues about how retinal or
LGN neurons compute the luminance and contrast of an arbi-
trary stimulus. Luminance and contrast are computed not only
very rapidly (Fig. 3A,B) but also very locally. Luminance gain
control is driven by the average light intensity falling onto a re-
gion that is not larger than the surround of the linear receptive
field (Cleland and Enroth-Cugell, 1968; Enroth-Cugell and Shap-
ley, 1973b; Enroth-Cugell et al., 1975; Cleland and Freeman,
1988; Lankheet et al., 1993b). Similarly, contrast gain control is
driven only by stimuli lying within the linear receptive field (So-
lomon et al., 2002; Bonin et al., 2005). More precisely, contrast
seems to be computed from the integrated responses of a pool of
small, nonlinear subunits coextensive with the linear receptive
field (Shapley and Victor, 1979; Enroth-Cugell and Jakiela, 1980;
Bonin et al., 2005).

These insights on gain control can be used to build a nonlinear

model of LGN responses that is general enough to predict the
responses to arbitrary stimuli (Bonin et al., 2005; Mante, 2005).
This model predicts a number of nonlinear phenomena in the
responses to simple stimuli, none of which would be explained by
the linear receptive field alone. (1) Response amplitude is inde-
pendent of mean luminance at low temporal frequencies, al-
though it is approximately proportional to mean luminance at
high frequencies (Shapley and Enroth-Cugell, 1984; Purpura et
al., 1990). (2) Response amplitude saturates with contrast. As
contrast is increased, the gain is decreased, although not so much
as to make responses independent of contrast [“contrast satura-
tion” (Derrington and Lennie, 1984; Cheng et al., 1995)]. (3)
Responses are selective for stimulus size, being maximal for stim-
uli of intermediate size and being suppressed by larger stimuli
[“size tuning” (Jones et al., 2000; Solomon et al., 2002; Ozeki et
al., 2004)]. For large stimuli, an increase in size adds only little
excitatory drive to the responses, although it strongly reduces
gain by recruiting more of the subunits driving contrast gain
control. (4) The strength of contrast saturation and size tuning
depends on the temporal frequency of the stimulus. Both are
strong at low temporal frequencies but absent at high temporal
frequencies (Shapley and Victor, 1978; Sclar, 1987; Mante et al.,
2004). (5) The response to a test stimulus is reduced by superpo-
sition of a mask stimulus [“masking” (Freeman et al., 2002; Bo-
nin et al., 2005)].

The nonlinear model predicts the responses to complex, nat-
ural stimuli better than the linear receptive field alone (Mante,
2005). For example, the gray histograms in Figure 3, C and D,
represent the firing rate of an LGN neuron in response to two

Figure 3. Predicting responses of LGN neurons to complex video sequences. A, Firing rate responses of an LGN neuron to a
drifting grating whose mean luminance is suddenly increased from 32 to 56 cd/m 2 (while contrast is kept constant). Red dashed
traces indicate the prediction of the linear receptive field fitted to the response before the luminance step, and black solid traces
indicate the average response after the step. B, Same, for a stimulus whose contrast suddenly steps from 31 to 100% (while mean
luminance is kept constant). C, Responses of an LGN neuron to a sequence from Walt Disney’s Tarzan. Red dashed traces indicate
the prediction of the linear receptive field alone (measured at optimal luminance and contrast). Black solid traces indicate
prediction of a nonlinear model. In the nonlinear model, the gain and integration time of the receptive field are regulated by
luminance gain control and contrast gain control. D, Same, for responses to a Cat-cam movie (Kayser et al., 2003; Betsch et al.,
2004). In all panels, calibration is 100 ms and 100 spikes/s, and gray histograms are firing rates obtained by convolving the spike
trains with a Gaussian window of width 5 ms (SD). A and B are modified from Mante et al. (2005b). C and D are modified from
Mante (2005).
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complex stimuli: movies taken from the head of a cat roaming
through a forest [Cat-cam (Kayser et al., 2003; Betsch et al.,
2004)] and segments of cartoons (Walt Disney’s Tarzan). The
linear receptive field, which has the same temporal weighting
function throughout the movies, predicts the basic features of the
response but not the details (red curves). In particular, it captures
the timing of the responses but not their amplitude. The predic-
tions of the nonlinear model, in which gain and integration time
are adjusted dynamically, are more accurate than those of the
linear receptive field (black curves). Because of luminance gain
control, the predictions of the nonlinear model tend to be higher
than those of the linear model during the dark Tarzan movie and
lower during the bright Cat-cam movie. Because of contrast gain
control, the two models make different predictions about the
relative magnitude of the responses within a movie.

The comparison between the simpler linear model and the
more complex nonlinear model is fair because the models were
given the same number of free parameters (two: spontaneous
firing rate and maximal firing rate). The remaining parameters
were estimated from the responses to gratings and then fixed in
the predictions of the responses to complex stimuli. Fixing the
parameters in advance is necessary to compare the predictions on
an equal footing: the more complex nonlinear model does not
necessarily have to predict the data better than the simpler linear
model. In fact, given the complexity of the nonlinear model, it
would have been difficult to estimate its parameters directly from
the responses to complex stimuli. This approach might be useful
to characterize also later stages of visual processing, in which
neurons exhibit progressively more nonlinear properties.

Even the nonlinear model, however, fails to capture some
features in the responses. In particular, the measured responses
tend to be more transient than the predicted responses. One fac-
tor contributing to the transient responses could be the mecha-
nisms generating bursts of actions potentials: after a hyperpolar-
ization lasting 100 ms or longer, LGN neurons are likely to
respond to a depolarization with a burst of action potentials that
is not predicted by simple rectification of the membrane poten-
tial (for review, see Sherman, 2001). Bursts are a prominent fea-
ture of LGN responses in anesthetized or sleeping animals but less
so in awake animals (Guido and Weyand, 1995; Ramcharan et al.,
2005). Another factor contributing to the transient responses lies
in the spike generation mechanisms: firing rates are more tran-
sient than predicted by a simple rectification of the membrane
potential (see above, Understanding the retinal output). Both
mechanisms could be easily incorporated into the nonlinear
model (Mukherjee and Kaplan, 1995; Smith et al., 2000; Keat et
al., 2001; Lesica and Stanley, 2004; Paninski et al., 2004). Finally,
the nonlinear model might be easily extended to capture also the
nonlinear spatial properties of Y-cells. In fact, at least in retina,
the output of Y-cells can be thought of as the sum of a pool of
nonlinear subunits, similar to the one driving contrast gain con-
trol (Hochstein and Shapley, 1976; Victor and Shapley, 1979;
Enroth-Cugell and Freeman, 1987; Demb et al., 2001).

In summary, there is now a fairly good understanding of the
linear and nonlinear components required to model responses of
the broad majority of LGN neurons. Many nonlinear properties
of LGN neurons can be captured by a single model that is general
enough to operate on arbitrary stimuli that vary in both space and
time. This model will be a useful tool to explore the effects of gain
control during natural vision. Once extended with bursting and
spiking mechanisms, it promises to provide a tractable descrip-
tion of the responses of LGN neurons and thus, of the input to
primary visual cortex.

Understanding V1 simple cells
Simple-cell receptive fields were first described in area V1 of the
cat by Hubel and Wiesel (1959), who defined them as follows:
“. . . these fields were termed ‘simple’ because like retinal and
geniculate fields (1) they were subdivided into distinct excitatory
and inhibitory regions; (2) there was summation within the sep-
arate excitatory and inhibitory parts; (3) there was antagonism
between excitatory and inhibitory regions; and (4) it was possible
to predict responses to stationary or moving spots of various
shapes from a map of the excitatory and inhibitory areas.” (Hubel
and Wiesel, 1962).

If a neuron failed any part of this four-part definition (partic-
ularly point 1), then it would be termed a “complex cell.” These
definitions were qualitative; many subsequent studies have en-
quired whether successful quantitative definitions are possible.

Point 4 is crucial to the definition: can a straightforward
receptive-field map predict how the neuron responds to other
visual stimuli? We must first acknowledge that predicting re-
sponses to time-varying stimuli (e.g., moving ones) requires
knowledge of the time courses of responses in different parts of
the receptive field. As explained above in Background, a static
receptive field should be replaced by a spatiotemporal receptive
field map (McLean and Palmer, 1989; Reid et al., 1991; DeAngelis
et al., 1993a), which documents differences in response time
course (impulse or step response) in different parts of the field
(Movshon et al., 1978a; Dean and Tolhurst, 1986). The essence of
prediction is the same, but, strictly, the field and stimuli should be
considered as functions of time as well as functions of space.

Those who follow Hubel and Wiesel’s definitions of simple
and complex cells generally find the two classes of neuron in
approximately equal numbers in V1. The clear definition of a
simple cell has been massively influential in visual science because
it offers the promise that, from relatively simple experiments, we
may understand how approximately half of the neurons in V1
would respond in more complex situations, such as viewing of
natural scenes. The definition says essentially that spatiotemporal
summation in simple cells is linear: only very simple arithmetic is
needed to calculate how a given simple cell will respond to some
arbitrary stimulus. Such is the starting point for modeling human
psychophysical experiments (Watson, 1987) or for hypothesizing
how natural information may be most efficiently coded in V1
(Willmore and Tolhurst, 2001). The simple-cell definition offers
so much that we are reluctant to ask whether it really works. This
section asks whether simple experiments on simple cells really do
allow quantitative predictions about the responses to other, more
complicated stimuli.

Movshon et al. (1978a,b) examined the linearity of spatial
summation in simple and complex cells in cat V1, followed by
Andrews and Pollen (1979). These studies compared spatial
receptive-field maps with the tuning for sinusoidal gratings and
found that important aspects of summation in simple cells were,
indeed, linear when tested quantitatively. Later studies have con-
vincingly shown that the spatiotemporal receptive field of a sim-
ple cell precisely predicts the optimal orientation, spatial fre-
quency, and temporal frequency of sinusoidal gratings of the
neuron (Movshon et al., 1978a; Jones and Palmer, 1987; Tadmor
and Tolhurst, 1989; DeAngelis et al., 1993b; Gardner et al., 1999).
However, even the 1970s experiments noted nonlinearities in
simple-cell behavior. A saving device was to consider the simple
cell as a black box with two stages: a linearly summating stage,
followed by one or more nonlinearities that do not affect the
underlying initial linear sum (Fig. 1B).

Although the spatiotemporal receptive field of a cell predicts

Carandini et al. • Do We Know What the Early Visual System Does? J. Neurosci., November 16, 2005 • 25(46):10577–10597 • 10583



the cell’s optimal stimulus well, it poorly predicts the relative
magnitude of responses to nonoptimal stimuli (e.g., it overesti-
mate the bandwidths of orientation and frequency tuning curves)
(Jones and Palmer, 1987; Tadmor and Tolhurst, 1989; DeAngelis
et al., 1993b; Gardner et al., 1999). Linear models also fail to
explain the relative magnitudes of response in the two directions
of movement orthogonal to the preferred orientation of the neu-
ron (Albrecht and Geisler, 1991; Reid et al., 1991). These failures
of the linear model have an easy rationalization in the two-stage
model (Fig. 1B). Most experiments record neuronal response
extracellularly as trains of action potentials, but the membrane
potential changes of V1 neurons must exceed a threshold before
spiking activity is evident (Carandini and Ferster, 2000). Many
failures of the simple linear model can be accounted for arithmet-
ically, by supposing that a simple linear sum is transformed at the
output of the neuron by passage through a nonlinear transducer
function; this may simply have a threshold nonlinearity or might
be a sigmoidal function of stimulus contrast (Schumer and
Movshon, 1984; Tolhurst and Dean, 1987, 1991; Tadmor and
Tolhurst, 1989; Albrecht and Geisler, 1991; DeAngelis et al.,
1993b). Indeed, intracellular recordings in simple cells (which
presumably show the black box before any nonlinear output
transform) do suggest that the strength of directional selectivity
and the orientation tuning bandwidth can be described by a lin-
ear model in the first stage of the black box (Jagadeesh et al., 1993;
Lampl et al., 2001).

Post hoc application of a nonlinear transducer to the linear
prediction may work arithmetically, but there are inconsistencies
between experiments (Tolhurst and Heeger, 1997b). Further-
more, there are other nonlinear behaviors that cannot be ex-
plained in such a way. Notable nonlinearities (shared with com-
plex cells) are response saturation at high contrasts (Albrecht and
Hamilton, 1982), and “nonspecific suppression” (Bonds, 1989;
DeAngelis et al., 1992; Tolhurst and Heeger, 1997b) in which the
response of a simple cell to its optimal stimulus is suppressed by
simultaneously presenting stimuli that evoke no overt response
when presented alone. Heeger (1992a,b) proposed a neuronal
circuit that embraces these and many other nonlinear behaviors
of simple cells: essentially, each simple cell performs a first-stage
linear sum of its spatiotemporal inputs, “half-squares” that linear
sum giving an energy response (half-squaring achieves much the
same as a threshold nonlinearity), and is then subject to divisive
inhibition from all other neurons whose receptive fields cover the
same part of visual field. The divisive inhibition gives rise to
“contrast normalization.” Application of this model (Heeger,
1993; Tolhurst and Heeger, 1997a) resolves subtle failures (Reid
et al., 1991; Tolhurst and Dean, 1991) in the predictions of the
relative magnitudes of response to moving and stationary-
modulated gratings, which cannot be resolved by simply running
a linear response sum through a nonlinear output transducer.

Elaborations of the contrast-normalization model (Carandini
and Heeger, 1994; Carandini et al., 1997) have embraced addi-
tional nonlinear behaviors (previously unaccounted), such as
“phase advance” at high contrasts (Dean and Tolhurst, 1986).
The contrast-normalization model has been influential in psy-
chophysical modeling (Watson and Solomon, 1997) as well as in
understanding the details of simple-cell (and complex-cell) re-
sponses; it is ironic that its proponents now suggest a very differ-
ent neurophysiological mechanism (Carandini et al., 2002; Free-
man et al., 2002), although the arithmetic remains more or less
the same.

Nonspecific suppression results from stimuli within the re-
ceptive field. There is another nonlinearity, sometimes confused

with it: stimuli outside the “classical receptive field” of a simple
cell may also suppress or facilitate its responses to its preferred
stimuli, as first described by Blakemore and Tobin (1972) and
Maffei and Fiorentini (1976). It is growing clearer that different
mechanisms of suppression are involved within the classical re-
ceptive field and outside (Sengpiel et al., 1998; Freeman et al.,
2002; Li et al., 2005; Sengpiel and Vorobyov, 2005), but we do not
yet have simple arithmetic rules to describe these nonlinearities.
Suppression or facilitation from outside the classical receptive
field may result from local connections within V1 or from feed-
back from more anterior visual areas, perhaps subserving selec-
tive attention or perceptual grouping. There is a large literature
on this topic that is beyond the present scope (for review, see
Fitzpatrick, 2000; Freeman et al., 2001; Chisum and Fitzpatrick,
2004).

Thus, many nonlinearities of simple-cell behavior are not ev-
ident from the receptive-field structure, but they can be accom-
modated neatly into the two-stage black box: the linearly sum-
ming first stage is followed by half-squaring and contrast
normalization. The arithmetic is fairly easy and it works well.
However, how important are all of these nonlinearities in the
overall behavior of the neurons? Smyth et al. (2003) examined
how simple cells in anesthetized, paralyzed ferret V1 respond to
100 ms flashes of digitized photographs of natural scenes to un-
derstand how neurons might respond under natural vision. Oth-
ers have also sought to understand how the receptive field struc-
ture or grating responses of simple cells relate to their responses
to complex, natural scene stimuli (Ringach et al., 2002; Vinje and
Gallant, 2002; Weliky et al., 2003; David et al., 2004). Figure 4A
shows the spatial receptive field of one simple cell recorded by

Figure 4. Predicting responses of V1 simple cells to complex images. A, The receptive field of
a ferret simple cell (see Fig. 1 B). The dashed lines outline the field for comparison in B and C. B,
The digitized photograph that evoked the largest OFF response in this simple cell. C, A Gabor
patch that approximately matches the disposition of the actual receptive field in A. D, The
ordinate plots the actual responses of the simple cell to 500 different photographs (average of
10 presentations each, measured in 100 ms bins). Positive values are ON responses: spikes
generated during the 100 ms presentation. Negative values are OFF responses: spikes gener-
ated on removal of the photograph. The abscissa shows the responses predicted on a totally
linear model, which includes solely the receptive field shown in C and not the nonlinearity of the
output (see Fig. 1 B).
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Smyth et al. (2003), mapped with small bright and dark squares.
According to point 4 of the simple-cell definition, we expect this
neuron to respond particularly well to a bright-dark border,
slightly off horizontal and toward the top right of the stimulus
area. Figure 4B shows the photograph that elicited (by far) the
most activity from this neuron. There is, indeed, just the border
predicted, although its polarity is reversed compared with the ON
and OFF regions of the field: the photograph evoked strong OFF
responses. Figure 4C shows a Gabor function model of the recep-
tive field (Field and Tolhurst, 1986; Jones and Palmer, 1987),
fitted by eye. It was used to estimate how a totally linear field
might respond to the 500 photographs presented; no nonlineari-
ties are modeled in the calculation. Figure 4D plots the actual
response of the simple cell to the photographs against the re-
sponses predicted from the stylized linearly summating field. The
linear model conveys the gist of the actual responses (r � 0.73);
there are no astonishing outliers. In truth, the simple cell of Fig-
ure 4 is the one whose responses to natural scenes were best
predicted by linear modeling (Smyth et al., 2003). However, the
results for this and other simple cells suggest that, although out-
put nonlinearities may reduce response magnitudes below the
linear prediction, there is little evidence here that nonlinear ef-
fects could fundamentally alter the basic “trigger features” for
activating a simple cell.

It is important also to recognize that simple cells are hetero-
geneous; some simple cells may differ little from complex cells
(Dean and Tolhurst, 1983; Mechler and Ringach, 2002). Movs-
hon et al. (1978a) described some “nonlinear simple cells” in
which the ON and OFF receptive-field regions overlap; Dean and
Tolhurst (1983) found that receptive-field structure was contin-
uously graded from simple cells exactly fitting the Hubel and
Wiesel definition, through nonlinear simple cells and “discrete
complex cells” to frank complex cells (Priebe et al., 2004; Mata
and Ringach, 2005). Indeed, simple and complex cells may not
form a dichotomy at all. Of course, this is not to say that all cells
are the same; for instance, it is clearly understood that cells at the
“simple end” of the continuum are found in different cortical
layers than those at the “complex end” (Martinez et al., 2005).
Receptive-field mapping techniques typically subtract the re-
sponses, say, to dark stimuli from those to bright stimuli so that
the receptive field seems to be single valued at each point. The
resulting linear receptive field is an incomplete reflection of the
overall responses of the neuron. For the varied population of
simple cells, it is unclear what proportion of response is depen-
dent only on the idealized linear receptive field and what has been
obscured by ignoring the inherent nonlinearities of summation.

The two-stage model of Figure 1B is inaccurate; its simplicity
and convenience may be misleading. Geniculate inputs are inher-
ently nonlinear and may be subject to depression leading to the
nonspecific suppression noted above (Carandini et al., 2002).
Nonlinear inputs would result in inherent nonlinearities of
simple-cell summation unless, say, there were “push–pull” inhi-
bition (Glezer et al., 1982). The role of such inhibition has been
explored further (Palmer and Davis, 1981; Tolhurst and Dean,
1987; Ferster, 1988; Tolhurst and Dean, 1990; Hirsch et al., 1998).
In particular, Tolhurst and Dean (1987, 1990) and Atick and
Redlich (1990) proposed that breakdown of push–pull inhibition
underlies the appearance of nonlinearities of spatial summation
even in the first stage of the two-stage model (Fig. 5). Indeed, all
that may distinguish many complex cells from simple cells might
just be the strength of the inhibitory signals that mask inherently
nonlinear summation (Wielaard et al., 2001; Mechler and
Ringach, 2002).

Literal adherence to point 4 of the definition of a simple cell
means that any significant failure of prediction would require the
neuron to be reclassified as a complex cell. Thus, we would be
bound to understand simple cells; any problematic neuron must
be a complex cell. Failure of the linear receptive field model is not
a problem for neurophysiologists, but it is for those computa-
tional modelers who would like all neurons in the visual cortex to
be described in a few lines of elegant code with their receptive-
field parameters neatly spaced along a theorist’s dimensions. We
need not confuse failure of the attractive linear receptive field
model of the simple cell with failure to understand the visual
cortex as a whole (compare with below, What we don’t know
about V1). Many of the bolt-on nonlinearities of simple cell be-
havior can be parameterized coherently; the failures of push–pull
are an irritation to modelers, but there is no need to believe that
they portend any dramatic change in neuronal behavior over the
linear model, and, most significantly, much progress has been
made in understanding how (frankly nonlinear) complex cells
respond to naturalistic stimuli (compare with below, Under-
standing V1 complex cells).

Understanding V1 complex cells
Although the orientation and spatial frequency selectivity of each
simple cell is directly related to the spatial profile of its receptive
field, which consists of elongated ON and OFF subregions (see
above, Understanding V1 simple cells), for complex cells this rela-
tionship is far less obvious. A complex cell usually exhibits mixed
ON and OFF responses throughout its receptive field (Hubel and
Wiesel, 1962). For example, the response of the cell to a bar
stimulus depends on both the orientation and width of the bar in
a manner similar to simple cells, but the cell responds indiscrim-
inately to light and dark bars, as long as the bar stands out from
the gray background. Such insensitivity to contrast polarity is an
important form of nonlinearity that renders spike-triggered av-
erage ineffective for measuring complex-cell receptive fields.

Significant progress in understanding complex-cell receptive
fields was first made by measuring the nonlinear interactions
between a pair of bars at the preferred orientation of the cell
(Movshon et al., 1978b; Emerson et al., 1987). These studies have
revealed the existence of “subunits” of the complex-cell receptive
field, whose spatial structure can predict the frequency tuning of
the cell. More recently, an alternative method has been used to

Figure 5. Toward a complete model of V1 simple cells. A popular conception of simple-cell
response behavior involves a first stage that shows strictly linear spatiotemporal summation,
and a subsequent stage may be subject to a variety of nonlinear phenomena, which do not
impinge on the fundamental linearity of the first stage (see Fig. 1 B). This schematic shows a
revision of this convenient model, which includes a number of nonlinear mechanisms. Some of
these mechanisms (those depicted as affecting the output nonlinearity) spare the fundamental
linearity of summation. The remaining ones, however, cause nonlinear summation, which dif-
fers only in degree from the obvious nonlinear behavior of complex cells.
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characterize complex-cell receptive fields that uses large ensem-
bles (tens of thousands) of complex visual stimuli, such as white
noise or natural images, and a spike-triggered covariance (STC)
analysis to receptive-field estimation.

As a first step in STC, the stimulus preceding each recorded
spike is collected to form the spike-triggered stimulus ensemble,
just like in spike-triggered average. Then, the covariance matrix,
instead of the mean, of this spike-triggered ensemble is com-
puted. Eigenvectors of this matrix with “significant eigenvalues”
(those significantly different from the control eigenvalues calcu-
lated based on random spike trains) represent visual features that
directly affect the neuronal response. This method has been used
effectively to analyze the nonlinear response properties of fly vi-
sual neurons (De Ruyter Van Steveninck and Bialek, 1988; Bren-
ner et al., 2000) and the receptive fields of mammalian V1 com-
plex cells, with either random-bar stimuli aligned to the preferred
orientation of the cell (Touryan et al., 2002; Rust et al., 2005) or
natural images presented in a random temporal sequence (Fig.
6A) (Touryan et al., 2005). When used with natural images, this
method needs to be modified to correct for the spatial correla-
tions in the images (Field, 1987; Dong and Atick, 1995; Simon-
celli and Olshausen, 2001).

In addition to STC, complex-cell receptive fields have been
analyzed with a phase-separated Fourier model (see below, Eval-
uating what we know about V1 and beyond), supervised training of
neural networks (Lehky et al., 1992; Lau et al., 2002; Prenger et al.,
2004), least-square algorithms (Ringach et al., 2002), and infor-
mation maximization (Sharpee et al., 2004). Here we will focus
the discussion on the results of the STC analysis.

For most of the complex cells in cat V1, STC identified two
significant eigenvectors (Touryan et al., 2002, 2005), each of
which corresponds to a stimulus pattern (referred to as a “fea-
ture”) that is effective for driving the cell. Each feature exhibits
ON and OFF subregions, resembling the receptive fields of simple
cells (Hubel and Wiesel, 1962; Jones and Palmer, 1987; DeAngelis
et al., 1993a). The spatial profiles of the significant eigenvectors
along the axis perpendicular to the preferred orientation of the
cell can be well approximated by Gabor functions, and the two
significant eigenvectors of each cell exhibit similar spatial fre-
quencies but a phase difference of �90° (Fig. 6B).

After identifying these visual features for each cell, the next
step is to quantify the contribution of each feature to the response
of the cell. This is achieved by computing the contrast–response
function of each significant eigenvector (Chichilnisky, 2001;
Touryan et al., 2002). The contrast of the eigenvector in each
stimulus is measured as the dot product of the eigenvector and
the stimulus, and the contrast–response function for the eigen-
vector is computed as the average firing rate of the cell at each
contrast of the eigenvector. For all complex cells, the firing rate
was found to increase with eigenvector contrast at both positive
and negative polarities (Fig. 6C), consistent with the known po-
larity invariance of complex cells (Hubel and Wiesel, 1962).

The bimodal contrast–response functions, together with the
spatial phase relationship between the pair of significant eigen-
vectors for each cell, are consistent with the well known energy

Figure 6. Models of V1 complex cells recovered from a covariance analysis. A, Experimental
protocol. Top, A segment of the natural image ensemble; white box indicates area shown in
experiments. Bottom, Spike train. Spike-triggered ensemble was generated by collecting the
image preceding each spike by a single frame (42 ms). B, Two significant eigenvectors of a
complex cell. Scale bar, 2°. Solid line, Spatial profiles of each eigenvector along the axis perpen-
dicular to the preferred orientation. Dashed line, Gabor fit. The Gabor fits of the two eigenvec-
tors had a phase difference of 85°. C, Contrast–response functions of the two eigenvectors.

4

Average firing rate is plotted against the contrast of each eigenvector shown in B. Error bar
indicates �SEM. Dashed lines, Fits of the data with the function r(x) � � x � � r0, where r is
the firing rate, x is contrast, and �, �, and r0 are free parameters. D, E, Prediction of cortical
responses to natural images. Correlation coefficients between the predicted and measured
responses based on the eigenvectors were plotted again those based on the linear receptive
field (D) and against the estimated upper bound (E). Each symbol represents one complex cell.
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model for complex cells (Adelson and Bergen, 1985). The energy
model combines the outputs of a quadrature pair of subunits to
produce an orientation-selective and spatial frequency-selective
but phase-invariant complex-cell receptive field (Fig. 1C). Math-
ematically, the model can be described as R � F � (k � * s) �
F � � 90° (k � � 90° * s), where R is the response of the neuron, s is
the stimulus, k � is the receptive field of a subunit (� represents
preferred spatial phase), and F represents the contrast–response
function of the subunit, which is commonly approximated by
F(x) � x 2. The pair of significant eigenvectors identified in the
STC analysis appear to correspond nicely to k � and k � � 90 °. Note
that the quadratic nonlinearity of the energy model in fact pro-
vides the perfect substrate for the STC analysis, which computes
the second-order Wiener kernel of the cell. Thus, the consistency
between the STC result and the energy model is not entirely sur-
prising. Interestingly, however, artificial neural networks that are
trained to approximate the input– output relationship of com-
plex cells also tend to converge to connection profiles that closely
resemble the energy model (Lau et al., 2002; Prenger et al., 2004),
suggesting that, given the structural constraint of feedforward
neural networks, the energy model is especially suited for approx-
imating the responses of complex cells.

Although the STC analysis on the complex cells of the cat has
yielded results consistent with the energy model, the result in
monkey V1 is more complicated. In the monkey, STC analysis
consistently revealed additional excitatory and even suppressive
eigenvectors for some complex cells, suggesting the existence of
excitatory and suppressive influences beyond those predicted by
the energy model (Rust et al., 2005). The structure of the addi-
tional excitatory eigenvectors was consistent with a model in
which complex cells are constructed by the convergence of a
number of spatially shifted subunits. The suppressive eigenvec-
tors had a primarily divisive influence on the excitatory response
and was consistent with a weighted normalization mechanism.
The difference between the results in cat and monkey may be
attributed to the species difference or to certain technical factors,
such as the amount of data available for the analysis.

The studies described above have led to relatively compact
descriptions of complex-cell receptive fields. Based on these de-
scriptions, how much can we predict the responses of the neuron
to arbitrary stimuli? Here, we will first consider the responses to
simple stimuli that are commonly used to measure the response
properties of visual neurons. We will then address the issue of
complex stimuli including natural scenes.

Direction selectivity
In studies using random-bar stimuli, the subunit receptive fields
of many complex cells consist of ON and OFF subregions shifting
smoothly over time (spatiotemporally inseparable receptive
field), suggesting direction selectivity (Lau et al., 2002; Rust et al.,
2005). Previous studies have shown that direction selectivity of
simple cells can be predicted from their spatiotemporal receptive
fields and the expansive nonlinearity in the contrast–response
function (Albrecht and Geisler, 1991; DeAngelis et al., 1993b;
Heeger, 1993). Because the responses of complex cells are ap-
proximated as the sum of two or more subunits, one can predict
their direction selectivity using the receptive field of each subunit
and its contrast–response function. Lau et al. (2002) made the
prediction based on the subunit receptive fields identified with
neural networks and found that the prediction agreed reasonably
well with the direction selectivity measured with drifting sinusoi-
dal gratings. The correlation coefficient between the predicted
and actual direction selectivity was �0.8, which is considerably

higher than that based on the linear receptive field estimated by
simple spike-triggered averaging (correlation coefficient, r �
0.47). Of course, this prediction is not perfect, and it is unclear yet
how much the prediction error is attributable to errors in the
estimated model parameters and how much is attributable to
other types of nonlinearities not captured by the model.

Orientation selectivity
When complex-cell receptive fields are mapped with two-
dimensional stimuli, the spatial structure of their subunits clearly
suggests orientation selectivity (Fig. 6B). One can again predict
the orientation tuning of the cell based on the subunit receptive
fields and their contrast–response functions. In a study in cat V1
(Touryan et al., 2005), the predicted tuning curve agreed well
with the tuning curve measured with drifting gratings, in both the
preferred orientation (absolute difference, 3.6°) and the tuning
bandwidth (mean absolute difference, 6.3°). The dot product be-
tween the predicted and the measured tuning curves was 0.95 �
0.04 (SD). Note that, in this prediction, the nonlinear transfor-
mation from intracellular signal to spike output is reflected in the
contrast–response function (Fig. 6C), which helps to prevent
overestimation of the orientation tuning bandwidth (see above,
Direction selectivity).

Spatial frequency tuning
The subunit receptive fields can also be used to derive the spatial
frequency tuning, which was tested in the STC analysis in cat
V1(Touryan et al., 2005). However, the result is confounded by
the fact that the receptive fields were mapped with natural im-
ages, which requires a modification of the STC method that cor-
rects for the spatial correlations in natural images. Because the
stimulus power at high spatial frequencies is relatively low for
natural images (Field, 1987; Dong and Atick, 1995; Simoncelli
and Olshausen, 2001), this correction tends to amplify noise in
the high-frequency range (Theunissen et al., 2000). To reduce
noise amplification, the correction is made only at spatial fre-
quencies below a cutoff point, which directly affects the predicted
spatial frequency tuning of the cell. Thus, how well the complex-
cell receptive fields measured with STC can predict the spatial
frequency tuning of the cells remains to be examined.

Complex stimuli
As an ultimate validation of the STC model for complex cells, the
model is used to predict the responses to complex stimulus en-
sembles, including random bars and natural images, following
the same procedure as that used for predicting direction and
orientation tuning. To compare the predicted and measured fir-
ing rates, an important limiting factor is the variability in the
measured firing rate attributable to the limited number of repeats
of the stimulus sequence. The upper bound of the correlation
coefficient between the predicted and measured signals attribut-
able to measurement variability can be estimated from the mea-
sured responses (Hsu et al., 2004). When the correlation coeffi-
cient between the predicted and the measured responses is
plotted against this estimated upper bound, it is clear that,
although the prediction based on the STC model is consis-
tently better than that based on simple spike-triggered averag-
ing (Fig. 6 D), it is far below the upper bound for the majority
of complex cells (Fig. 6 E).

There may be several factors that affect the performance of the
model. First, there is likely to be inaccuracy of the model because
of limited amount of data. For example, there may be additional
subunits that are not identified by the STC analysis (Rust et al.,
2005). The accuracy of the measured eigenvectors and their con-
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trast–response functions also depends on the amount of data.
Second, cortical cells are known to exhibit several other types of
nonlinearity, including contrast adaptation (Maffei et al., 1973),
gain control (Heeger, 1992a), and contextual modulation by
stimuli outside of the classical receptive field (Fitzpatrick, 2000;
Freeman et al., 2001). These effects are clearly not captured by the
model that sums the responses of two subunits, and they can
certainly contribute to the failure of the STC model in predicting
the responses to complex stimuli. In the study in cat V1, although
the receptive fields measured with natural images were similar to
those measured with random stimuli, natural images were found
to be more effective for driving the cells, resulting in a higher gain
in the contrast–response functions (Felsen et al., 2005). In a study
in monkey V1 (David et al., 2004), the spatiotemporal receptive
field measured with a phase-separated Fourier model depends
significantly on the statistics of visual stimuli (Fig. 7) (see below,
Evaluating what we know about V1 and beyond). Because these
nonlinear effects are not yet described in a compact and precise
form, it remains a formidable challenge to build a “universal
model” for complex cells that can predict their responses to arbi-
trary stimulus ensembles.

Evaluating what we know about V1 and beyond
Computational studies of primary visual cortex have produced
powerful quantitative models that accurately describe neuronal
responses to simple stimuli (Daugman, 1980; Adelson and Ber-
gen, 1985; Carandini et al., 1997). Recent experiments suggest
that, under natural viewing conditions, neuronal responses may
deviate markedly from the predictions of established models
(Smyth et al., 2003; David et al., 2004; Touryan et al., 2005). Are
these deviations functionally important? This section describes a
nonlinear system identification (NLSI) approach that can ad-
dress this problem. This approach has already been used to de-
termine precisely how well current models predict neuronal re-
sponses during natural vision (Theunissen et al., 2001; David et
al., 2004; Prenger et al., 2004; David and Gallant, in press). It can
also be used to identify the underlying causes of poor predictions
and to determine their relative importance.

Most quantitative neuronal models of visual processing are
based on neurophysiological data gathered using simple stimuli
such as bars, gratings, and spots of light. Simple stimulus exper-
iments provide a powerful means to test specific hypotheses
about neuronal function. However, if neurons function differ-

ently under natural viewing conditions, then models based on
simple stimulus experiments might not be accurate. To deter-
mine how well such models account for natural visual responses,
they must be used to make quantitative predictions about natural
visual responses. Then these predictions must be tested in neuro-
physiological experiments under conditions approximating nat-
ural vision. It is therefore essential to have an objective method
for comparing visual models.

NLSI provides a general and efficient method for testing the
predictions of neuronal models under natural viewing conditions
(Theunissen et al., 2001). Within the NLSI framework, each neu-
ron is a nonlinear filter that operates on the sensory input to
produce an output (a series of action potentials). The filter is
estimated from neurophysiological data and expressed as an
equation that describes the functional response properties of the
neuron.

NLSI analysis requires several steps: model specification, fit-
ting and regularization, and validation and evaluation. First, a
computational model is specified that describes the range of po-
tential filtering operations that a neuron might implement. In
principle, one can use any quantitative model that instantiates a
specific theory of neuronal function or a nonparametric model
estimated directly from the data. In practice, it is common to use
a very simple and general model that is efficient to estimate.
Second, a regression procedure is used to fit the model to neuro-
physiological data. Many fitting algorithms are available; the op-
timal algorithm for a specific problem depends on several factors,
including the complexity of the stimulus, the stimulus and re-
sponse sample sizes, neuronal noise, and the nature of the com-
putational model. In neurophysiological experiments on natural
vision, a successful fit will depend critically on the regularization
procedure used to reduce the influence of neuronal noise
(Theunissen et al., 2001).

The third step of NLSI is validation and evaluation of model
predictions. Cortical neurons are quite variable in their re-
sponses, and this variability will tend to cause overfitting. Models
that have many free parameters will tend to fit both systematic
variability and experimental noise. This overfitting problem
makes it difficult to compare models with different numbers of
free parameters. However, this problem can be eliminated by
using a strict cross-validation procedure (Theunissen et al., 2001;
David et al., 2004; David and Gallant, in press). Before analysis, a
portion of the data (typically 5–10%) is set aside for validation.

Figure 7. Spatial receptive fields of four V1 neurons estimated using dynamic grating sequences (top row) and dynamic sequences of natural images (bottom row). The spatial receptive field
describes selectivity in terms of a joint orientation-spatial frequency tuning surface. Each point in a spatial receptive field map describes the relative response to a stimulus of a particular orientation
and spatial frequency (angle about the origin and distance from the origin, respectively; see legend at right). Red indicates orientations and spatial frequencies that tended to increase responses; blue
indicates decreased responses. Both gratings and natural images yield spatial receptive fields in which excitatory tuning is centered around a small range of spatial frequencies and orientations.
Inhibitory tuning tends to be more diffuse, and its structure depends on the stimulus.
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The model is then fit to the remaining data. Performance of the
model is assessed by evaluating its ability to predict responses in
the reserved validation dataset.

The performance of a model is usually expressed as the corre-
lation between predicted and observed responses in the valida-
tion dataset (Theunissen et al., 2001; David et al., 2004; David and
Gallant, in press), although other measures have also been used
(Hsu et al., 2004). One important consideration when evaluating
such correlations is the intrinsic variability of the data. Neuronal
noise and the data sample size place an upper limit on the corre-
lation between any model and a specific dataset (Hsu et al., 2004;
David and Gallant, in press). In any real experiment, even the best
possible model cannot produce a perfect correlation between
predicted and observed responses. The “potentially explainable
variance” is the fraction of total response variance that could
theoretically be predicted, given neuronal noise and a finite sam-
ple. The predictive power of a model is the percentage of poten-
tially explainable variance that is, in fact, explained by the model.

Although the NLSI approach has been used in neurophysiol-
ogy for several decades, early studies only used white noise or
simple stimuli with flat power spectra (DeBoer and Kuyper, 1968;
Sutter, 1975; Emerson et al., 1987; Jones and Palmer, 1987). Be-
cause the statistics of natural stimuli are not white (Field, 1987;
Dong and Atick, 1995), a nonlinear neuron might respond dif-
ferently to these simple stimuli than it would to natural images.
Fortunately, recent theoretical and experimental studies have
shown that NLSI can also be used with natural images (Theunis-
sen et al., 2001; Willmore and Smyth, 2003; David et al., 2004;
David and Gallant, in press).

Early NSLI studies usually used simple first- or second-order
Volterra/Wiener regression models (Marmarelis and Marmare-
lis, 1978; Emerson et al., 1987; Eggermont, 1993). These first- and
second-order polynomial models are computationally tractable
and simple to fit. However, more complicated models that ac-
count for nonlinear mechanisms such as contrast gain control
(Carandini et al., 1997) and nonclassical receptive-field modula-
tion (Knierim and van Essen, 1992; Vinje and Gallant, 2002)
should, in theory, perform better than a simple first- or second-
order model.

Several studies have now used some variant of the NLSI ap-
proach to investigate how cortical neurons encode natural images
(Lehky et al., 1992; Theunissen et al., 2001; Ringach et al., 2002;
Smyth et al., 2003; Willmore and Smyth, 2003; David et al., 2004;
Prenger et al., 2004; David and Gallant, 2005; Touryan et al.,
2005). David et al. (2004) evaluated the performance of current
V1 models by examining their ability to predict natural visual
responses. The stimuli were movies that simulated the spatial and
temporal stimulation that a single neuron would receive during
free inspection of a static, monochromatic natural scene. Neuro-
physiological recordings were made from single V1 neurons dur-
ing presentation with these natural vision movies. David et al.
(2004) developed a spatiotemporal phase-separated Fourier
model (PSFT) model that can account for many of the known
properties of V1 neurons. According to this model, the spatial
response of any V1 neuron is given by the weighted linear sum of
stimulus energy across orientation, spatial frequency, and phase
channels, followed by an output nonlinearity. The temporal re-
sponses are modeled as a simple linear filter. Because the PSFT
model incorporates both first- and second-order terms, it can
account for both the phase-sensitive responses of V1 simple cells
and the phase-independent responses of complex cells (De Valois
et al., 1982). The model describes both excitatory and inhibitory
interactions between spatial frequency channels, and it can ap-

proximate neuronal mechanisms mediating contrast gain control
(Carandini et al., 1997) and nonclassical modulation (Knierim
and van Essen, 1992; Vinje and Gallant, 2002). Finally, the PSFT
can capture the second-order mechanisms revealed by the Wie-
ner (Emerson et al., 1987) and spike-triggered covariance meth-
ods (see above, Understanding V1 complex cells) (Rust et al., 2005;
Touryan et al., 2005).

David et al. (2004) used a linearized reverse-correlation pro-
cedure to fit the PSFT model to the data acquired from each
neuron (a software toolbox for conducting this analysis is avail-
able at http://strfpak.berkeley.edu). They found that spatiotem-
poral receptive fields estimated using the PSFT model predict
�20% of the total variance in responses of V1 neurons during
simulated natural vision. In a later study (David and Gallant,
2005), they measured the intrinsic noise level in these experi-
ments to determine explainable variance and predictive power.
They found that a second-order Fourier power (FP) model (see
below) predicts �40% of the explainable variance in the re-
sponses of V1 neurons during natural vision. This 40% figure
represents the best current estimate of how well conventional V1
models account for natural visual responses.

The study by David et al. (2004) also included two additional
stimulus classes: rapid sequences of random gratings that had
white spatial and temporal statistics, and rapid sequences of nat-
ural images that had the 1/f spatial statistics of natural vision
movies and the white temporal statistics of grating sequences. A
separate spatiotemporal receptive field was estimated from the
responses to each stimulus class, giving three (potentially differ-
ent) filter estimates for each neuron. They reported that receptive
field generated using data from a single stimulus class predict
responses within that stimulus class better than across classes.
Temporal stimulus statistics have a large effect on estimated re-
ceptive field; temporal responses become more bimodal and
short-term adaptation increases as the temporal stimulus statis-
tics become more natural (less white). Spatial stimulus statistics
have a more subtle effect on the receptive field; excitatory tuning
appears to be stable regardless of the spatial stimulus structure,
but natural spatial statistics evoke complex changes in the pattern
of inhibitory tuning. Together, these observations demonstrate
that the functional properties of V1 neurons depend partly on the
prevailing stimulus statistics (Fig. 7).

David et al. (2004) reported that the modest performance of
the PSFT model was most likely attributable to the unanticipated
influence of temporal stimulus statistics on V1 response proper-
ties. Temporal stimulus statistics dramatically change the tempo-
ral integration properties of these neurons, and a linear temporal
filter cannot account for this temporal nonlinearity. Current re-
search (J. L. Gallant, unpublished observations) suggests that a
more sophisticated temporally nonlinear model will substantially
improve predictions. To improve model performance beyond
this will require a still more complicated model that explicitly
represents other nonlinear mechanisms such as the spatial inter-
action between the classical and nonclassical receptive field
(Knierim and van Essen, 1992; Vinje and Gallant, 2002).

Most previous NLSI studies have focused on the peripheral
nervous system or primary sensory cortex; work on extrastriate
visual areas such as V4 is in its infancy. One current study (Gal-
lant, unpublished observations) uses a quantitative FP model that
describes orientation tuning, spatial frequency tuning, and posi-
tion invariance reported previously in V4 (Desimone and Schein,
1987; Gallant et al., 1996). Recordings were made from single V4
neurons during stimulation with a 4 Hz sequence of natural
images (Hayden and Gallant, 2005). A linearized reverse-
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correlation procedure was used to fit the FP model to the data
acquired from each V4 neuron. The estimated spatial receptive
fields predict on average �10% of the explainable variance of
spatial responses in V4 (Gallant, unpublished observations).
These predictions are substantially worse than those obtained in
area V1, although the V4 study did not attempt to model the
temporal receptive field. This result confirms that relatively little
is currently known about the functional properties of neurons in
extrastriate visual areas along the ventral pathway.

The predictive power of any neuronal model will depend on
how accurately the model captures the nonlinear stimulus–re-
sponse mapping function of a neuron. Because there are cur-
rently no commonly accepted models of processing in V4, it is
not surprising that the FP model performs poorly. One strategy
for developing an appropriate model is to use NLSI to generate
the model itself. These nonparametric models are not specified
explicitly but instead emerge from the data during the fitting
procedure. Several nonparametric models have been used to
characterize V1 neurons: artificial neural networks (Lehky et al.,
1992; Lau et al., 2002; Prenger et al., 2004), maximally informa-
tive dimensions (Sharpee et al., 2004), and kernel regression
methods such as the support vector machine (Wu and Gallant,
2004). Because these models do not require any previous theory
about the nature of neural coding, they are also likely to be useful
for characterizing neurons in visual areas beyond V1. One com-
plication of nonparametric models is that the estimated spatio-
temporal receptive field may be broadly distributed across many
coefficients in such a way that it cannot be interpreted directly. In
such cases, a separate visualization procedure can be used to in-
terpret the receptive field (Lau et al., 2002; Prenger et al., 2004).

Responses in extrastriate areas such as V4 are strongly modu-
lated by attention (Connor et al., 1997; Gallant, 2003), but most
neurophysiological studies of attentional modulation are con-
ducted under conditions much simpler than those prevailing
during natural vision. One recent study (David et al., 2002) in-
vestigated how attention modulates neuronal responses in area
V4 during a naturalistic free-viewing visual search task (Mazer
and Gallant, 2003). The FP model and linearized reverse correla-
tion were used to estimate the spatial receptive field of each V4
neuron. A stepwise regression procedure was then used to iden-
tify attentional modulation of the mean rate, response gain, and
orientation and spatial frequency tuning. David et al. (2002)
found that attention modulates all three aspects of the spatial
receptive field; it changes mean response rate and gain, and it
modulates orientation and spatial frequency tuning. Additional
investigation of more naturalistic experimental conditions will be
crucial to obtain an accurate understanding the role of attention
during natural vision.

The ultimate test of any theory of the neural basis of visual
perception is its ability to predict neuronal responses during nat-
ural vision. NLSI provides an efficient framework for developing
testable models, fitting them to neurophysiological data and eval-
uating their predictive power. This process also provides a means
to compare models objectively based on their ability to predict
responses during natural vision. Such comparisons can facilitate
model selection and identify promising areas for future research.
The available evidence (David et al., 2004; David and Gallant,
2005) indicates that current models predict �40% of the explain-
able variance in responses of V1 neurons during natural vision.
Preliminary data suggest that there remains much to learn about
the functional characteristics of neurons beyond V1. In extrastri-
ate visual areas such as V4, most of the knowable is still unknown.

What we don’t know about V1
The past 40 years have produced enormous amounts of data
concerning the structure and function of area V1 in a variety of
different species of mammals. What has emerged from this work,
among other things, is a fairly well agreed on standard model of
V1 neuron response properties, usually involving a combination
of linear filtering, half-wave rectification and squaring, and re-
sponse normalization (described above in previous sections). Al-
though this model is well supported by much of the available
data, it is still unknown how well it fares in accounting for the
actual behavior of the entire population of V1 neurons when
presented with the full complexity of time-varying natural scenes.

In previous work, Olshausen and Field (2005) attempted to
quantify our current level of understanding of V1 function by
considering two important factors: an estimate of the fraction of
V1 neuron types that are typically characterized in experimental
studies and the fraction of variance explained in the responses of
these neurons under natural viewing conditions. Together, these
two factors led them to conclude that, at present, as much as 85%
of V1 function has yet to be accounted for. They identified five
specific problems that will need to be overcome before we can
claim to have an accurate, standard model of V1 function. These
are briefly reviewed here.

Biased sampling of neurons
The vast majority of our knowledge about V1 function has been
obtained from single-unit recordings in which a microelectrode
is brought into close proximity with a neuron in cortex. Ideally,
when doing this, one would like to obtain an unbiased sample
from any given layer of cortex, but some biases are difficult to
avoid. The most troubling of these is that the process of hunting
for neurons with a single microelectrode will typically steer one
toward neurons with higher firing rates. Recent studies of energy
consumption by neurons estimate that the average activity
of neurons be relatively low, i.e., �1 spike/s in primate cortex
(Attwell and Laughlin, 2001; Lennie, 2003). However, one finds
many studies in the literature in which even the spontaneous or
background rates are well above 1 spike/s, suggesting that the
more active neurons are substantially overrepresented (Lennie,
2003). Olshausen and Field (2005) estimate that as much as 60%
of the population of neurons in V1 may have been missed because
of this bias. A number of recent studies show that, when one
searches for neurons using less biased methods, such as chronic
implants or antidromic stimulation, neurons with substantially
lower firing rates become much more common (for review, see
Olshausen and Field, 2004). If the same is true for V1, then we will
need to characterize the response properties of such neurons,
and, if they are substantially different, we may need to revisit our
beliefs about how “typical” V1 neurons behave.

Biased stimuli
Many elements of the existing standard model for V1 neurons
were derived from experiments using a fairly restricted class of
test stimuli. Oftentimes, these stimuli are ideal for characterizing
linear systems, i.e., spots, white noise, or sine-wave gratings, or
else they are designed around preexisting notions of how neurons
should respond. The hope is that the insights gained from study-
ing neurons using these reduced stimuli will generalize to more
complex situations, i.e., natural scenes. However, in a nonlinear
system, the response to any reduced set of stimuli cannot be
guaranteed to provide the information needed to predict the re-
sponse to an arbitrary combination of those stimuli. The extent to
which this holds for V1 has yet to be thoroughly examined. Be-
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cause it is impossible to map out the response to all possible
stimuli, some assumptions about the nature of the nonlinearity
and the stimulus space must be made. The assumption that Ol-
shavsen and Field (2005) believe is appropriate is that the non-
linearities relevant to visual processing are most likely to be re-
vealed when the system is presented with ecologically relevant
stimuli. Traditionally, experimentalists have been reluctant to
use natural scenes as stimuli because they seem highly variable
and “uncontrolled.” However, in recent years, there has been
significant progress in modeling the structure of natural images
(Simoncelli and Olshausen, 2001), and it should soon be possible
to develop parametric descriptions of natural images that could
be used to generate experimental stimuli (Heeger and Bergen,
1995). Several recently developed adaptive stimulus techniques
also provide a promising avenue for determining the relevant
stimulus for sensory neurons (Edin et al., 2004; Foldiak et al.,
2004; O’Connor et al., 2004).

Biased theories
Currently in neuroscience there is an emphasis on “telling a
story.” This often encourages investigators to demonstrate when
a theory explains data, not when a theory provides a poor model.
In addition, editorial pressures can encourage one to make a tidy
picture out of data that may actually be quite messy. The result is
that theories emerge that are centered around explaining a par-
ticular subset of published data or that can be conveniently
proven rather than being motivated by functional consider-
ations. A good theory should not only explain data, but it must
also address how the problems of vision are solved by the cortex.
For example, much of our thinking about V1 function has been
guided by the notion that there are two distinct classes of cells,
simple and complex, but a number of recent studies are now
calling this into question, pointing out that this classification
scheme could simply be an artifact of the lens through which we
view the data (Mechler and Ringach, 2002; Priebe et al., 2004).
Indeed, given the variety of response properties one observes, it
can become quite difficult to shoehorn any given cell into one of
these two categories (see above, Understanding V1 simple cells).
Another theory bias often embedded in investigations of V1 func-
tion is the notion that simple cells and complex cells are actually
coding for the presence of edges, corners, or other two-
dimensional shape features in images. However, despite much
effort in computer vision, it has proven impossible to detect
even the simple outline of an object using a filter such as a
simple- or complex-cell model. Moreover, it is entirely un-
clear whether such a representation would be meaningful or
useful in the first place. One of the most challenging problems
facing the cortex is that of inferring a representation of three-
dimensional surfaces from the two-dimensional image (Na-
kayama et al., 1995). This is not an easy problem to solve, and
it still lies beyond the capabilities of modern computer vision.
It seems quite likely that V1 plays a role in solving this prob-
lem, but understanding how it does so might require going
beyond bottom-up filtering models to consider how top-down
information is used in the interpretation of images (Lee and
Mumford, 2003).

Interdependence and contextual effects
A combination of anatomical and physiological studies suggest
that �60 – 80% of the response variance of a layer 4 V1 neuron is
a function of other V1 neurons or inputs other than those arising
from LGN (for review, see Olshausen and Field, 2005). Deter-
mining how these contextual signals influence the response prop-

erties of V1 neurons has been the subject of many investigations
over the past decade, often using bars or gratings to probe how
stimuli in the surround affect the response to a stimulus in the
center of the receptive field (for review, see Albright and Stoner,
2002; Series et al., 2003). However, the problem one faces in
teasing apart contextual effects this way is the combinatorial ex-
plosion in exploring all of the possible spatial and featural con-
figurations of surrounding stimuli. What we really want to know
is how neurons respond within the sorts of context encountered
in natural scenes. Some of the initial studies exploring the role of
context in natural scenes have demonstrated pronounced non-
linear effects that tend to sparsify activity in a way that would have
been hard to predict from the existing studies (Vinje and Gallant,
2000). More studies along these lines are needed, and, most im-
portantly, we need to understand how and why the context in
natural scenes produces such effects.

Ecological deviance
In the past few years, a number of laboratories have begun using
natural scenes as stimuli when recording from neurons in the
visual pathway. In particular, Gallant and collaborators have
taken the approach of attempting to determine how well one can
predict the responses of V1 neurons to natural stimuli using a
variety of different models. For example, David et al. (2004) have
explored two different types of models: a linearized spatiotempo-
ral receptive field model, in which the response of the neuron is
essentially a weighted sum of the image pixels over space and
time, and a phase-separated Fourier model that allows one to
capture the phase-invariance nonlinearity of a complex cell (see
above, Evaluating what we know about V1). These models can
typically explain between 30 and 40% of the response variance of
V1 neurons. One could possibly obtain a better fit to the data by
including additional terms modeling suppression (Rust et al.,
2005) and temporal adaptation (Lesica et al., 2003), or even a
spiking mechanism (Paninski et al., 2004), but it is still sobering
to realize that the receptive field component per se, which is the
bread and butter of the standard model, accounts for so little of
the response variance. Moreover, the way in which these models
fail does not leave one optimistic that the addition of modulatory
terms or pointwise nonlinearities will fix matters. Typically, the
model will undershoot the response of the neuron, but there are
also many events in the response that are completely missed by
the model and vice versa. This is in stark contrast to the LGN, in
which the linear model predicts nearly every event in the response
but mainly differs by a gain factor that can often be corrected by
the proper application of a gain control mechanism (see above,
Understanding LGN responses) (Fig. 3). Also, in an experiment in
ferrets using brief presentations of static natural images, the lin-
ear model often appears to succeed in conveying the gist of neural
responses (Smyth et al., 2003) (see above, Understanding V1 sim-
ple cells). Thus, there appears to be a qualitative mismatch in
predicting the responses of cortical neurons to time-varying nat-
ural images that will require more than tweaking to resolve. What
seems to be suggested by the data is that a more complex, network
nonlinearity is at work here and that describing the behavior of
any one neuron will require one to include the influence of other
simultaneously recorded neurons.

Obtaining a more complete and accurate picture of V1 func-
tion will require three fundamental changes in our approach: (1)
more widespread use of recording techniques that allow for an
unbiased sample of the population of neurons across different
layers of cortex and their interactions, (2) the use of time-varying,
natural scenes, or reasonable approximations thereof, for char-
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acterizing neural response properties, and (3) the advancement
of functionally driven, and testable, theories of V1 function. The
latter will require that we extrapolate beyond the available data,
taking into account the problems that need to be solved by the
visual system in addition to constraints provided by known neu-
roanatomy and neurophysiology. Importantly, we will need to
keep an open mind in considering new theories, and, given how
little of V1 function we can currently claim to understand, we
should be prepared for some surprises as new data come in.

Conclusions
Among the views expressed in this review, there are a number of
points of agreement, but there are also notable differences of
opinion.

A first point of agreement is that an adequate model of visual
responses should predict responses to arbitrary stimuli, not only
those encountered in the laboratory but also those seen in nature.
Surprisingly, many of the standard models of early visual process-
ing have not been held to this rigorous test. As pointed out by
Demb (see above, Understanding the retinal output), models of
the retina have not attempted to go all the way and predict re-
sponses to complex video sequences. This attempt has been made
in LGN, with a linear model by Dan et al. (1996) and with a
nonlinear model described in Understanding LGN responses. As
described in the subsequent sections, some initial attempts have
been made for V1 cells. Still, much work remains before we can
tell whether current models are appropriate to predict responses
to complex video sequences.

A second point of agreement is that a tractable model of visual
responses should include a linear receptive field (or more than
one, in the case of V1 complex cells). This linear receptive field
could operate directly on a scaled version of the images (as in the
models derived from those in Fig. 1) or on a transformation of the
stimulus such as the Fourier transform, as is the case for the
model described by Gallant (see above, Evaluating what we know
about V1 and beyond). In fact, even models of V1 complex cells
that postulate highly nonlinear image processing eventually com-
bine the visual information with a linear receptive field (Ringach
et al., 2002). Similarly, an influential model of visual responses in
the cortical middle temporal area postulates a linear receptive
field whose inputs are the outputs of V1 neurons (Simoncelli and
Heeger, 1998).

A point at which the approaches differ is in the use of complex
stimuli such as natural video sequences. One approach, proposed
above in Understanding LGN responses, is to use them only to test
a model that has been constrained with simpler stimuli. An alter-
native approach, proposed above in Evaluating what we know
about V1 and beyond and What we don’t know about V1, is to use
them also to discover the appropriate type of model and to con-
strain the model. There are valid reasons for both approaches.

The first approach posits that appropriate models of neural
function are so nonlinear that it would be hopeless to try to fit
them to responses to complicated stimuli. It is better to constrain
the model with simpler stimuli such as gratings and then see how
the model does with more complicated stimuli. This approach
has illustrious precedent in biophysics: for example, Hodgkin
and Huxley characterized the mechanisms of the action potential
by using highly simplified stimuli (e.g., by clamping the voltage of
the cell). They did not try to inject a natural-looking current that
simulates the arrival of synaptic potentials; even with the com-
puters of today, this approach would be unlikely to yield Hodgkin
and Huxley’s elegant equations.

However, neurons in visual cortex, and particularly in areas

beyond V1, are likely to be specialized in scene analysis that goes
well beyond the extraction of edges and similar low-level image
processing. It could become hopeless to try to characterize these
neurons using simple stimuli such as gratings. Stimuli of that
simplicity might perhaps become useful for this task later, after a
wide exploration is made with complex, natural stimuli and the
general outlines of the mechanisms underlying the responses
have been elucidated.

Another point at which there does not seem to be agreement is
whether we have a satisfactory grasp of the computations per-
formed in primary visual cortex. Although no study yet seems to
have measured how well a model of retinal ganglion cell would do
in predicting responses to a natural movie, at least for the more
linear X-type ganglion cells, there is a sense that a model that
included the key known nonlinear mechanisms should do fairly
well (see above, Understanding the retinal output). Similarly, the
model of LGN presented above (see above, Understanding LGN
responses), although far from perfect, does capture the gist of
LGN responses to complex stimuli. Models of neurons in visual
cortex succeed in capturing the qualitative (tuning) properties of
these neurons but are less robust at quantitatively predicting the
responses to arbitrary stimulus sets. Understanding V1 simple cells
describes a fairly successful attempt made for V1 simple cells, but
that attempt only involved static images. The model of complex
cells described in Understanding V1 complex cells can be derived
directly from responses to complex natural video sequences
(Touryan et al., 2005), but the model does not perform as well as
models of earlier visual neurons. The measurements presented in
Evaluating what we know about V1 and beyond indicate that a
model that combines linear and second-order mechanisms ac-
counts for at least one-third of the variance of V1 responses to
complex stimuli. However, we do not know how well a more
complete model would do in predicting V1 responses: it does not
seem that anybody has yet attempted to build a model of V1
neurons that includes many of the known dynamical nonlinear
components (e.g., synaptic depression and surround suppres-
sion) (Fig. 5) and tested this model on responses to complex
video sequences. Until this work is done, the field is open to the
criticisms levied above in What we don’t know about V1.

Three obstacles lie in the way of a meaningful comparison of
different models for a given visual stage or across visual stages.
First, as long as different models are applied to responses of dif-
ferent stimuli (flashed still pictures vs cartoons vs natural video
sequences), we will not be able to compare model performance.
Second, there does not seem to be agreement over the timescale of
responses that one is trying to describe. Some models attempt to
predict responses down to the individual spike (Keat et al., 2001;
Paninski et al., 2004), but more commonly one is interested in
firing rates computed in the 10 ms range (see above, Understand-
ing V1 simple cells). Third, there does not seem to be an agreed
measure of model quality. For example, the different sections of
this review invoked different measures, including correlation
(Tolhurst), percentage of the variance (Demb and Mante), and
percentage of the explainable variance or explainable correlation
(Gallant and Dan). The last approaches seem the most reason-
able, because they include an estimate of the variability of re-
sponses, which the models are not expected to capture. Recent
work indeed has yielded revised measures of percentage of vari-
ance (Sahani and Linden, 2003) or of correlation (Hsu et al.,
2004) that are adjusted to indicate when a model accounts for the
explainable responses, i.e., when the deviations from the actual
responses are within the variability that is present in the
responses.
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Clearly, much work lies ahead before we can say that we un-
derstand what the early visual system does. Recent advances in
stimulus presentation and receptive-field mapping techniques
allow us, for the first time, to fit and test models that can produce
quantitative predictions of the response of an individual neuron
to large classes of stimuli. Although these models appear to per-
form reasonably (albeit imperfectly) in the retina and LGN, the
performance of these models degrades substantially as one as-
cends to the cortex. Standard models of neurons in the retina
(Fig. 1A) successfully describe both the qualitative characteristics
of the tuning properties of the neuron (e.g., tuning for the spatial
frequency of a drifting grating) and are reasonable predictors of
the response of a neuron at brief timescales (accounting for
�80% of the variance in response; see above, Understanding the
retinal output). Similarly, standard models of V1 simple cells (Fig.
1B) successfully capture the basic tuning properties (orientation,
direction, and phase sensitivity) of the “most linear” neurons
falling in this class. In the more nonlinear V1 simple and complex
cells, response properties can no longer be described by a stan-
dard model including a single linear filter and only recently have
new characterization techniques allowed researchers to recover
models of these cells. Models of V1 complex cells (Fig. 1C) quite
successfully predict the qualitative response properties of these
neurons, such as tuning for the orientation and direction of mov-
ing stimuli. However, standard models of these neurons succeed
in capturing only �35% of the explainable variance in natural
visual responses (see above, Evaluating what we know about V1
and beyond), suggesting that crucial elements are missing from
the standard model description.

One likely source of error in standard models is the absence of
any history-dependent adaptation. At all stages of processing,
visual neurons adapt to the recent luminance and contrast of
stimuli; these properties cannot be captured by the models pre-
sented in Figure 1. As demonstrated in Understanding LGN re-
sponses, standard models can be extended to include these adap-
tive properties, and this extension is important for predicting the
responses to complex, naturalistic stimuli. Inclusion of these dy-
namic mechanisms in models of cortical neurons, in which ad-
aptation effects are known to be even more severe than at earlier
stages, will likewise improve their predictive power.

Extending these characterization techniques to include other
known dynamic nonlinearities will also improve their perfor-
mance. For example, including a realistic (non-Poisson) spike
generator that captures a refractory period and integrate-and-fire
dynamics significantly improves the predictability of the re-
sponse at short timescales (e.g., �50 ms) (Keat et al., 2001; Bair
and Movshon, 2004; Paninski et al., 2004).

Among all these limitations, a clear point of agreement that
emerges from this review is the need for functional models that
provide a compact description of the transformation of stimuli
into the response of the neuron. Functional models are not nec-
essarily (and perhaps preferably not) directly mapped onto the
known biophysics and anatomy. They are composed of idealized
boxes such as linear filters, divisive stages, and nonlinearities, all
simple components that can provide a compact answer to the
question “What does this neuron compute?.” This question is
distinct from the question “How does this neuron give this re-
sponse?,” but the two questions are clearly related. Just as know-
ing the Hodgkin-Huxley equations has greatly help the discovery
of how ion channels work, knowing which computations a neu-
ron performs on visual images can act as a powerful guide to
understanding the underlying biology. In addition to guiding the
investigation of underlying biological mechanism, a successful

functional model for a visual stage is required if we want to un-
derstand computation at later stages, and indeed, a functional
model is what is needed to establish the link between neural ac-
tivity and perception, which is a central goal of sensory
neuroscience.
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