
Lecture 12.3

I This lecture describes how linear filters can be learned from images by
unsupervised algorithms or estimated from neural data by regression. We
describe how these receptive field models can be used for binocular stereo
and for motion estimation.

I Then we introduce probabilities and decision theory. We motivate this by
discussing how cues can be combined to detect edges in images.

I This lecture includes exercises involving interactive demos: (12.3.1) Oja’s
Rule and Principal Component Analysis, (12.3.2) Natural Image Statistics,
and (12.3.3) Statistical Edge Detection.



Unsupervised learning of the receptive fields.

I We now introduce unsupervised neural network algorithms for learning
receptive fields. This section is based on computational studies performed
in the 1980’s (Linsker, 1986a,b; Yuille et al., 1989), see (Zhaoping, 2014)
for other references. These studies are based on modifications of the Hebb
learning rule, which has some experimental support. Exercise demo
(12.3.1) illustrates principal component analysis and Oja’s rule (Oja,
1982).

I The basic findings are that center-surround, orientation selective,
quadrature pairs, and disparity sensitive cells (precursors to cells that can
estimate depth from binocular stereo) could all be obtained by variants of
the same learning rule. Analysis of these findings suggest that this is
partly due to the shift invariance of images.



Unsupervised learning by Hebb’s rule (I)

I We first describe a simple unsupervised learning model for a single cell
(Oja, 1982). The output S(t) of the cell is a function of time t and is a
weighted sum of the inputs Ii (t), where the weights ωi (t) are functions of
time and are updated by Oja’s rule (Oja, 1982):

S(t) =
∑

j

wj (t)Ij (t),

dwi (t)

dt
= S(t){Ii (t)− S(t)wi (t)}. (7)

I The first term (Hebbs) increases the strength of a weight wi if its input
Ii (t) is positively correlated with the output S(t) (i.e., < S(t)Ii (t) >> 0),
while the second term decreases the value of all weights by an amount
proportional to their strength.

I This can be expressed as a single update equation:

dwi (t)

dt
=

∑
j

wj Ii (t)Ij (t)−
∑

jk

wi wj wk Ij (t)Ik (t). (8)



Unsupervised learning by Hebb’s rule: Analysis (I)

I Next we assume that the weights wi change at a slower rate than the
input images. This enables us to replace the terms Ii (t)Ij (t) with their
expectation Kij =< Ii (t)Ij (t) >, which is the correlation function of the
input. This gives:

dwi (t)

dt
=

∑
j

wj Kij −
∑

jk

wi wj wk Kjk . (9)

I The fixed points of this equation, the values of w such that dwi (t)
dt

= 0, can
be shown to be eigenvectors of the correlation function Kij . A slight
modification gives an update rule (Yuille et al., 1989) that converges to
the global minimum of the cost function:

E(~w) = −(1/2)
∑

i,j

Kij wi wj + (k/4)(
∑

i

w 2
i )2



Unsupervised learning by Hebb’s rule: Analysis (II)

I The global minimum corresponds to the biggest eigenvalue of Kij . If the
correlation function Kij decreases with distance, then the biggest
eigenvalue is at frequency 0, so the cell is not tuned to any frequency. But
if the correlation function has the shape of a Mexican hat, then the
biggest eigenvalue has a nonzero frequency, which implies that the cell is
orientated (Yuille et al., 1989).

I The correlation function of natural images does decrease spatially, but
Linsker (1986a,b) showed that correlation functions similar to the Mexican
hat arise if this learning procedure is applied to a sequence of layers.

I This analysis yields receptive fields that are sinusoids, and hence have no
spatial fall-off, which is unrealistic. But receptive fields of neurons are
limited by the geometrical positions of the dendrites. If these constraints
are included, then the algorithms converge to receptive fields that are
similar to Gabor functions.



How to empirically estimate receptive field models by regression.

I We can estimate the receptive field properties of cells from electrical
recordings of neurons by estimating the best model using regression. This
makes few assumptions about the form of the receptive field.

I Recall that the receptive field properties of neurons are traditionally found
by probing their response to different perceptual dimensions, such as
orientations and frequency. This gives a classification of the type of the
receptive field but does not specify its receptive field weights ~w unless
strong assumptions are made (e.g., that the receptive field is a Gabor
function).



Estimating receptive field models by regression.

I The regression method makes few assumptions about the forms of the
receptive field, but it does require more data. It requires a stimulus data
set of S = {(Sµ,~Iµ) : µ = 1, ...,N} of inputs ~Iµ and outputs Sµ (e.g., the

firing rates). It requires a model, such as g(~I : ~w) = σ(~w ·~I ), where σ(.)
is a sigmoid function.

I Regression requires minimizing a cost function like:

F (~w) =
1

|S|

N∑
µ∈S

E(Sµ − g(Iµ; ~w))

where E(.) is a penalty function, e.g.,(Sµ − g(Iµ; T ))2.

I This minimization can be done by standard computer packages. It outputs
an estimate of the model parameters ~w∗ and an error measure
F (~w∗) = 1

|S|
∑
µ∈S E(Sµ − g(Iµ; ~w∗)).



Complications (I)

In practice, there are several complications. It is unrealistic to show the neuron
all possible stimuli because there are so many possible image stimuli. Hence
researchers have to choose a restricted set of stimuli. If neurons are linear, or a
nonlinear function of a linear filter, then this should not matter because we can
exploit the superposition principle and estimate the receptive field from a
limited number of stimuli. But in reality, linearity is only an approximation, and
in practice, the choice of stimuli can matter considerably. One concern is that
the stimulus set does not contain the types of stimuli that the neuron is most
sensitive to, in which case regression will output unreliable estimates. Also, if
the linear assumption is only partially correct, then there is no guarantee that
the receptive field learned on one set of stimuli will predict the behavior well on
another set of stimuli.



Complications (II)

The complications are illustrated by recent findings (Talebi & Baker, 2012) that
estimates of the receptive fields of neurons can depend heavily on the set of
stimuli. The authors used three different stimulus sets: (1) white noise (WN),
(2) oriented bars (B), and (3) natural images (NI). This gives three estimates
for the receptive fields ~wWN , ~wB , ~wNI by using stimulus sets SWN ,SB ,SNI . For
each data set, they compute the prediction errors FWN ,FB ,FNI which are the
errors for that data set, e.g., FWN (~w∗WN ) = 1

|SWN |
∑
µ∈SWN

E(Sµ − g(Iµ; ~w∗WN )).
These quantities show how well the models can fit each stimulus set. They can
also enable us to study how well the estimated receptive field from one stimulus
set can predict the other data sets. This involves computing quantities such as
FWN (~w∗B ), FWN (~w∗NI ), FB (~w∗WN ), FWN (~w∗NI ), FNI (~w

∗
WN ), FWN (~w∗B ). They show

that the receptive fields estimated on the natural image stimulus set were much
better at predicting the responses on the other two stimulus sets.


