
Vision as Bayesian Inference

Lecture 03-01

What can happen in an 8x8 image window?

How to represent images?
• Basis Functions / Fourier Series

• Overcomplete bases, sparse coding

• Learning bases: (i) PCA, (ii) Sparsity, (iii) Matched Filters

8
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Theoretically, 25664 possible images
But, which ones happen?
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Representing images in terms of basis function

Classic: Orthogonal set of basis functions
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Examples
• Sinusoids / Fourier Analysis

• Haar Bases

• Impulse Function
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D

8x8 patch
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JPEG Coding

Choose basis function to be sinusoids
Represent image by 

because the bases are orthonormal, we can solve to get 
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Image represented by the coefficients 

Also we could minimize an error 

And try to restrict the number of non-zero α’s 
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 This gives standard 
image format of JPEG 
if we use sinusoids Lecture 03-03
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Sinusoids / Fourier Theory work well 
if the image can be approximated well by a set of sinusoids
E.G. 

But an image like this: 
is better approximated by 
a set of impulse functions

And an image like this: 

Is badly modeled by either
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Over-complete Bases

Represent the image by an over-complete set
E.G. all the sinusoids and all the impulse functions. Represent the 
image by a combination of sinusoids and impulses.
But now we have a problem

There will be many ways to represent the image in form 

because we could represent it by sinusoids only, or by impulse function only, 
or by combinations
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Note: is a convex function (L1-norm is convex

• There are efficient algorithms to estimate 

• Solution: 

Sparsity   L1-Sparsity

Determine the α’s by minimizing
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[ ]E α

By a “miracle” (later in course),
many of the α’s will be zero



Vision as Bayesian Inference

[ ]
2

( ) ( )i i
x i

E I x b xα α= −∑ ∑

2ˆ arg min ( ) ( ) arg min ( ) ( )i i i i
x x

I x b x I x b xα α= − =∑ ∑

with constant only one 0iα ≠

{ }2( ) 1ib x =∑
2ˆ ˆmin ( ) ( )i ii x

i I x b xα= −∑

Extreme Sparsity: Matched Filters

Set of basis function:
Represent each image by one basis function only
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Algorithm estimate 

Set

Choose 
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Set ˆ ˆiiα α=

0jα = otherwise
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Comments

We described three ways to represent images using basis functions

• Classical: e.g. Fourier Theory / Harr Basis

• L1-Sparsity

• Matched Filters

But what bases to use?
• We can use the bases, like sinusoids (20th century math)
• Or we can learn them from data (21th century math)

Both, overcomplete
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Learning the bases

Let’s start with the classical approach

Bases are orthogonal 

Dataset of images:

Energy Function

Note: basis functions are the same for all images
the coefficients       vary between images
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Minimize
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w.r.t. 
This is simply Principal Component Analysis (PCA)

Provided we extract the means from the images
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Solution: Singular Value Decomposition (SVD) implies that

The basis function         are the eigenvectors of the correlation matrix

The coefficients

We can restrict the number of basis function by only use those 

eigenvectors whose eigenvalues are above a threshold T
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What are the eigenvectors of image patches?

Claim If the image patches are randomly drawn from real images, 
then the eigenvectors are sinusoids?

Why? Because images are shift-invariant

Eigenvectors:

( , ) ( )K x y F x y= −
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y
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The correlation function depends 
only on the different (x-y)

Sinusoids proof: apply the convolution theorem
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So PCA doesn’t help much

You know you will get sinusoids before you look at the images

It is different if we align the images
For example, if we have images of faces and center them in the 
image patch 

The alignment means that 
we remove shift-invariance 

But it is not possible to align general images
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Now try sparsity – Olshausen & Field, 1996
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Minimize E w.r.t. 

Note: is convex in α if b is fixed
is convex in b if α is fixed
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Alternative Algorithm • Initialize b’s

• Minimize w.r.t a and b alternatively

• Guaranteed to converge to local minima

(sparsity)

code 
available 
online

{ }2( ) 1ib x =∑constraint:
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Olshausen & Field, 1996

Applied these to natural images (See examples)

This gives more interesting bases than PCA

Note: Deep Neural Networks obtain similar bases

https://www.nature.com/articles/381607a0
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Final Alternative Matched Filters

Minimize

How to minimize? 
Convert this to k-means clustering
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The Miracle of Sparsity

Sparsity represents an input y by

The miracle: many       will be zero
This won’t happen if we replaced             (L1-loss) by           (L2-loss) 
(Easy to see, with L2-loss you can compute      analytically)
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Why the miracle?   1D case

Let

Claim

here
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Can check analytically

If 0a ≥ 2( ; ) ( )
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In higher dimensions

Reformulate the problem in terms of convex hulls
First, duplicate each basis function

Then we can express
2
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Trick
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b1 -b1

b2

b2 -b2

bN

bN -bN new 2N bases: ib
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In higher dimensions

Now consider encoding an input y


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In higher dimensions

Consider an input data y, w.l.o.g.  |y| = 1 Lies on a sphere

1y

py

Hence, solving for       corresponds to finding 
the closest point yp on the convex hull

iα

Sparsityfind closest point on convex hull 
while penalizing the radius α of the convex hull

Hence, y is projected to a point yp on the 
boundary of the convex hull
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In higher dimensions

Increasing the size of λ
Corresponds w increasing the penalty for the radius of the convex hull

Hence causing the radius to get smaller

Where do point project?

A B

C

D

E

Projected to bases A&B 
(zero coefficients for C, D, and E) 

Projected to 
basis A

This shows that many bases will have 
zero coefficients 
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In higher dimensions, Increasing the size of λ

As λ gets bigger, the convex hull gets smaller and increasingly bases have 
non-zero coefficients

Projected to B Projected to A

CE
A B

D

This gives geometric intuition into the miracle of sparsity
Lecture 03-31
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