What can happen in an 8×8 image window?

Theoretically, 256^{64} possible images
 But, which ones happen?

How to represent images?

- Basis Functions / Fourier Series
- Overcomplete bases, sparse coding
- Learning bases: (i) PCA, (ii) Sparsity, (iii) Matched Filters

Representing images in terms of basis function

Classic: Orthogonal set of basis functions

$$
\begin{aligned}
& \left\{b_{i}(x): i=1, \ldots, N\right\} \\
& \text { where } \sum_{x}\left\{b_{i}(x)\right\}^{2}=1 \\
& \quad \sum_{x} b_{i}(x) b_{j}(x)=0 \text {, if } i \neq j \\
& \text { or } \quad \int d x\left\{b_{i}(x)\right\}^{2}=1 \\
& \quad \int d x b_{i}(x) b_{j}(x)=0 \text {, if } i \neq j
\end{aligned}
$$

\mathfrak{D}

8×8 patch

Examples

- Sinusoids / Fourier Analysis
- Haar Bases
- Impulse Function

JPEG Coding

Choose basis function to be sinusoids
Represent image by $I(x)=\sum_{i} \alpha_{i} b_{i}(x)$

because the bases are orthonormal, we can solve to get

$$
\alpha_{i}=\sum_{x} I(x) b_{i}(x) \quad\left(\text { or } \int d x \cdots\right)
$$

Image represented by the coefficients $\left\{\alpha_{i}\right\}$
Also we could minimize an error $\sum_{x}\left|I(x)-\sum_{i} \alpha_{i} b_{i}(x)\right|^{2}$
And try to restrict the number of non-zero α 's
< This gives standard image format of JPEG if we use sinusoids

Sinusoids / Fourier Theory work well
if the image can be approximated well by a set of sinusoids
E.G.

But an image like this:

is better approximated by a set of impulse functions

And an image like this:

Is badly modeled by either

Over-complete Bases

Represent the image by an over-complete set
E.G. all the sinusoids and all the impulse functions. Represent the image by a combination of sinusoids and impulses.
But now we have a problem
There will be many ways to represent the image in form

$$
I(x)=\sum_{i} \alpha_{i} b_{i}(x)
$$

because we could represent it by sinusoids only, or by impulse function only, or by combinations

Sparsity L1-Sparsity

Determine the α 's by minimizing

$$
E[\alpha]=\sum_{x}\left\{I(x)-\sum_{i} \alpha_{i} b_{i}(x)\right\}^{2}+\underbrace{\lambda \sum_{i}\left[\alpha_{i} \mid\right.}_{\text {regularization }} \text {, L1-norm }
$$

Note: $E[\alpha]$ is a convex function (L1-norm is convex

- There are efficient algorithms to estimate $\hat{\alpha}=\arg \min E[\alpha]$
- Solution: $I(x)=\sum_{i} \hat{\alpha}_{i} b_{i}(x)$ By a "miracle" (later in course), many of the α 's will be zero

Extreme Sparsity: Matched Filters

Set of basis function: $\left\{b_{i}(x)\right\}$
Represent each image by one basis function only

$$
E[\alpha]=\sum_{x}\left|I(x)-\sum_{i} \alpha_{i} b_{i}(x)\right|^{2} \quad \text { with constant only one } \alpha_{i} \neq 0
$$

Algorithm estimate $\hat{\alpha}=\arg \min E[\alpha]$

$$
\begin{aligned}
& \text { Set } \hat{\alpha}_{i}=\arg \min \sum_{x}\left|I(x)-\alpha_{i} b_{i}(x)\right|^{2}=\arg \min \sum_{x} I(x) b_{i}(x) \Longleftarrow \sum\left\{b_{i}(x)\right\}^{2}=1 \\
& \text { Choose } \hat{i}=\min _{i} \sum_{x}^{x}\left|I(x)-\hat{\alpha}_{i} b_{i}(x)\right|^{2} \Rightarrow \text { Set } \alpha_{i}=\hat{\alpha}_{i} \\
& \alpha_{j}=0 \text { otherwise }
\end{aligned}
$$

Comments

We described three ways to represent images using basis functions

- Classical: e.g. Fourier Theory / Harr Basis
- L1-Sparsity

Both, overcomplete

- Matched Filters

But what bases to use?

- We can use the bases, like sinusoids ($20^{\text {th }}$ century math)
- Or we can learn them from data ($21^{\text {th }}$ century math)

Learning the bases

Let's start with the classical approach
Bases are orthogonal $\rightarrow \sum_{x} b_{i}(x) b_{j}(x)=S_{i j}=\left\{\begin{array}{l}1 \text { if } i=j \\ 0 \text { if } i \neq j\end{array} \quad\right.$ (Kronecker Delta)
Dataset of images: $\left\{I^{\mu}(x): \mu \in \Lambda\right\}$
Energy Function $\quad E[b, \alpha]=\frac{1}{|\Lambda|} \sum_{\mu \in \Lambda} \sum_{x}\left\{I^{\mu}(x)-\sum_{i} \alpha_{i}^{\mu} b_{i}(x)\right\}^{2}$
Note: basis functions are the same for all images the coefficients α_{i}^{μ} vary between images

Minimize

$$
E[b, \alpha]=\frac{1}{|\Lambda|} \sum_{\mu \in \Lambda} \sum_{x}\left\{I^{\mu}(x)-\sum_{i} \alpha_{i}^{\mu} b_{i}(x)\right\}^{2}
$$

w.r.t. (b, α)

This is simply Principal Component Analysis (PCA)
Provided we extract the means from the images

$$
\begin{array}{ll}
I^{\mu}(x) \rightarrow I^{\mu}(x)-\frac{1}{|\Lambda|} \sum_{\mu \in \Lambda} I^{\mu}(x) & \text { so that } \sum_{\mu} I^{\mu}(x)=0 \\
& \text { (after subtraction) }
\end{array}
$$

Solution: Singular Value Decomposition (SVD) implies that

The basis function $b_{i}(x)$ are the eigenvectors of the correlation matrix

$$
K(x, y)=\frac{1}{|\Lambda|} \sum_{\mu \in \Lambda} I^{\mu}(x) I^{\mu}(y)
$$

The coefficients $\alpha_{i}^{\mu}=\sum_{x} b_{i}(x) I^{\mu}(x) \quad$ (as before)
We can restrict the number of basis function by only use those eigenvectors whose eigenvalues are above a threshold T

$$
\Rightarrow \sum_{y} K(x, y) b_{i}(y)=\lambda_{i} b_{i}(x), \quad \text { keep } b_{i}(x) \text { if } \lambda_{i}>T
$$

What are the eigenvectors of image patches?

Claim If the image patches are randomly drawn from real images, then the eigenvectors are sinusoids?

Why? Because images are shift-invariant

$$
\begin{array}{ll}
K(x, y)=F(x-y) & \begin{array}{l}
\text { The correlation function depends } \\
\text { only on the different }(x-y)
\end{array}
\end{array}
$$

Eigenvectors: $\sum_{y} F(x-y) e(y)=\lambda e(x)$
Sinusoids \rightarrow proof: apply the convolution theorem

So PCA doesn't help much

You know you will get sinusoids before you look at the images
It is different if we align the images
For example, if we have images of faces and center them in the image patch

The alignment means that we remove shift-invariance

But it is not possible to align general images

Now try sparsity - Olshausen \& Field, 1996

$$
E[b, \alpha]=\frac{1}{|\Lambda|} \sum_{\mu \in \Lambda} \sum_{x}\left\{I^{\mu}(x)-\sum_{i} \alpha_{i}^{\mu} b_{i}(x)\right\}^{2}+\lambda \sum_{\mu \in \Lambda} \sum_{i}\left|\alpha_{i}^{\mu}\right|
$$

Minimize E w.r.t. (b, α)

$$
\text { constraint: } \sum\left\{b_{i}(x)\right\}^{2}=1
$$

Note: $E[b, \alpha]$ is convex in α if b is fixed (sparsity) $E[b, \alpha]$ is convex in b if α is fixed

Alternative Algorithm • Initialize b 's

- Minimize w.r.t a and balternatively
- Guaranteed to converge to local minima

Olshausen \& Field, 1996

Applied these to natural images (See examples)

This gives more interesting bases than PCA

Note: Deep Neural Networks obtain similar bases

Final Alternative Matched Filters $\sum\left\{b_{i}(x)\right\}^{2}=1$
Minimize $E[b, \alpha]=\frac{1}{|\Lambda|} \sum_{\mu \in \Lambda} \sum_{x}\left\{I^{\mu}(x)-\sum_{i} \alpha_{i}^{\mu} b_{i}(x)\right\}^{2}$
with constraint that only one α_{i}^{μ} is non-zero for each μ

How to minimize?

\Rightarrow Convert this to k-means clustering
Requires normalizing each image $I^{\mu}(x) \rightarrow \frac{I^{\mu}(x)}{\sqrt{\sum_{x}\left\{I^{\mu}(x)\right\}^{2}}}$ so that $\sum_{x}\left\{I^{\mu}(x)\right\}^{2}=1$

\Rightarrow Implies that the best $\alpha_{i}^{\mu}=1$

The Miracle of Sparsity

Sparsity represents an input y by

$$
\hat{\alpha}=\arg \min \left\{\left|y-\sum_{i} \alpha_{i} b_{i}\right|^{2}+\lambda \sum_{i}\left|\alpha_{i}\right|\right\}
$$

The miracle: many $\hat{\alpha}_{i}$ will be zero \Rightarrow Why?
This won't happen if we replaced $\sum_{i}\left|\alpha_{i}\right|$ (L'-loss) by $\sum_{i} \alpha_{i}^{2}$ (L' ${ }^{2}$-loss) (Easy to see, with L2-loss you can compute $\hat{\alpha}$ analytically)

Why the miracle? 1D case

Let $f(a ; x)=(x-a)^{2}+\lambda|a|$

Claim $\hat{a}(x)=x-\lambda / 2$, if $x \geq \lambda / 2$

$$
\hat{a}(x)=x+\lambda / 2, \text { if } x \leq-\lambda / 2
$$

$$
\hat{a}(x)=0, \quad \text {, if }|x| \leq \lambda / 2
$$

here $\hat{a}(x)=\arg \min f(a ; x)$
if $x \geq \lambda / 2$

if $x \leq-\lambda / 2$

if $|x| \leq \lambda / 2$

Can check analytically

$$
\text { If } \begin{array}{ll}
a \geq 0 & f_{+}(a ; x)=(x-a)^{2}+\lambda a \\
& \frac{d f_{+}}{d a}=-2(x-a)+\lambda \\
& \text { minima at } \hat{a}=x-\lambda / 2 \\
& \text { but } \hat{a} \geq 0 \Rightarrow x \geq \lambda / 2
\end{array}
$$

Similarly, If $a \leq 0 \quad f_{-}(a ; x)=(x-a)^{2}-\lambda a$

$$
\frac{d f_{-}}{d a}=-2(x-a)-\lambda
$$

minima at $\hat{a}=x+\lambda / 2$
but $\hat{a} \leq 0 \Rightarrow x \geq-\lambda / 2$

In higher dimensions

Reformulate the problem in terms of convex hulls
First, duplicate each basis function

Then we can express $\sum_{i=1}^{N} \alpha_{i} b_{i}=\sum_{i=1}^{2 N} \bar{\alpha}_{i} \bar{b}_{i}$ with $\bar{\alpha}_{i} \geq 0$
Trick $\alpha_{i} b_{i}=\alpha_{i} b_{i}, \quad$ if $\alpha_{i} \geq 0$

$$
=\left(-\alpha_{i}\right)\left(-b_{i}\right) \text {, if } \alpha_{i}<0
$$

In higher dimensions

Now consider encoding an input y

$$
\bar{\alpha}=\arg \min \left\{\left|y-\sum_{i} \bar{\alpha}_{i} b_{i}\right|^{2}+\lambda \sum_{i} \bar{\alpha}_{i}\right\}, \quad \text { s.t. } \bar{\alpha}_{i} \geq 0
$$

Let $\sum_{i=1}^{2 N} \bar{\alpha}_{i}=\alpha$
Then $\left\{y:\left\|y-\sum_{i} \bar{\alpha}_{i} \bar{b}_{i}\right\|\right.$ s.t. $\left.\sum_{i} \bar{\alpha}_{i}=\alpha\right\} \begin{aligned} & \text { specifies the convex hull of the }\left\{\bar{b}_{i}\right\} \\ & \text { with radius } \alpha\end{aligned}$
E.G.

In higher dimensions

Consider an input data y, w.l.o.g. $|y|=1 \longleftarrow \quad$ Lies on a sphere

Hence, solving for $\bar{\alpha}_{i}$ corresponds to finding the closest point y_{p} on the convex hull

Sparsity \rightarrow find closest point on convex hull while penalizing the radius α of the convex hull

Hence, y is projected to a point y_{p} on the boundary of the convex hull

In higher dimensions

Increasing the size of λ
Corresponds w increasing the penalty for the radius of the convex hull Hence causing the radius to get smaller

Where do point project?
Projected to basis A

Projected to bases A\&B (zero coefficients for C, D, and E)

This shows that many bases will have zero coefficients

In higher dimensions, Increasing the size of λ

As λ gets bigger, the convex hull gets smaller and increasingly bases have non-zero coefficients

This gives geometric intuition into the miracle of sparsity

