
Local models for binocular stereo (I)

I Linear filter models of receptive fields can also be used to perform local
estimates of binocular stereo and motion. These models involve having
filterbanks, or populations of filters, that are tuned to different properties
of the stimuli, so that estimates of depth and motion can be extracted
from the population (Zhaoping, 2014).

I Recall that we introduced binocular stereo earlier. Depth is estimated by
triangulation provided we can solve the correspondence problem by finding
which points in the left and right eyes correspond to the same point in
three-dimensional space. This reduces to estimating the displacement, or
disparity, between the images in the left and right eyes. In this section, we
introduce the disparity energy model, which estimates disparity based on
local properties of the image. Later we will discuss how nonlocal context
can be used to improve disparity estimation.



Local models for binocular stereo (II)

I The disparity energy model is formulated using Gabor filters and has some
claim to biological plausibility (Ohzawa et al., 1990; Qian, 1994). The
model assumes that we have a large set of cells, receiving input from both
images and tuned to different image frequencies and spatial phases.

I We give the presentation in one dimension, exploiting the epipolar line
constraint. It assumes that the cell receives input from both left and right
eyes with receptive fields fl (x) = exp{−x2/(2σ2)} cos(ωx + ρl ) and
fr (x) = exp{−x2/(2σ2)} cos(ωx + ρr ). These are Gabors where the
Gaussian has variance σ2, tuned to frequency ω and with phases ρl , ρr .
The linear response is:

r =

∫
dx{fl (x)Il (x) + fr (x)Ir (x)} (10)

I This filter is tuned to spatial frequency ω. The filter is most sensitive to
the image component at this frequency. Hence we can represent the image
(approximately) by I (~x) = ρ cos(ωx + θ).



Local models for binocular stereo (III)

I Suppose that the right image is a displaced version of the left image
Ir (x) = Il (x + D(x)), where D(x) is the disparity. We assume that the
disparity varies slowly so that we can approximate it locally as a constant
D (over the size of the Gaussian, 2σ). To analyze the model, ignore the
Gaussian when calculating r . This gives:

r1 = ρ{cos(θ − ρl ) + cos(θ − ρr − ωD)} (11)

which can be re-expressed (using trigonometry identities):

r1 = 2ρ cos(θ − ρl + ρr
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I The response of the cell depends on the disparity but also on image
properties (e.g., image phase θ). So we need a population of cells to
detect disparity.



Lcoal models for binocular stereo (IV)

I To see this, suppose that we consider quadrature pairs of the two cells
tuned to the same ω. Where one cell has phases ρl , ρr , and the other has
phases ρ′l , ρ

′
r , where (ρl − ρr ) = (ρ′l − ρ′r ) and ρ′l + ρ′r = ρl + ρr + π

2
. Then

the second cell has response
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). Hence if we square and add the

responses of the two cells, we obtain:
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I This response depends only on the disparity D and the image frequency ω.
It takes largest values when ρl − ρr = ωD. Hence we can estimate D from
a population of quadrature cells tuned to different phases ρl , ρr and
frequencies ω.



Local models for binocular stereo (V)

I A neural network for estimating D using a population of neurons consists
of two steps. In step (1) we define a set of disparity cells tuned to
disparities {Di : i = 1, ...,N}. The disparity cell tuned to disparity Di

receives input cos2( ρl−ρr
2
− ω Di

2
) from each quadrature pair (ρl , ρr , ω) and

sums these inputs together to compute a vote v(Di ):

v(Di ) =
∑
ρl ,ρr ,ω

cos2(
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2
). (14)

Step (2) uses a winner-take-all network (Maass, 2000) to compute the
disparity with the biggest vote by solving D̂ = arg maxi=1,...,N v(Di ), so
that v(D̂) ≥ v(Di ) for i = 1, ...,N.

I There is plenty of evidence that the brain represents information by neural
populations (Georgopoulos et al., 1983; McIlwain, 1991). There have also
been several theoretical studies of how populations of neurons could
encode knowledge and perform computations (Pouget et al., 2003; Ma et
al., 2006).



Illustration of local model of binocular stereo
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Figure 19 : Left: The disparity D between the images in the two eyes corresponds to
a change of phase if we approximate the intensities by sinusoids. Right: The local
disparity D is encoded by the feature response of cells tuned to frequencies that obey
ρl − ρr = ωD.



Motion measurement: Spatio-temporal filters.

We now discuss how related models can be used to estimate motion for
sequences of images. Spatiotemporal filters are biologically plausible ways to
measure motion that agree with properties of cells in the visual cortex. The
standard model suggests two classes of cells: the first comprises spatiotemporal
filters that are sensitive to the directions of motion, while the second class
combines outputs of these filters to estimate the motion itself (Adelson &
Bergen, 1985; Grzywacz & Yuille, 1990; Schrater et al., 2000).



Motion measurement: Figures
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Figure 20 : Left: This figure shows the space-time illustration of a signal traveling
with constant velocity I (X , t) = F (X − tv). This means that the intensity I (X , t) is
constant on the lines X − tv = constant. Right: A stimuli moving with velocity ~v will
activate spatiotemporal filters ~ω, ωt , which lie on the plane ~v · ~ω + ωt = 0. Hence the
velocity can be estimated from the population of activity of the filters.



Motion measurement (I)

I Measuring the motion velocity assumes that locally, the intensity can be
modeled as a linear translating pattern:

I (~x , t) = F (~x − ~vt). (15)

I Differentiating with respect to ~x and t (using ~∇I = ~∇F and
∂I
∂t

= −~v · ~∇F ) gives the optical flow equation:

~v · ~∇I +
∂I

∂t
= 0. (16)

I This enables us to estimate one component of the motion ~v but suffers
from the aperture problem and so is ambiguous.



Motion measurement (II)

I The ambiguity can be resolved by a population of filters
{Gµ(~x , t) : µ = 1, ...,M} indexed by µ (e.g., Gaussians). These filters
introduce local context:

Gµ ∗ I (~x , t) =

∫
Gµ(~x − ~y , t − s)I (~y , s)dsd~y . (17)

Each filter gives a constraint on the velocity:

~v · ~∇Gµ ∗ I +
∂Gµ ∗ I

∂t
= 0. (18)

I We get an estimate of the velocity ~v by minimizing the cost:

E(~v) =
M∑
µ=1

(~v · ~∇Gµ ∗ I +
∂Gµ ∗ I

∂t
)2.

I This minimization can be done using a similar neural network to that used
for estimating disparity for stereo in the previous section.



Motion measurement (III)

We have a set of cells tuned to different velocities {~vi : i = 1, ...,N}. The cell

tuned to velocity ~vi receives input (~v · ~∇Gµ ∗ I + ∂Gµ∗I
∂t

)2 from each filter µ
and sums the responses to obtain E(~vi ). Then we use a variant of

winner-take-all to compute ~̂v = arg mini=1,...,N E(~vi ).



Motion measurement: The need for spatial and temporal context

This approach assumes that there is enough local information to resolve the
motion ambiguity which may not be the case. For example, for the stimuli in
figure 12.7 in the chapter, we can only locally estimate one component of the
motion because of the aperture problem. To resolve this ambiguity, we need to
use more spatial or temporal context.



Motion measurement: Spatial and temporal context (I)

An alternative way to analyze this problem is by applying Ffourier analysis to
equation (15):

Î (~ω, ωt) =
1

2π

∫ ∫ ∫
exp{i(~ω · ~x + ωtt)}I (~x , t)d~xdt

Î (~ω, ωt) =
1

2π

∫ ∫ ∫
exp{i(~v · ~x + ωt)t} exp{i~ω · (~x − ~vt)}F (~x − ~vt)d~xdt

Î (~ω, ωt) =
1

2π

∫
exp{i(~v · ~ω + ωt)t}dt

∫ ∫
exp{i~ω · ~x}F (~x)d~x

Î (~ω, ωt) = δ(~v · ~ω + ωt)F̂ (~ω)

where ~x = ~x − ~vt is a change of variables in the integral.



Motion measurement: Spatial and temporal context (II)

This shows that if we have filters exp{i(~x~ω + ωtt)} tuned to spatiotemporal
frequencies ~ω, ωt , then the only filters that respond are those whose frequencies
obey the equation ~v · ~ω + ωt = 0 and hence lie on a plane in frequency space.
Hence we can determine ~v from a population of filters by observing which
filters are activated and finding the best fit plane.



Motion measurement – Non-Fourier

I In practice, we cannot use filters tuned to frequency because these are not
bounded in space and time. But it can be shown (Grzywacz & Yuille,
1990) that if the filters are spatio-temporal Gabors, then the most active
filters are those whose spatiotemporal tuning is centered on the plane
~v · ~ω + ωt = 0. Hence the plane in frequency space can be estimated from
a population of spatiotemporal filters and the velocity locally estimated.

I This gives a two stage model of motion estimation, in which the first
population of neurons (i.e., filters) are each sensitive to the spatiotemporal
frequency of the input image but not directly to the motion. The second
population of neurons extract the motion information from the first
population, and hence these neurons are tuned directly to motion. This is
consistent with experimental findings (Adelson & Bergen,
1985),(Grzywacz & Yuille, 1990), (Schrater et al., 2000). Similar models
arise in related work on the fly and beetle visual systems (Hassenstein &
Reichardt. 1956; Borst & Euler, 2011).


