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Abstract

It is often claimed that Bayesian theories of vision require time consuming, and bi-
ologically implausible, relaxation algorithms. We show that, on the contrary, Bayesian
theories can be implemented by feedforward networks, multilayer perceptrons, where
the weights of the network are trained by unsupervised learning using a novel vari-
ant of backpropagation. Both multilayer perceptrons and backpropagation are of
questionable realism but our approach can be generalized to more biologically plau-
sible models. We illustrate our theory on an example of image segmentation. Such
unsupervised learning might have a role in the development of the visual system.

1 Introduction.

Biological organisms have to estimate properties of the world from visual signals. Many
authors, see [1] and references therein, have suggested that Bayesian estimation theory
gives a natural framework for visual perception. Bayesian models exist for such visual abil-
ities as depth perception, object recognition, image segmentation and self-organization.
Indeed all of cognition can, in principle, be formulated in Bayesian terms !.

It is unclear, however, whether such theories can be implemented in a biologically
plausible way. It is often claimed that such theories require relaxation algorithms which

1 Regularization theory [2] can be obtained as a special case of Bayesian theories.



are time consuming and may require feedback loops, see [7] for a recent example of such
a system.

We show that, on the contrary, Bayesian theories can be implemented by feedfor-
ward networks, multilayer perceptrons, where the weights of the network are trained by
unsupervised learning using backpropagation. Multilayer perceptrons and the backprop-
agation algorithm were chosen for convenience in order to illustrate our point. Multilayer
perceptrons are, at best, a weak approximation to real neural systems but they remain,
at present, the best studied paradigm for such systems. Similarly, the original backprop-
agation algorithm seems biogically unrealistic but more recent implementations using
feedback loops are more plausible [6]. Our theory can be implemented by more realis-
tic models of this type. Note that our model requires the use of feedback loops during
training only, but that it is strictly feedforward after learning.

We emphasize that our approach involves unsupervised learning where a teacher is
not required, but instead the system self-organizes by conforming to a set of principles
selected during its evolution ?. Though a “teacher” is plausible for acquiring some visual
abilities, it seems unlikely that it is available for all of them. Hence unsupervised learning
is desirable.

2 Theory.

For a specific visual task we let S represent the properties of the world that we wish to
extract and let I be the visual input. The goal of a Bayesian theory is to find an estimate,
S*(I), of the world properties as a function of the input I. The criteria commonly used is to
pick the S that maximizes the a posteriori probability of the stimulus S, Pyost(S|I), given
by Poost(S|I) = Pi(I|S)Pprior(S)/P(I), where Py(I|S) and Pprior(S) are the likelikood
function and the prior probability respectively ® (see, for example [1]). Formally, this
means S*(I) = arg maxg Ppost(S|I) and is called the MAP estimator.

We will demonstrate that it is possible to determine a close approximation to S*(I)
by a feedforward network after unsupervised training. This shows: (i) that is possible to
approximate S*(I) very quickly, and (ii) that time consuming relaxation algorithms are
not required to implement Bayesian, or regularization theories.

We assume that the function §*(I) can be approximated by a feedforward network with
one layer of hidden units, provided the weights can be chosen appropriately . Theoretical
results will guarantee this if we have enough hidden units [3]. We express the output
of the network as S = f(I;w), where w represents the weights. The learning task is to
determine the set of weights w* so that the network closely approximates S*(I).

To determine the correct weights we train the system over a representative set of inputs
{I* : peA}. We pick w* to maximize the energy function Ew,A] =3, log B ot (f (T8; @) 1)
In the limit as |A| tends to infinity this energy function becomes:

Elw] = 3 P(I)10g Pyost(f(I;0) ). (1)
I

2\We are aware of work in progress (Hinton, personal communication) where a similar problem is tackled

using a teacher.
3The form of these distributions is specified by evolution
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Provided the class of input-output functions of our network includes S*(1), it iﬂ clear
that E[w] will be maximized by w” such that f(I;w*y = S 1] (recall that ] (I)‘=
arg maxgs Ppost(S|I) and P(I) > 0, VI). If the class of functions is not representative
enough we will still obtain the best approximation to the §*(I) within the class, under
the assumption that the training process is capable of finding the optimal w. We propose
using stochastic training which, as recent results have shown [4], is resistant tO I?cal
minima in the energy function. Observe that if Ppo,¢ 18 specified by a Gibbs distribution,
Pyost = (1/Z)e~Frot, then our criteria 1s equivalent to minimizing the expected value of
the corresponding energy Epost.

In short, our approach involves using a regular backpropagation algorithm but with
the standard error function being replaced by the function log Pt f(I;w)|I).

3 Simulation Example: Image Segmentation

We now consider a specific example — the weak string/ membrane model of image seg-
mentation [5]. The goal of this model is to smooth noisy image while preserving, and
detecting, intensity edges. We use a feedforward architecture with one input layer (I),
feeding to a Hidden layer (H), feeding to the output layer (S5).

The posterior distribution for the weak string model is specified by a Gibbs distribution
with an associated family of energy functions F?(S5):

N N
FP(8) = (8- L)’ + ) _¢°(Si - Si1) (2)
1= i=1
where :
i) = X1 Vit <g¢ 3
= a—c(|t|-r)*/2 VgLt <r
=i ot Vg >
with ¢ = 3, 7 = (2 + 31), 4 = 5%;

Note that o and )\ are fixed constants which correspond, respectively, to the cost incurred
by a break and the length scale (in lattice cell width units) beyond which edge-edge
interactions are insignificant. In our simulations we set a = 0.025 and A = 5.

The parameter p specifies the smoothness of the energy function (p = 1 is convex and
p = 0 is nondifferentiable). Our variant of the GNC algorithm [5] consists of decreasing
p from 1 to 0 in discrete steps, while minimizing F? with respect to the weights for a

certain number of iterations at each step by standard backpropagation, starting from the
value of the weights obtained at the previous step.

3.1 Network Performance in 1D

We trained a network of three fully connected 32 unit layers on 1000 simulated intensity
patterns of length 32. The network nodes were chosen to be sigmoidal with outputs lying
in the range [—0.5,0.5]. The input patterns were produced by a two stage process which
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Figure 1: The dashed line is the output of the network after training when presented with

noisy input stimulus (solid line). Note that the image is now smooth while the edges, and
their locations, are preserved.

first generated piecewise constant patterns in the range [—0.5,0.5] and then added noise

which was uniformly distributed in the range [—0.2,0.2]. The noiseless piecewise constant
patterns are the desired output of the system.

The resulting system was able: (i) to memorize the noiseless patterns in the dataset,
(ii) to perform noise reduction on dataset patterns with additive noise, and (iii) to gener-

alize to novel, noisy, stimuli by giving approximately piecewise constant output with edges
correctly located. Figure 1 shows the performance of the network on a noisy stimulus and
Figure 2 plots two measures of learning performance.

3.2 Results in 2D

We also implemented image segmentation by the weak membrane model in two dimen-
sions. Our preliminary results on 12x12 pixel simulated 2-D data, see Figures 3 and 4,
indicate that the network learns to memorize the training set, to perform noise reduction,
and to generalize to edge detection on novel sets. The implementation is a straightforward

generalization of the 1-D model. We again trained the network on 1000 randomly selected
patterns.
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Figure 3: Left Figure : Input to the network (I;). Middle Figure : output of the network
after training for 20000 iterations. Right Figure : output of the network after training
for 400000 iterations. Note that the network has learned to generalize since its training
set consisted of 1000 randomly chosen inputs not containing I;. [See fig4 to see that the

network is not simply learning the identity map]

Figure 4: Left Figure : noisless input pattern (I). Middle Figure : I with uniform noise of

amplitude 0.1 added independently on each pixel. Right Figure : output of the network
after training for 20000 iterations on a small set of noisless data containing 1.



4 Conclusion

Our t}leofetical results showed that a backpropagation network can be trained, by self-
organization, to approximate the MAP estimator of a Bayesian theory. Simulati;n results
confirmed this for the case of image segmentation using the weak string/membrane model.
Such unsupervised learning might have a role in the development of the visual system.
These results show that it is possible to implement Bayesian theories in a feedforward
manner which is both faster and more biologically plausible than relaxation algorithms %
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*Hutethatfeedbackmightbeneededdnﬁngthekuﬁngphm,mmahbuipmpaglﬁnlIiok:gim!ly
plausible, but it is not needed after training.
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