Unsupervised learning of the receptive fields.

- We now introduce unsupervised neural network algorithms for learning receptive fields. This section is based on computational studies performed in the 1980’s (Linsker, 1986a,b; Yuille et al., 1989), see (Zhaoping, 2014) for other references. These studies are based on modifications of the Hebb learning rule, which has some experimental support. Exercise demo (12.3.1) illustrates principal component analysis and Oja’s rule (Oja, 1982).

- The basic findings are that center-surround, orientation selective, quadrature pairs, and disparity sensitive cells (precursors to cells that can estimate depth from binocular stereo) could all be obtained by variants of the same learning rule. Analysis of these findings suggest that this is partly due to the shift invariance of images.
We first describe a simple unsupervised learning model for a single cell (Oja, 1982). The output $S(t)$ of the cell is a function of time t and is a weighted sum of the inputs $l_i(t)$, where the weights $\omega_i(t)$ are functions of time and are updated by Oja’s rule (Oja, 1982):

$$S(t) = \sum_j w_j(t)l_j(t),$$

$$\frac{dw_i(t)}{dt} = S(t)\{l_i(t) - S(t)w_i(t)\}. \quad (7)$$

The first term (Hebbs) increases the strength of a weight w_i if its input $l_i(t)$ is positively correlated with the output $S(t)$ (i.e., $< S(t)l_i(t) > > 0$), while the second term decreases the value of all weights by an amount proportional to their strength.

This can be expressed as a single update equation:

$$\frac{dw_i(t)}{dt} = \sum_j w_j l_i(t)l_j(t) - \sum_{jk} w_i w_j w_k l_j(t)l_k(t). \quad (8)$$
Next we assume that the weights w_i change at a slower rate than the input images. This enables us to replace the terms $l_i(t)l_j(t)$ with their expectation $K_{ij} = \langle l_i(t)l_j(t) \rangle$, which is the correlation function of the input. This gives:

$$\frac{dw_i(t)}{dt} = \sum_j w_j K_{ij} - \sum_{jk} w_i w_j w_k K_{jk}. \quad (9)$$

The fixed points of this equation, the values of w such that $\frac{dw_i(t)}{dt} = 0$, can be shown to be eigenvectors of the correlation function K_{ij}. A slight modification gives an update rule (Yuille et al., 1989) that converges to the global minimum of the cost function:

$$E(\vec{w}) = -\frac{1}{2} \sum_{i,j} K_{ij} w_i w_j + (k/4)(\sum_i w_i^2)^2$$
The global minimum corresponds to the biggest eigenvalue of K_{ij}. If the correlation function K_{ij} decreases with distance, then the biggest eigenvalue is at frequency 0, so the cell is not tuned to any frequency. But if the correlation function has the shape of a Mexican hat, then the biggest eigenvalue has a nonzero frequency, which implies that the cell is orientated (Yuille et al., 1989).

The correlation function of natural images does decrease spatially, but Linsker (1986a,b) showed that correlation functions similar to the Mexican hat arise if this learning procedure is applied to a sequence of layers.

This analysis yields receptive fields that are sinusoids, and hence have no spatial fall-off, which is unrealistic. But receptive fields of neurons are limited by the geometrical positions of the dendrites. If these constraints are included, then the algorithms converge to receptive fields that are similar to Gabor functions.
How to empirically estimate receptive field models by regression.

- We can estimate the receptive field properties of cells from electrical recordings of neurons by estimating the best model using regression. This makes few assumptions about the form of the receptive field.

- Recall that the receptive field properties of neurons are traditionally found by probing their response to different perceptual dimensions, such as orientations and frequency. This gives a classification of the type of the receptive field but does not specify its receptive field weights \(\vec{\mathbf{w}} \) unless strong assumptions are made (e.g., that the receptive field is a Gabor function).