Bayes in the Big: Vision as Inverse Inference

- Helmholtz. 1821-1894.
- More recently: inverse computer graphics.
- Vision must invert the forward process (CG) to discover the causal factors that have generated the images.
- But only approximately and for the tasks that we care about – attention, change blindness.
Richard Gregory

- "Perception (vision) as hypotheses“.
- Perception is not just a passive acceptance of stimuli, but an active process involving memory and other internal processes.
- Humans have internal representations – we see images when we dream, we can imagine what animals and people will do, we can hallucinate.
Bayesian Decision Theory

- Bayes’ Theorem is a conceptual framework for inverse inference problems.
- We can infer the state S of the world from the image I using prior knowledge.
- $P(S|I) = P(I|S)P(S)/P(I)$.
- Rev. T. Bayes. 1702-1761
- $P(I|S)$ likelihood, $P(S)$ prior
Inverse Problems are hard

- There are an infinite number of ways that images can be formed.
- Why do we see a cube?
- The likelihood $P(I|S)$ rules out some interpretations S.
- Prior $P(S)$—cubes are more likely than other shapes consistent with the image.
Inverse inference requires priors

- Humans use prior knowledge about the world (obtained through experience). Often correct – but can fail occasionally.
- Flying carpet? Levitate?
- *Play ball-in-box.*
Inverse Computer Graphics versus Deep Networks

Computer Graphic gives method to generate real images.

This yields $P(I|S)$. This will typically be a deterministic function, if S is specified exactly, specified by radiosity equations (see later)

The prior $P(S)$ will be a distribution over all possible configurations S of the 3D world.

The world is complex, so the posterior distribution $P(S|I)$ is extremely complicated.
The complexity of $P(I|S)$ and $P(S)$ means that there are very few generative models of realistic images.

In recent years, this is changing due to the success of computer graphics models.

But work that does inverse computer graphics, though important, is almost non-existent.
Deep Networks seek to learn $P(S|I)$ directly. They assume that $P(S|I)$ can be expressed as a parameterized functional form:

$$P(S|I) = f(S,I;w),$$

where $f(.)$ is a deep network which is a differentiable function of the weights w. It is, conceptually, easy to learn the weights w from training data (because $f(.)$ is differentiable). After learning, it is easy to estimate the best S by calculating $f(S,I;w)$ and taking the maximum.
Deep Networks as Alternatives

- Deep Networks are attractive, since they only require learning probability distributions for S – which is enormously simpler than learning a distribution on I.

- But for inverse computer graphics, the space of possible 3D worlds S is combinatorially large, so impractical to learn a deep network to estimate $P(S|I)$.
Deep Networks

- Even for simpler, more restricted, domains it is questionable whether the generative process $P(S|I) = P(I|S)P(S)/P(I)$ can be approximated by a function like $f(S,I:w)$.

- This means that Deep Networks can only address a limited number of constrained visual tasks, without major modifications.
Inverse Computer Graphics

- Inverse computer graphics is very hard.
- But arguably vision will not be solved until we can achieve it.
- And plenty of evidence suggests that humans can perform approximate and as-needed inverse computer graphics.