
Learning Probability Distributions
I How do we learn these probability distributions? And can we earn them in

ways that are neuronally plausible? I.e. can be learnt by local operations
and ideally related to Hebbs rule for which there is some empirical
evidence (Kandel and Apylsia).

I We will start with probabilistic formulations of learning. These are
principled and most neural network learning algorithms can either be
directly formulated in this manner, or closely approximated.

I Learning can also be formulated within Bayes Decision Theory with priors
and loss functions. But the importance of priors is small unless there are
small amounts of training data because the likelihood terms are usually
dominant (there are likelihood contributions for every training data point,
but only a single prior term – see next slide). If there are only small
amounts of data then prior terms are important (e.g., see Cognitive
Science papers by T. Griffiths and J. Tenenbaum). Loss functions are
sometimes necessary.

I Learning can be done in two modes. The first mode uses all the training
data at the same time. The second mode trains incrementally using data
points sequentially, which is called online learning. The first mode used to
be used batch learning by neural network researchers. But now batch
learning means a variant of online learning where you learn from randomly
selected subsets of the data sequentially. Online methods are more
neuronally plausible.



Learning Probability Distributions without Hidden Variables

I Suppose we have training data X = (x1, ..., xn). We can learn a probability
model P(x |α) for the data by maximum likelihood
α∗ = arg maxP(X|α) =

∏n
i=1 P(xi |α) = arg min{−

∑n
i=1 logP(xi |α)}.

(How to select the probability model P(x |α) is beyond the scope of the
course).

I If the distribution P(x |α) is a Gaussian, with mean µ and variance σ2,
then this yields the standard estimates µ∗ = 1

n

∑n
i=1 xi and

σ2,∗ = 1
n

∑n
i=1(xi − µ∗)2. This is batch learning (in old-fashioned

meaning) because all the learning data is used at the same time.

I Online learning – AKA stochastic gradient descent – would start by
initializing α0. Then proceed as follows. At time t with parameter αt ,
select a data point xt at random, and update αt+1 = αt + ζt

∂ log P(xt |αt )
∂α

where ζt is the learning rate (a small term which can decrease slowly with
t). (Theoretical properties of online learning – Robbins-Monroe theory –
are interesting but out of scope of this course).

I If we have a prior. Old-fashioned batch learning would try to maximize the
posterior P(α|X ) ∝ P(X|α)P(α), which is equivalent to minimizing
−
∑n

i=1 logP(xi |α)− logP(α), which is the sum of n likelihood terms and
one prior term. Hence the prior is usually unimportant unless there is little
data. So we are minimizing the likelihood function. (This is equivalent to
a cross-entropy loss – as will be discussed in later slides.



Learning Conditional Probability Distributions without Hidden Variables

I The same approach applies when we learnt a conditional distribution
P(y |x , α) (this includes deep networks). We have training data
X = {(x1, y1)..., (xn, yn)}. We learn the probability model P(y |x , α) for
the data by maximum likelihood
α∗ =

∏n
i=1 P(yi |xi , α) = arg min{−

∑n
i=1 logP(yi |xi , α)}. (How to select

the probability model P(y |x , α) is beyond the scope of the course).

I Online learning – stochastic gradient descent – starts by initializing α0.
Then proceed as follows. At time t with parameter αt , select a data point
xt at random, and update αt+1 = αt + ζt

∂ log P(yt |xt ,αt )
∂α

where ζt is the
learning rate (a small term which can decrease slowly with t).

I The comments about priors and loss functions still apply.



Learning Probability Distributions with Hidden Variables

I We now consider learning models with hidden variables. These are more
important and relate to clustering whose gaol us to divide data up into
different classes and is a key aspect of unsupervised learning. Learning
with hidden variables also includes the Boltzmann Machine which is a
classic neural network (and has been used to learn probability models for
V1 by Tai Sing Lee’s group at CMU).

I We start by describing the k-means algorithm which is the simplest
algorithm for clustering. The online version can be implemented in a
neural network where some nodes represent the inputs x and there are k
output nodes which compete to explain the data.

I Then we expect to assuming the data is generated by a mixture of
Gaussians, which is soft version of k-means.

I Then we present the Boltzmann Machine. From a high level perspective,
all these unsupervised learning algorithms are variants of the
Expectation-Maximization (EM) algorithm.



K-means (1)

I The input to K-means is a set f unlabeled data: D = {x1, ..., xn}. The goal
is to decompose it into disjoint classes w1, ...,wk where k is known. The
basic assumption is that the data D is clustered round (unknown) mean
values m1, ...,mk .

I We defines an association variable Via. Via = 1 if datapoint xi is
associated to mean ma and Via = 0 otherwise. we have the constraint∑

a Via = 1 for all i (i.e. each datapoint is assigned to a single mean).
This gives a decomposition of the data. Da = {i : Via = 1} is the set of
datapoints associated to mean ma. The set D =

⋃
a Da is the set of all

datapoints. Da

⋂
Db = φ for all a 6= b, where φ is the empty set.

I We defines a goodness of fit:

E({V }, {m}) =
n∑

i=1

k∑
a=1

Via(xi −ma)2 =
k∑

a=1

∑
x∈Da

(x −ma)2 (41)

I The goal of the k-means algorithm is to minimize E({V }, {m}) with
respect to {V } and {m}. E(., .) is a non-convex function and no known
algorithm can find its global miminum. But k-means converges to a local
minimum.



K-means (2)

I The k-means algorithm

I 1. Initialize a partition {D0
a : a = 1 to k} of the data. (I.e. randomly

partition the datapoints – or use K++).

I 2. Compute the mean of each cluster Da, ma = 1
|Da|

∑
x∈Da

x .

I 3. For i=1 to n, compute da(xi ) = |xi −ma|2. Assign xi to cluster Da∗ s.t.
a∗ = arg min{da(xi ), ..., dk(xi )}

I 4. Repeat steps 2 & 3 until convergence.

I This will converge to a minimum of the energy function because steps 2
and 3 each decrease the energy function (or stop if the algorithm is at a
local minimum). This will divide the space into disjoint regions.

I k-means can be formulated in terms of the assignment variable. At step 2,
ma = 1∑

i Via

∑
i Viaxi . At step 3. Via = 1 if |xi −ma|2 = minb |xi −mb|2

and Via = 0 otherwise.



K-means (3)

I The online version of k-means minimizes the energy function
E({V }, {m}) =

∑n
i=1

∑k
a=1 Via(xi −ma)2 =

∑k
a=1

∑
x∈Da

(x −ma)2 by
steepest descent.

I This has a nice neural network formulation. We have k output neurons
which have receptive fields mk,a which represent the means. We have an
input vector xa (a specifies the component). The output units receive
input

∑
a mk,axa and we impose inhibition between them so that only the

unit with biggest input fires – i.e. unit k∗ fires if
∑

a mk∗,axa ≥
∑

a mk,axa
for all k. This means that the input is matched to the k∗ unit.

I We update the weight mk∗,a by differentiating
∑

a(xa −mk∗,a)2 with
respect to mk∗,a. I.e. mk∗,a 7→ mk∗,a − ζ2(mk∗,a − xa). The weights of the
other neurons remain fixed,

I It can be seen that this is stochastic gradient descent on E({V }, {m}) .
At time t we select a new input x t , we find which output unit has mean
(i.e. weight) closest to x t (we normalize the weights and the inputs, so
minimizing the square distance is equivalent to maximizing the dot
product) and update its weight, keeping the other weights fixed.



Soft K-means. Mixture of Gaussians. (1)

I A ”softer” version of k-means – which is an example of the
Expectation-Maximization (EM) algorithm. Assign datapoint x i to each
cluster with probability (P1, . . . ,Pk)

I 1. Initialize a partition of the datapoints.

I 2. For j=1 to n. Compute the probability that xj belongs to ωa.

P(ωa|xj) =
exp− 1

2σ2 (xj−ma)2∑
b exp− 1

2σ2 (xj−mb)2 .

I 3. Compute the mean for each cluster: ma =
∑

j xjP(ωa|xj)
I 4 Repeat steps 2 & 3 until convergence.

I In this version the hard-assign variable Via is replaced by a soft-assign
variable P(ωa|xj). Observe that

∑
a P(ωa|xj) = 1. Also observe that the

softness is controlled by σ2. In the limit, as σ2 7→ 0, the distribution
P(ωa|xj) will become binary valued, and soft k-means will be the same as
k-means.



Soft K-means. Mixture of Gaussians. (2)

I Soft k-means can be reformulated in terms of mixtures of Gaussians and
the Expectation-Maximization (EM) algorithm.

I This assumes that the data is generated by a mixture of Gaussian
distributions with means {m} and variance σ2I.

P(x |{V }, {m}) = 1
Z

exp{−
∑

ia Via
||xi−ma||2

σ2 }.
I This is equivalent to a mixture of Gaussians:

P(x |V ,m) = N (x :
∑

a Viama, σ
2), where the variable V identifies the

mixture component (i.e. Via = 1 if datapoint xi was generated by mixture
a).

I We need to impose a prior P({V }) on the assignment variable V . It is
natural to choose a uniform distribution P(V ) = 1/Z , where Z is the
number of possible assignments of the datapoints to the means.



Soft K-means. Mixture of Gaussians. (3)

I This gives distributions P(x , {V }|{m}) = P(x |{V }, {m})P({V }). This
form enables us to use the EM algorithm (see later lecture). The basic
idea is to do maximum likelihood estimation for the parameters {m} from
the marginal distribution P(x |{m}) =

∑
{V} P(x , {V }|{m}). But doing

maximum likelihood over this marginal distribution is not straightforward
and the EM was designed to do this. It estimates the mean variables {m}
despite the presence of unknown/missing/latent variables {V }.

I The EM algorithm can be applied to problems like this where there are
quantities to be estimated but also missing/latent variables. The EM
algorithm can be formulated in terms of minimizing an energy function,
but this energy function is non-convex and EM can be only guaranteed to
converge to a minimum of the energy function and not to a global
minimum. Deriving the soft k-means algorithm by applying the EM
algorithm to P(x |V ,m).is left as an exercise for the reader.

I We can extend soft k-means in several ways. The simplest is to allow the
covariances of the Gaussians to differ and to estimate them as well.

I But, more generally, we can have a process P(x , h|θ) where x is the
observed data, h is a hidden/missing/latent variable, and θ are the model
parameters.



Mixture of Von Mises Fisher

I A second example arises if we require that the data has unit norm
|xi | = 1, ∀i and hence lies on the unit sphere. This can be used to deal
with the scaling of images. Recall I (x) 7→ aI (x) + b, where a is the scale
(contrast) and b is the background. We set b = 0 and normalize the

images by I (x) 7→ I (x)
|I (x)| (so that I (x) has unit norm).

I The Von Mises Fisher distribution is P(x)|k, λk) = exp{λkmk ·x}
Z(λk )

. Here

x | = |mk | = 1, and σk is a positive constant.

I Note that this distribution is related to the Gaussian distribution (with

spherical covariance). The exponent of this Gaussian is − (x−mk )2

2σ2 . If we

require |x | = |mk | = 1, then the exponent becomes (x·mk−1)

σ2 . So if we

identify λk with 1/σ2
k we recover Von Mises Fisher. In other words, Von

Mises Fisher is the natural way to re-formulate mixtures of Gaussians for
data that lies on the unit sphere.



Boltzmann Machine: The Gibbs Distribution

I The probability distribution for N neurons ~S = (s1, ..., sN), where each si
takes value 0 or 1, is defined by a Gibbs distribution with energy
E(~S) = −1

2

∑
ij ωijsi sj and distribution:

P(~S) =
1

Z
exp{−E(~S)/T}. (42)

I State configurations ~S with low energy E(~S) will correspond to high

probabilities P(~S). Z is specified by the normalization condition∑
~S P(~S) = 1, by Z =

∑
~S exp{−E(~S)/T}. The ωij are the weights of the

distribution (like weights in a neural network) and are symmetric
ωij = ωji ∀i , j with ωii = 0, ∀i .

I The ”temperature” T controls the ”sharpness” of the distribution. For
very small T , the distribution is strongly peaked about
~S∗ = arg min~S E(~S). As T increases, the distribution becomes less peaked
as T becomes large (T 7→ ∞) all states become equally likely. Intuitively,
T is similar to the variance.



Boltzmann Machine: Inference

I The inference task is to compute, or estimate, the most probably state(s)
~S∗ = arg max~S P(~S) = arg min~S E(~S). But this is impossible because ~S
takes 2N possible states and so we cannot simply evaluate the probability
of every state and find the maximum, and similarly we cannot compute Z .
(But there are a few special cases where computing ~S∗ is possible).

I We have discussed two types of algorithm that can get approximate
estimates of ~S∗: (I) Gibbs Sampling. (II) Mean Field Theory.

I In this lecture we will be using Gibbs sampling. Recall that this: (i)

initializes the states ~S randomly, (ii) selects a node i at random, (iii)

samples si from the conditional distribution P(si |~S/i) =
exp si{

∑
j wij sj}

1+exp{
∑

j wij sj}
, and

(iv) repeat (ii) and (iii).

I It can be shown that Gibbs sampling converges to samples ~S from P(~S).
This implies that the final states will have high probabilities. So if we have
a set {~Sn : n = 1, ...,N} from P(~S) then they are likely to have high

probabilities {P(~Sn) : n = 1, ...,N} and be close to ~S∗. Importantly, for

this lecture, we can approximate the expected statistics of P(~S) by

< sjsj >=
∑

~S si sjP(~S) ≈
∑N

n=1 s
n
i s

n
j .



Boltzmann Machine: Learning
I Divide the nodes into two classes Vo and Vh, which are the observed

(input) and hidden nodes respectively. ~So and ~Sh denote the states of the

observed and the hidden nodes respectively. The components of ~So and ~Sh

are {Si : i ∈ Vo} and {Si : i ∈ Vh} respectively. ~S = (~So , ~Sh).
I We re-express the distribution over the states as:

P(~So , ~Sh) =
1

Z
exp{−E(~S)/T}. (43)

The marginal distribution over the observed nodes is

P(~So) =
∑
~Sh

1

Z
exp{−E(~S)/T}. (44)

I We estimate a distribution R(~S0) of the observed nodes (from the

observed data {~Sn
o : n = 1, ...,N} where N are the number of training

examples). The goal of learning is to adjust the weights ~ω of the model

(i.e. the {ωij}) so that the marginal distribution P(~So) of the model is as

similar as possible to the observed model R(~S0).
I This requires specifying a similarity criterion which is chosen to be the

Kullback-Leibler divergence:

KL(~w) =
∑
~So

R(~So) log
R(~So)

P(~So)
(45)



Boltzmann Machine: The Learning Rule

I The Boltzmann Machine adjusts the weights by the iterative update rule:

wij 7→ wij + ∆wij (46)

∆wij = −δ ∂KL(~w)

ωij
(47)

∆wij = − δ

T
{< SiSj >clamped − < SiSj >} (48)

I Here δ is a small positive constant. The derivation of the update rule is
given in later slides (so is how to compute the update rule).

I < SiSj >clamped and < SiSj > are the expectation (e.g., correlation)
between the state variables Si , Sj when the data is generated by the

clamped distribution R(~So)P(~Sh|~So) and by the distribution P(~So , ~Sh)
respectively.

I I.e. < SiSj >=
∑

~S SiSjP(~S). The conditional distribution P(~Sh|~So) is the
distribution over the hidden states conditioned on the observed states. So
it is given by P(~Sh|~So) = P(~Sh, ~So)/P(~So).



Boltzmann Machine: Understanding the Learning Rule

I The learning rule, equation (47), has two components. The first term
< SiSj >clamped is Hebbian and the second term < SiSj > is anti-Hebbian
(because of the sign). This is a balance between the activity of the model
when it is driven by input data (i.e. clamped) and when it is driven by
itself. A wild speculation is that the Hebbian learning is done when you
are awake, hence exposed to external stimuli, while the anti-Hebbian
learning is done when you are asleep with your eyes shut but, by sampling
from P(~So |~Sh) you are creating images, or dreaming.

I The algorithm will convergence when the model accurately fits the data,
i.e.. when < SiSj >clamped=< SiSj > and the right hand side of the
update rule, equation (47), is zero.

I What is the observed distribution R(~So)? We do not know R(~So) exactly

and so we approximate it by the training data {~Sµo ;µ = 1, ...,N}. This is
equivalent to assuming that

R(~S) =
1

N

N∑
µ=1

δ(~So − ~Sµo ) (49)

.



Estimating the < SiSj >

I The Boltzmann Machine requires computing < SiSj >clampaed and
< SiSj >. This is done by Gibbs sampling (earlier lectures). .

I By performing Gibbs sampling multiple times on the distribution P(~So , ~Sh)

we obtain M samples ~S
1
, ..., ~S

M
. Then we can approximate < SiSj > by:

< SiSj >≈
1

M

M∑
a=1

Sa
i S

a
j (50)

I Similarly we can obtain samples from R(~So)P(~Sh|~So) (the clamped case)

by first generating samples ~So
1
, ..., ~So

M
from R(~S0) and then converting

them to samples
~S

1
, ..., ~S

M
(51)

where ~S = (~So
i
, ~Sh

i
), and ~Sh

i
is a random sample from P(~Sh|~So), again

performed by Gibbs sampling.

I How do we sample from R(~So)? Recall that we only know samples

{~Sµo ;µ = 1, ...,N} (the training data). Hence sampling from R(~So)
reduces to selecting one of the training examples at random.

I Gibbs sampling is not a very effective algorithm. So Boltzmann machines
are hard to use in practice (with extra ingredients).



Derivation of the BM update rule (I)

I To justify the learning rule, equation (47), we need to take the derivative
of the cost function ∂KL(~ω)/∂ωij .

∂KL(~w)

∂ωi j
= −

∑
~So

R(~So)

P(~So)

∂P(~So)

∂ωij
(52)

I Expressing P(~So) = 1
Z

∑
~Sh

exp{−E(~S)/T}, we can express ∂P(~So )
∂ωij

in two
terms:

1

Z

∂

∂ωij

∑
~Sh

exp{−E(~S)/T} − 1

Z

∑
~Sh

exp{−E(~S)/T )}∂ logZ

∂ωij
(53)

I This can be re-expressed as:

−1

T

∑
~Sh

SiSjP(~S) + {
∑
~Sh

P(~S)
1

T

∑
~S

SiSjP(~S)} (54)



Derivation of the BM update rule (II)

I Hence we can compute:

∂P(~So)

∂ωij
=
−1

T

∑
~Sh

SiSjP(~S) + P(~So)
1

T

∑
~S

SiSjP(~S) (55)

I Substituting equation (54) into equation (51) yields

∂KL(~w)

∂ωi j
=

1

T

∑
~Sh,~So

SiSj
P(~S)

P(So)
R(~So)− 1

T
{
∑
~So

R(~So)}
∑
~S

SiSjP(~S) (56)

I Which can be simplified to give:

∂KL(~w)

∂ωi j
=

1

T

∑
~S

SiSjP(~Sh|~So)R(~So)− 1

T

∑
~S

SiSjP(~S) (57)

I Note this derivation requires ∂ logZ/∂wij =
∑

~S SiSjP(~S).



Boltzmann Machine is Maximum Likelihood Learning

I The Kullback-Leibler criterion, equation (43), can be expressed as:

KL(~ω) =
∑
~S

R(~So) logR(~So)−
∑
~S

R(~So) logP(~So) (58)

I Only the second term depends on ~ω so we can ignore the first (since we
want to minimize KL(~ω) with respect to ~ω).

I Using the expression for R(~So) in terms of the training data,
equation (48), we can express the second term as:

− 1

N

∑
~So

1

N

N∑
a=1

δ(~So − ~Sa
o ) logP(~So) (59)

− 1

N

1

N

N∑
a=1

logP(~Sa
o ) (60)

I This is precisely, the Maximum Likelihood criterion for estimating the
parameters of the distribution P(~So). This shows that Maximum
Likelihood is a good strategy to learn a distribution even if we do not
know the correct form of the distribution. We are simply finding the best
fit model.



Boltzmann Machine learns by Expectation-Maximization

I The Boltzmann Machine (BM) learning is a special case of the
Expectation-Maximization (EM) algorithm. This algorithm can be applied
to any learning problem where some variables are unobservable.

I For the BM, the distribution is P(~So , ~Sh;ω) with observed data

{~Sn
o : n = 1, ...,N}. We do not know the {~Sn

h : n = 1, ...,N}, so the ~Sh are
hidden, missing, or latent variables.

I In theory we can compute the marginal distribution
P(~So ;ω) =

∑
~Sh
P(~So , ~Sh;ω). Then we can learn the weights {ωij} by

Maximum Likelihood: minimizing

−
N∑

n=1

logP(~So ;ω), w.r.t. ω.

I The problem is that we cannot compute P(~So ;ω) explicitly. This is where
we need EM.



BM and EM: part 1

I We define a new (unknown) distributions

Qn(~Sh) =
∏m

i=1 q
n
i (S i

h) n = 1, ..N, where the {S i
h : i = 1, ..,m} are the

components of the hidden variables ~Sh.

I We define a free energy:

F(Q, ω) = −
N∑

n=1

logP(~Sn
o ;ω) +

N∑
n=1

∑
~Sn
h

Qn(~Sn
h ) log

Qn(~Sn
h )

P(~Sn
h |~Sn

o ;ω)
.

I This has two important properties. Firstly, we can minimize F(Q, ω) with

respect to each Qn(.) to obtain Qn(~Sn
h ) = P(~Sn

h |~Sn
o ;ω). Substituting this

value of Qn(.) back into F(Q, ω) yields −
∑N

n=1 logP(~Sn
o ;ω).

I Therefore minimizing F(Q, ω) with respect to Q and ω is equivalent to

performing ML on P(~So ;ω).

I This follows from the facts that
∑

~S Q(~S) log Q(~S)

P(~S)
≥ 0 and = 0 only when

Q(~S) = P(~S).



BM and EM: part 2

I The second property is that we can minimize F(Q, ω) by alternatively
minimizing with respect to Q and to ω. This is the EM algorithm.

I Minimizing w.r.t. Q(.) gives Qn(~Sn
h ) = P(~Sn

h |~Sn
o ;ω).

I Minimizing w.r.t. ω gives:

ωij = arg min
N∑

n=1

Qn(~Sn
h ) logP(~S ;ω) = arg min−{

N∑
n=1

Qn(~Sn
h )E(~S)−logZ(ω)}.

I This exploits P(~Sh|~So ;ω)P(~So ;ω) = P(~Sh, ~So ;ω).

I For the BM, these minimizations reduce to the BM learning rule (after
some algebra). Gibbs sampling is needed to perform each step. Note:
there is no guarantee that the EM algorithm will converge to the global
optimum (i.e. to the real ML estimate).



The Restricted Boltzmann Machine
I RBMs are a special case of Boltmann Machines where there are no

weights connecting the hidden nodes to each other with energy:

E(~S) =
∑

i∈Vo , j∈Vh

ωijSiSj . (61)

I The conditional distributions P(~Sh|~So) and P(~So |~Sh) can both be
factorized:

P(~So |~Sh) =
∏
i∈Vo

P(Si |~Sh), P(~Sh|~So) =
∏
j∈Vh

P(Sj |~So) (62)

I For i ∈ Vo , P(Si |~Sh) = 1
Zi

exp{−(1/T )Si (
∑

j∈Vh
ωijSj)}. Zi is the

normalization constant Zi =
∑

Si∈{0,1} exp{−(1/T )Si (
∑

j∈Vh
ωijSj)} – and

similarly for P(Sj |~So) for j ∈ Vh.
I These factorization means that we can sample from P(~So |~Sh) and

P(~Sh|~So) very rapidly (e.g., by sampling from P(Si |~Sh)). This makes
learning fast and practical. Estimating < SiSj >clamped requires sampling

from P(~Sh|~So), which is very fast. Estimating < SiSj >, requires sampling

from P(~So , ~Sh) by alternatively sampling from P(~So |~Sh) and P(~Sh|~So).
This must be done multiple times until convergence (but it is much faster
than Gibbs sampling).

I RBMs are too restricted to anything useful. But Hinton (2006) suggested
stacking them on top of each other to create a Deep Network.


