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Image Classification: A core task in Computer Vision
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cat

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

This image by Nikita is 
licensed under CC-BY 2.0
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This image by Nikita is 
licensed under CC-BY 2.0

The Problem: Semantic Gap

9

What the computer sees

An image is just a big grid of 
numbers between [0, 255]:

e.g. 800 x 600 x 3
(3 channels RGB)
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Challenges: Viewpoint variation
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All pixels change when 
the camera moves!

This image by Nikita is 
licensed under CC-BY 2.0
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Challenges: Deformation

13

This image by Umberto Salvagnin 
is licensed under CC-BY 2.0

This image by Tom Thai is 
licensed under CC-BY 2.0 

This image by sare bear is 
licensed under CC-BY 2.0

This image by Umberto Salvagnin 
is licensed under CC-BY 2.0
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Challenges: Occlusion
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This image is CC0 1.0 public domain This image by jonsson is licensed 
under CC-BY 2.0This image is CC0 1.0 public domain



Previous Attempt: hand-crafted features



SIFT

HOG

LBP

SURF MSER
Textons

GLOH

Color-
SIFT

SPIN

PHOG

...



• What features to use for better image recognition?

• Can we learn the features (internal representations)
automatically?
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Neural Network: Single Layer Perceptron

y

x·w+b

1 or -1: binary classification

thresholding
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Neural Network: Single Layer Perceptron
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Review: LeNet-5
[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]
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ImageNet Challenge

Large8scale*recogni)on*

1000 categories

1M training images
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersFirst CNN-based winner
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Case Study: VGGNet
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[Simonyan and Zisserman, 2014]

Small filters, Deeper networks
 
8 layers (AlexNet) 
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1
and  2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13 (ZFNet)
-> 7.3% top 5 error in ILSVRC’14

AlexNet VGG16 VGG19
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Case Study: VGGNet

40

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv) 

AlexNet VGG16 VGG19
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Case Study: VGGNet

41

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv) 

AlexNet VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers 
has same effective receptive field as 
one 7x7 conv layer

Q: What is the effective receptive field of 
three 3x3 conv (stride 1) layers?
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Case Study: VGGNet

43

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv) 

AlexNet VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers 
has same effective receptive field as 
one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs. 
72C2 for C channels per layer
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational 
efficiency
 

- 22 layers
- Efficient “Inception” module
- No FC layers
- Only 5 million parameters!          

12x less than AlexNet
- ILSVRC’14 classification winner 

(6.7% top 5 error)
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

“Inception module”: design a 
good local network topology 
(network within a network) and 
then stack these modules on 
top of each other
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Apply parallel filter operations on 
the input from previous layer:

- Multiple receptive field sizes 
for convolution (1x1, 3x3, 
5x5)

- Pooling operation (3x3)

Concatenate all filter outputs 
together depth-wise
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Apply parallel filter operations on 
the input from previous layer:

- Multiple receptive field sizes 
for convolution (1x1, 3x3, 
5x5)

- Pooling operation (3x3)

Concatenate all filter outputs 
together depth-wise

Q: What is the problem with this?
[Hint: Computational complexity]
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input: 
28x28x256
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input: 
28x28x256

Q1: What is the output size of the 
1x1 conv, with 128 filters?

28x28x128
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input: 
28x28x256

Q2: What are the output sizes of 
all different filter operations?

28x28x128 28x28x192 28x28x96 28x28x256
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input: 
28x28x256

Q3:What is output size after 
filter concatenation?

28x28x128 28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 28x28x672
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input: 
28x28x256

Q3:What is output size after 
filter concatenation?

28x28x128 28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 28x28x672
Conv Ops:
[1x1 conv, 128]  28x28x128x1x1x256
[3x3 conv, 192]  28x28x192x3x3x256
[5x5 conv, 96]  28x28x96x5x5x256
Total: 854M ops
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?
[Hint: Computational complexity]

Example:

Module input: 
28x28x256

Q3:What is output size after 
filter concatenation?

28x28x128 28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 529k Solution: “bottleneck” layers that 
use 1x1 convolutions to reduce 
feature depth
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Inception module with dimension reduction

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

1x1 conv “bottleneck” 
layers
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module with dimension reduction

Using same parallel layers as 
naive example, and adding “1x1 
conv, 64 filter” bottlenecks:

Module input: 
28x28x256

28x28x64 28x28x64 28x28x256

28x28x128 28x28x192 28x28x96 28x28x64

Conv Ops:
[1x1 conv, 64]  28x28x64x1x1x256
[1x1 conv, 64]  28x28x64x1x1x256
[1x1 conv, 128]  28x28x128x1x1x256
[3x3 conv, 192]  28x28x192x3x3x64
[5x5 conv, 96]  28x28x96x5x5x64
[1x1 conv, 64]  28x28x64x1x1x256
Total: 358M ops

Compared to 854M ops for naive version
Bottleneck can also reduce depth after 
pooling layer

28x28x480
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Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Stack Inception modules 
with dimension reduction 

on top of each other
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersDeeper Networks
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Case Study: ResNet
[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional 
neural network?

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it’s not caused by overfitting!

Can we train deeper networks?
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Case Study: ResNet
[He et al., 2015]

Hypothesis: the problem is an optimization problem, deeper models are harder to 
optimize

The deeper model should be able to perform at 
least as well as the shallower model.

A solution by construction is copying the learned 
layers from the shallower model and setting 
additional layers to identity mapping.

Can we train deeper networks?
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relu

85

Case Study: ResNet
[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a 
desired underlying mapping

Residual block

X
identity

F(x) + x

F(x)

relu

relu

“Plain” layers
XX

H(x)

Use layers to 
fit residual 
F(x) = H(x) - x 
instead of 
H(x) directly

H(x) = F(x) + x

85

Can we train deeper networks?
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Case Study: ResNet
[He et al., 2015]

For deeper networks 
(ResNet-50+), use “bottleneck” 
layer to improve efficiency 
(similar to GoogLeNet)

91

Can we train deeper networks?



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 2019Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - April 30, 2019

Case Study: ResNet
[He et al., 2015]

For deeper networks 
(ResNet-50+), use “bottleneck” 
layer to improve efficiency 
(similar to GoogLeNet)

1x1 conv, 64 filters to 
project to 28x28x64

3x3 conv operates over 
only 64 feature maps

1x1 conv, 256 filters projects 
back to 256 feature maps 
(28x28x256)

92

Can we train deeper networks?
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..

.

Case Study: ResNet
[He et al., 2015]

Total depths of 34, 50, 101, or 
152 layers for ImageNet

90

Can we train deeper networks?
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

“Revolution of Depth”
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Improving ResNets...

112

[Zagoruyko et al. 2016]

- Argues that residuals are the 
important factor, not depth

- User wider residual blocks (F x k 
filters instead of F filters in each layer)

- 50-layer wide ResNet outperforms 
152-layer original ResNet

- Increasing width instead of depth 
more computationally efficient 
(parallelizable)

Wide Residual Networks

Basic residual block Wide residual block



(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling (e) compound scaling

#channels

layer_i

resolution HxW

wider

deeper

higher 
resolution

higher 
resolution

deeper

wider

EfficientNet --- current SOTA on ImageNet Classification



(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling (e) compound scaling

#channels

layer_i

resolution HxW

wider

deeper

higher 
resolution

higher 
resolution

deeper

wider

EfficientNet --- current SOTA on ImageNet Classification



EfficientNet --- current SOTA on ImageNet Classification
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