

An Introduction to Deep Neural Networks for Computer Vision

Cihang Xie Johns Hopkins University

Slide Credit: Alan Yuille, Vittal Premachandran, Seyoun Park, Stanford CS231n (Fei-Fei Li et al.)

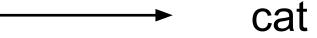
- Challenges in Computer Vision
- Introducing Neural Networks
- Advanced Computer Vision Models

- Challenges in Computer Vision
- Introducing Neural Networks
- Advanced Computer Vision Models

Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0

(assume given set of discrete labels) {dog, cat, truck, plane, ...}



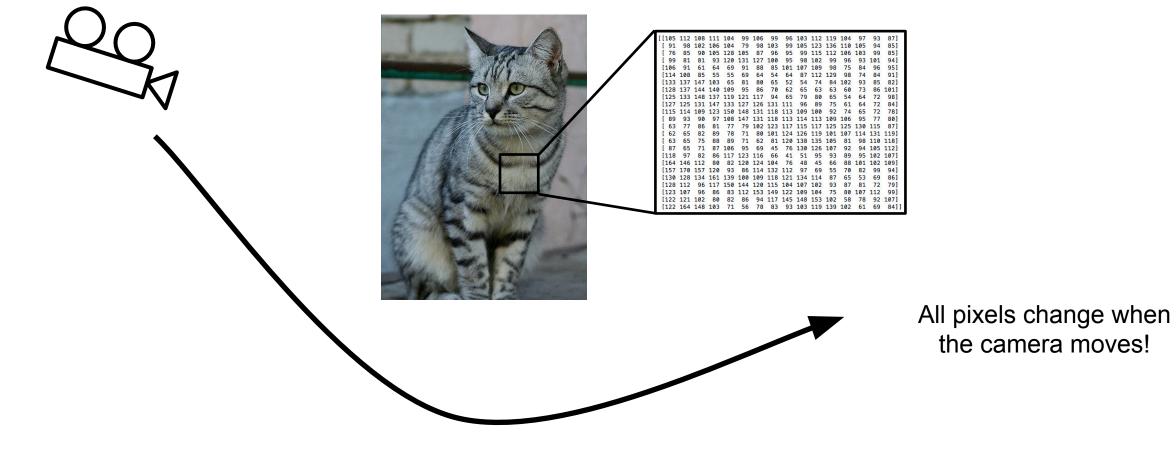
Fei-Fei Li & Justin Johnson & Serena Yeung

The Problem: Semantic Gap	[[105 112 108 111 104 99 106 99 96 103 112 119 104 97 93 87] [91 98 102 106 104 79 98 103 99 105 123 136 110 105 94 85] [76 85 90 105 128 105 87 96 95 99 115 112 106 103 99 85] [99 81 81 93 120 131 127 100 95 98 102 99 96 93 101 94] [106 91 61 64 69 91 88 85 101 107 109 98 75 84 96 95]
<image/>	[114 108 85 55 55 69 64 54 64 87 112 129 98 74 84 91] [133 137 147 103 65 81 80 65 52 54 74 84 102 93 85 82] [128 137 144 140 109 95 86 70 62 65 63 63 63 60 73 86 101] [125 133 148 137 119 121 117 94 65 79 80 65 54 64 72 98] [127 125 131 147 133 127 126 131 111 96 89 75 61 64 72 84] [115 114 109 123 150 148 131 118 113 109 100 92 74 65 72 78] [89 93 90 97 108 147 131 118 113 114 113 109 106 95 77 80] [63 77 86 81 77 79 102 123 117 115 117 125 125 130 115 87] [63 65 75 88 89 71 62 81 120 138 135 105 81 98 110 118] [63 65 75 88 89 71 62 81 120 138 135 105 81 98 110 118] [87 65 71 87 106 95 69 45 76 130 126 107 92 94 105 112] [118 97 82 86 117 123 116 66 41 51 95 93 89 95 102 107] [164 146 112 80 82 120 124 104 76 48 45 66 88 101 102 109] [157 170 157 120 93 86 114 132 112 97 69 55 70 82 99 94] [130 128 134 161 139 100 109 118 121 134 114 87 65 53 69 86] [128 112 96 117 150 144 120 115 104 107 102 93 87 81 72 79] [123 107 96 86 83 112 153 149 122 109 104 75 80 107 112 99] [122 121 102 80 82 86 94 117 145 148 153 102 58 78 92 107] [122 124 148 103 71 56 78 83 93 103 119 139 102 61 69 84]] What the computer secess
	An image is just a big grid of numbers between [0, 255]:
	e.g. 800 x 600 x 3 (3 channels RGB)

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 9

Challenges: Viewpoint variation



This image by Nikita is licensed under CC-BY 2.0

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 10

Challenges: Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by Umberto Salvagnin is licensed under CC-BY 2.0

This image by Tom Thai is licensed under CC-BY 2.0

April 4, 2019

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 13

licensed under CC-BY 2.0

Challenges: Occlusion

This image is CC0 1.0 public domain

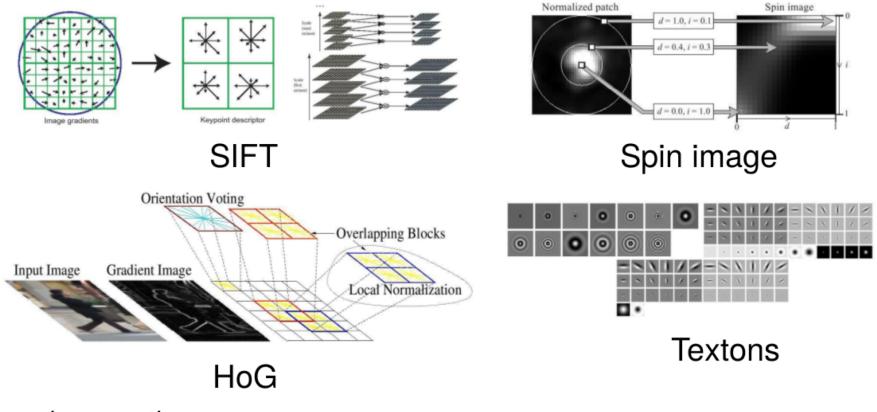
This image is CC0 1.0 public domain

<u>This image</u> by <u>jonsson</u> is licensed under <u>CC-BY 2.0</u>

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 2 - 14

Previous Attempt: hand-crafted features



and many others:

SURF, MSER, LBP, Color-SIFT, Color histogram, GLOH,

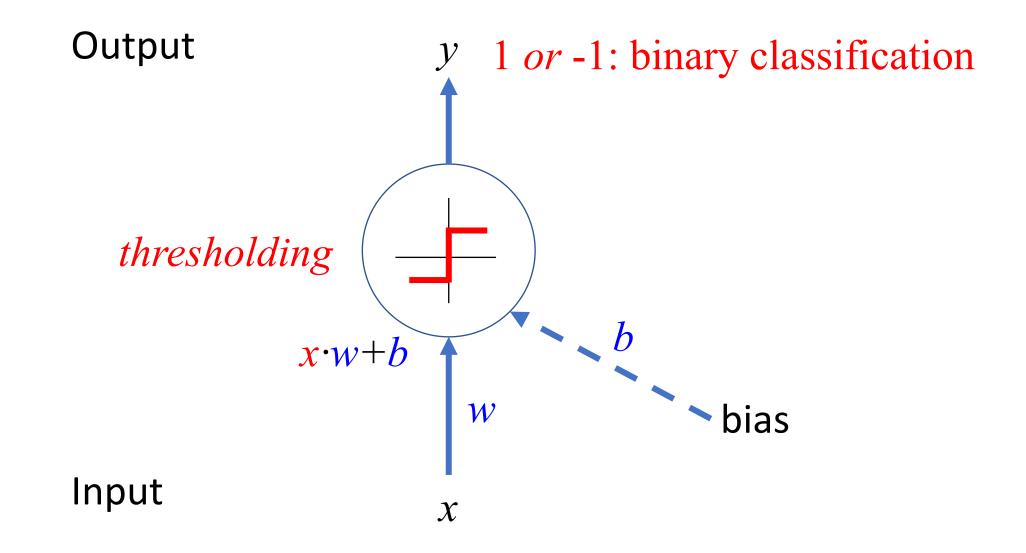
Computer vision features

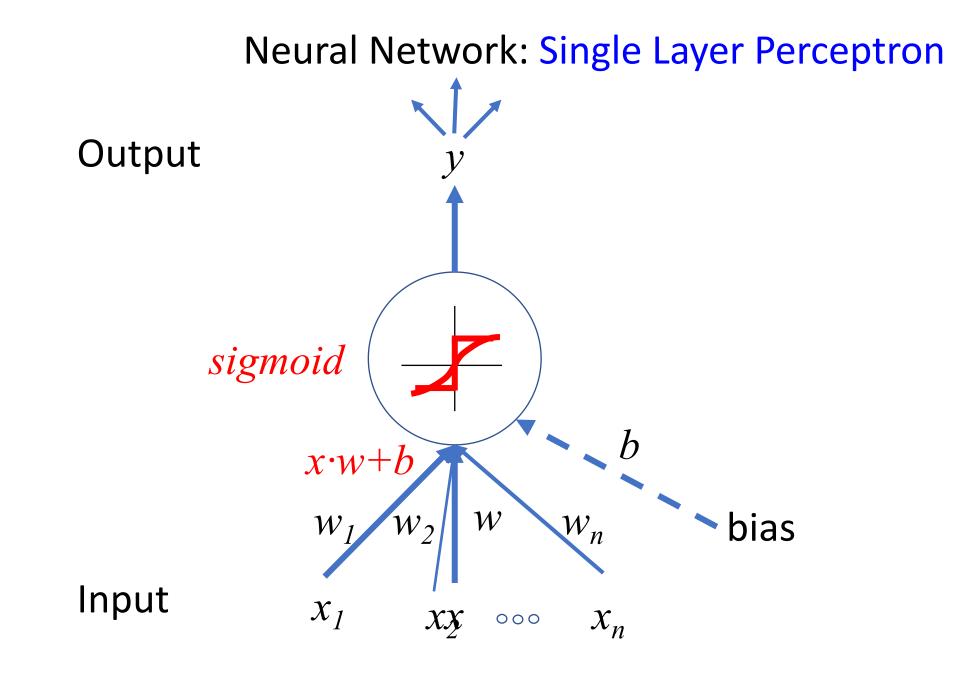
LBP SIFT SPIN GLOH Textons HOG PHOG Color-MSER SURF SIFT

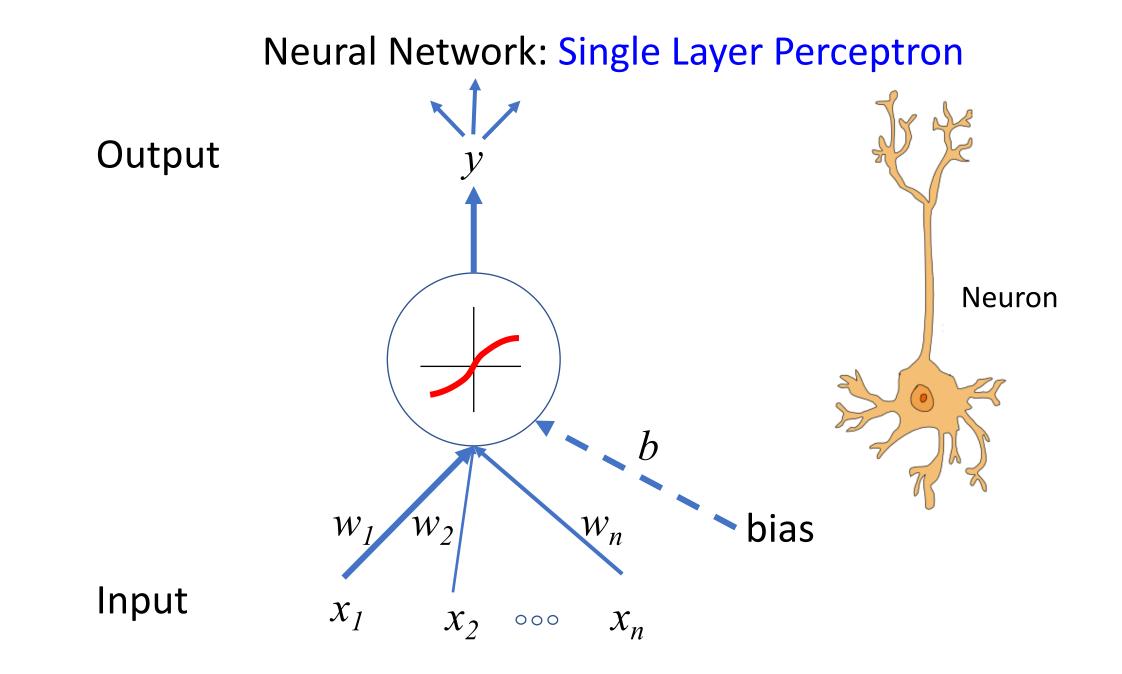
- What features to use for better image recognition?
- Can we learn the features (internal representations) automatically?

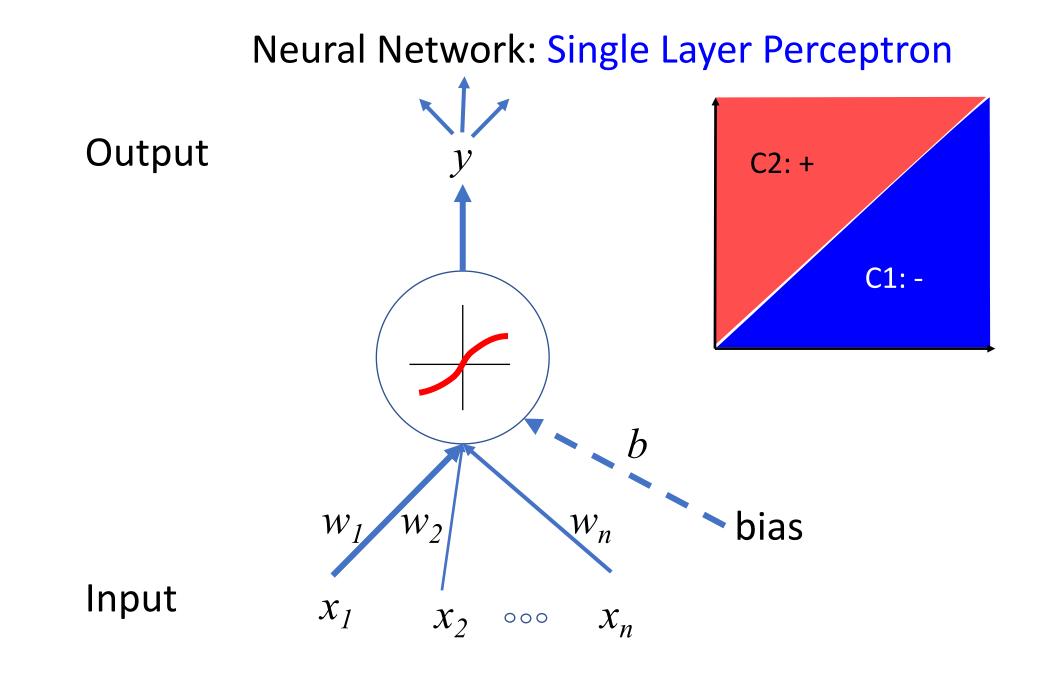
- Challenges in Computer Vision
- Introducing Neural Networks
- Advanced Computer Vision Models

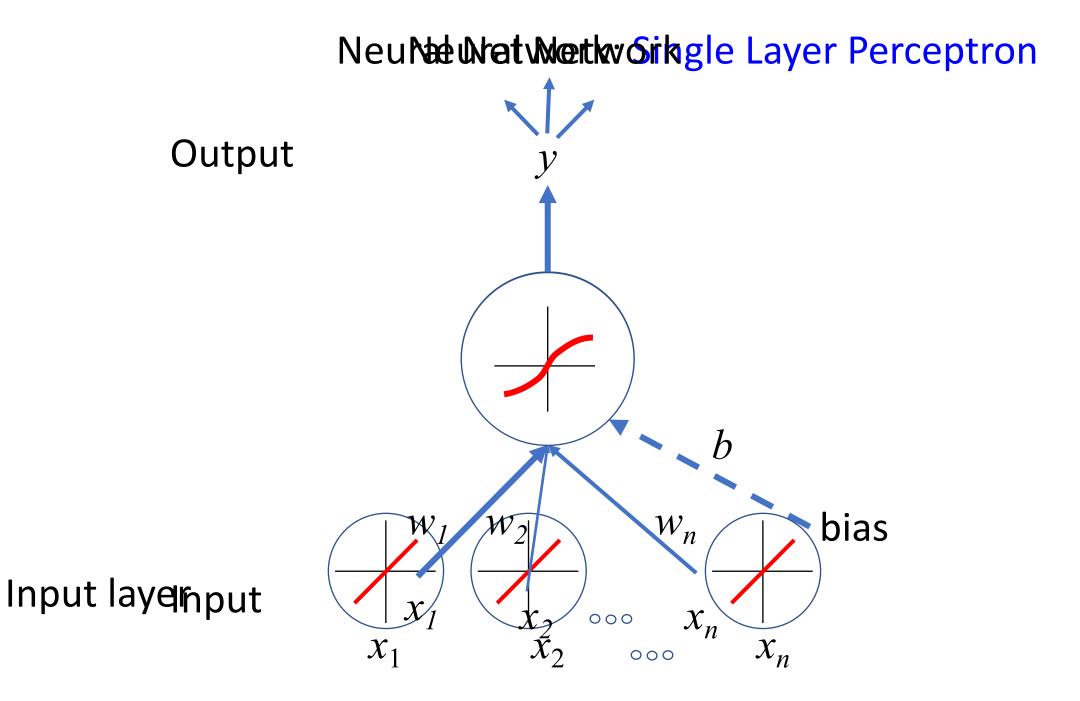
Neural Network: Single Layer Perceptron

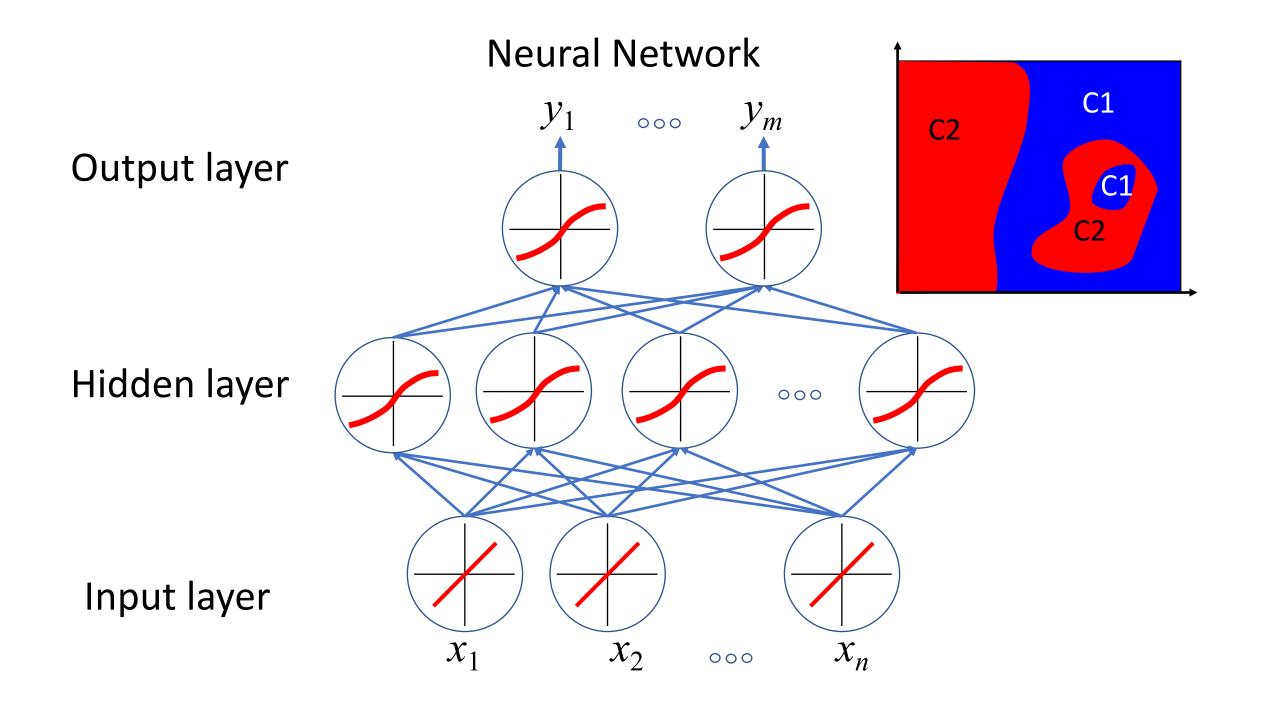




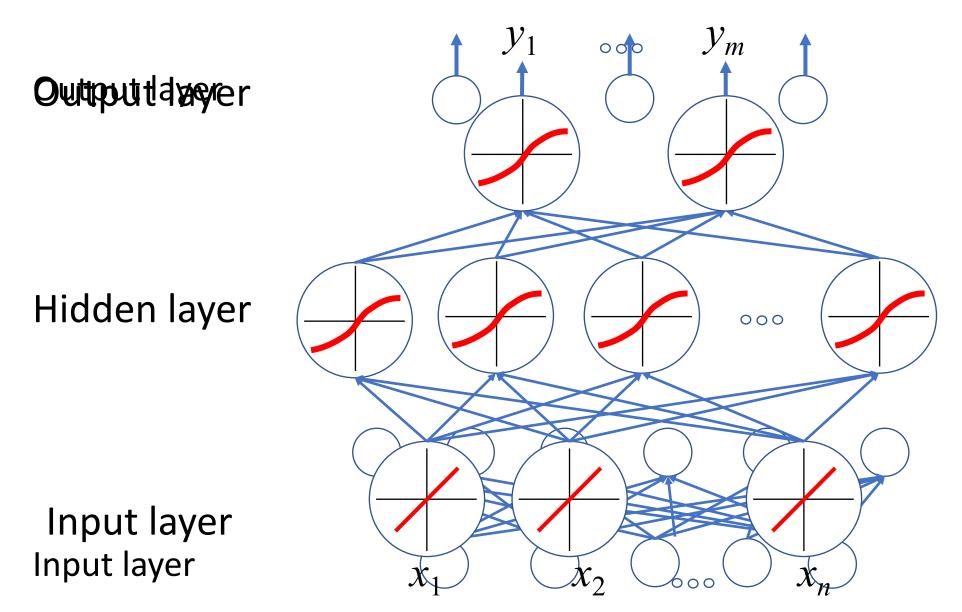




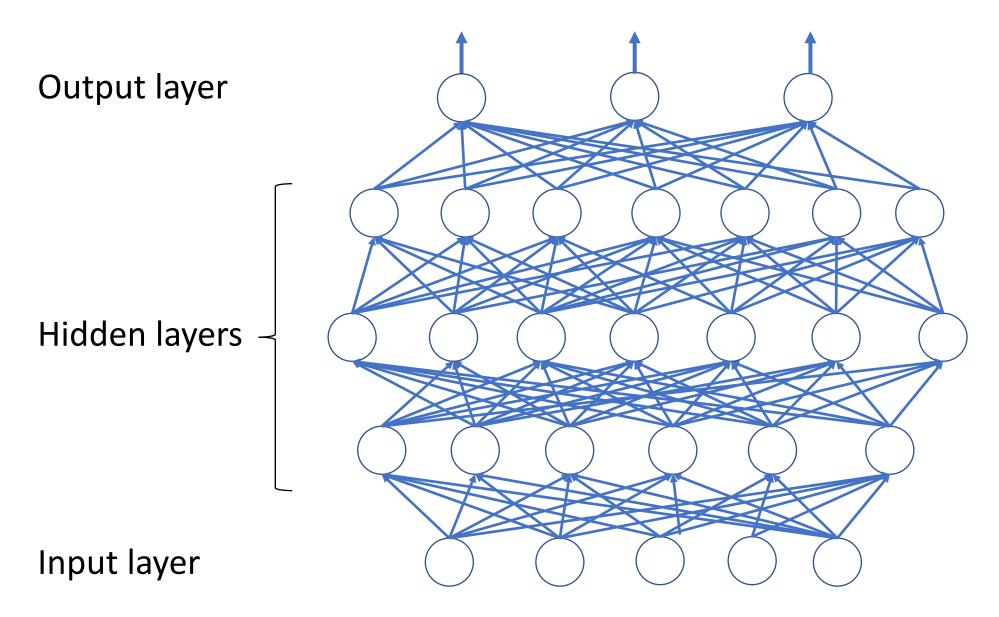




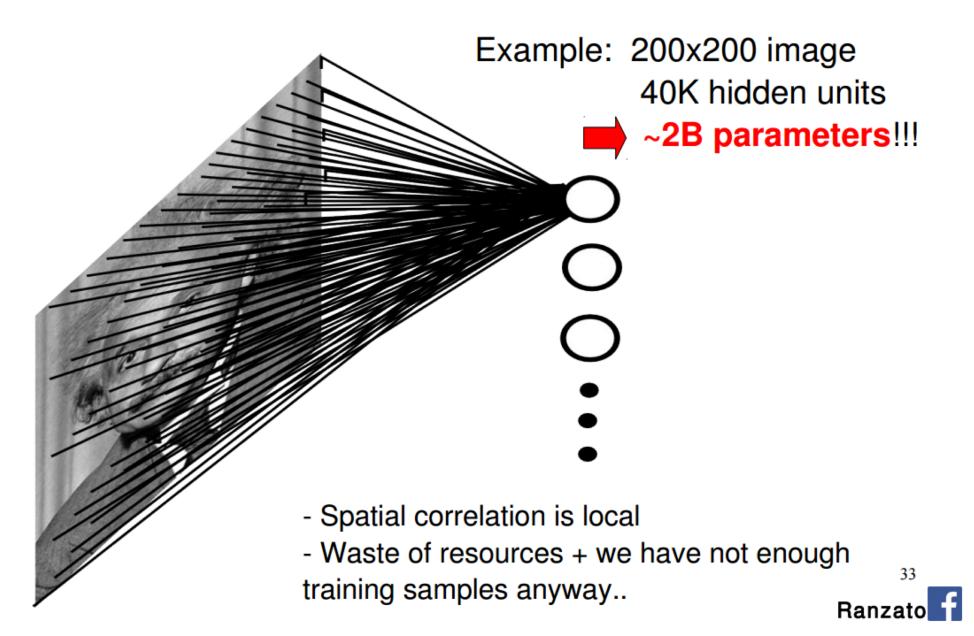
Devepunkælunkælt Work



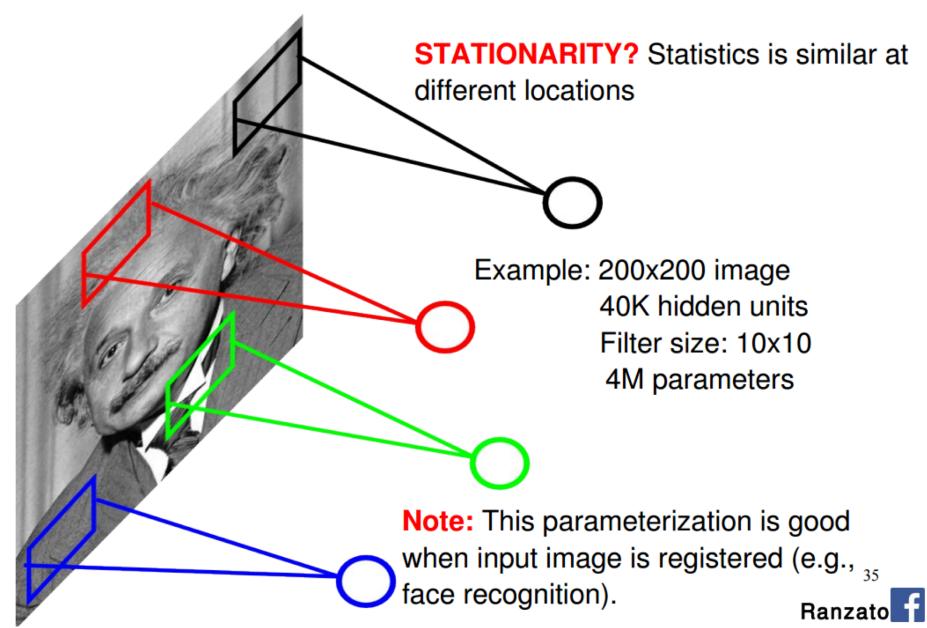
Deep Neural Network

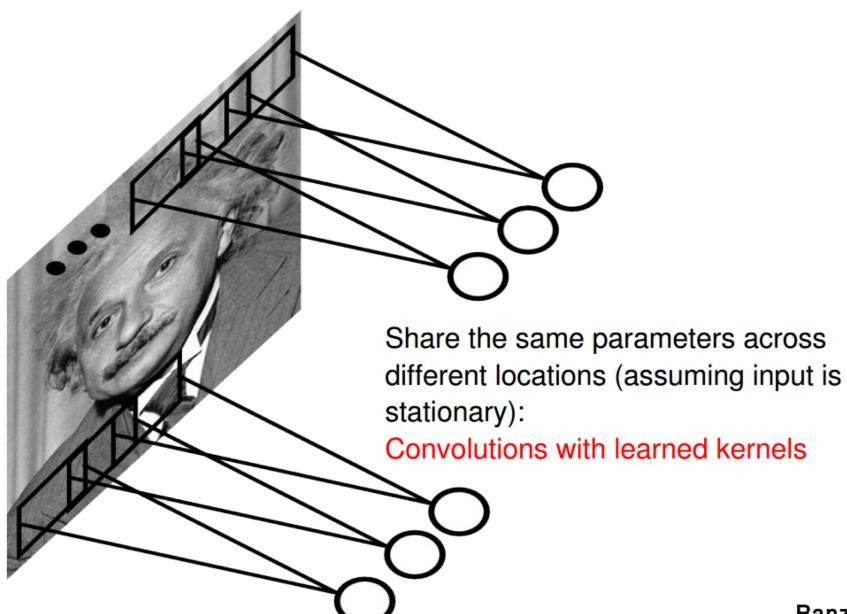


Fully Connected Layer

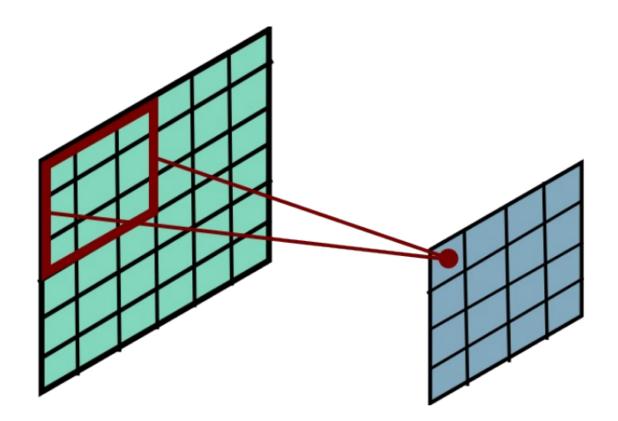


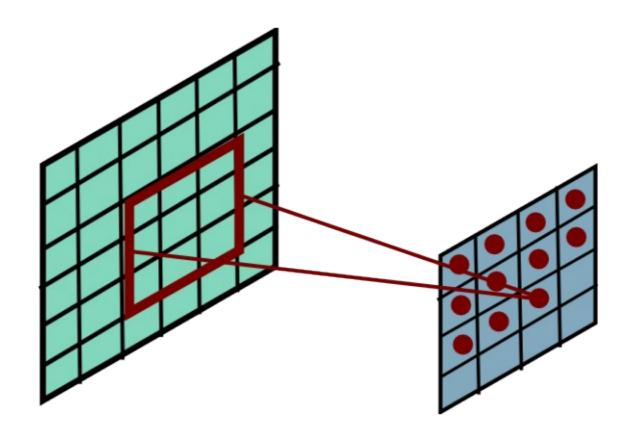
Locally Connected Layer

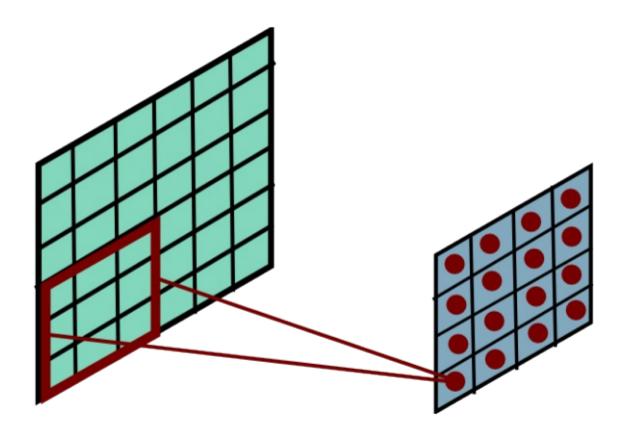




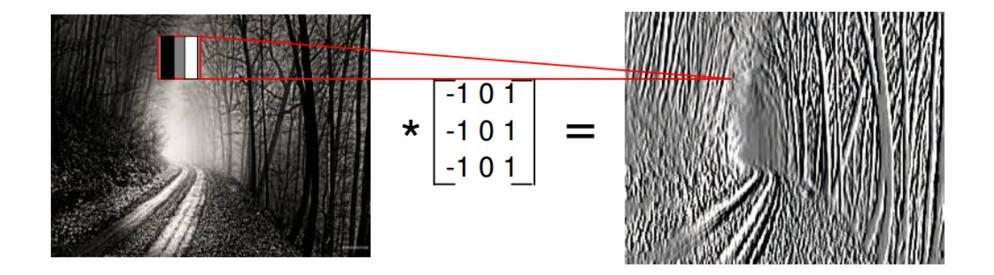
36 Ranzato

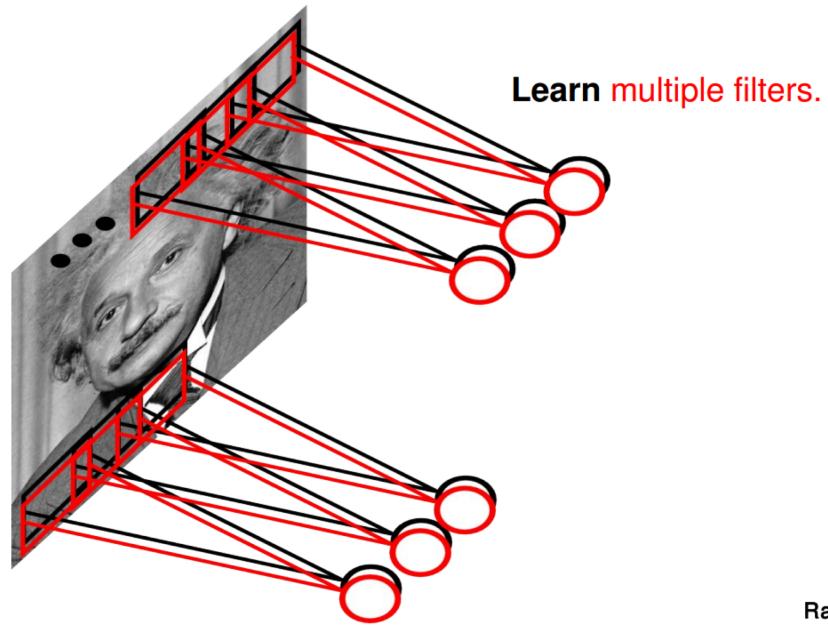


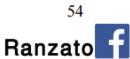


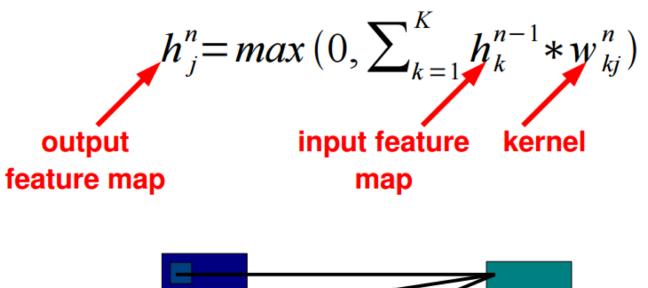


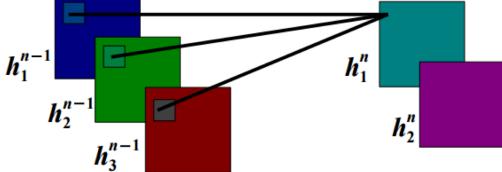
Output Shape =
$$\frac{(Input Shape - Kernel Size)}{Stride} + 1$$









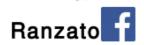


Pooling Layer

Let us assume filter is an "eye" detector.

Q.: how can we make the detection robust to the exact location of the eye?

Pooling Layer By "pooling" (e.g., taking max) filter responses at different locations we gain robustness to the exact spatial location of features.



61

Pooling Layer: Examples

Max-pooling:

$$h_j^n(x, y) = max_{\overline{x} \in N(x), \overline{y} \in N(y)} h_j^{n-1}(\overline{x}, \overline{y})$$

Average-pooling:

$$h_{j}^{n}(x, y) = 1/K \sum_{\bar{x} \in N(x), \bar{y} \in N(y)} h_{j}^{n-1}(\bar{x}, \bar{y})$$

L2-pooling:

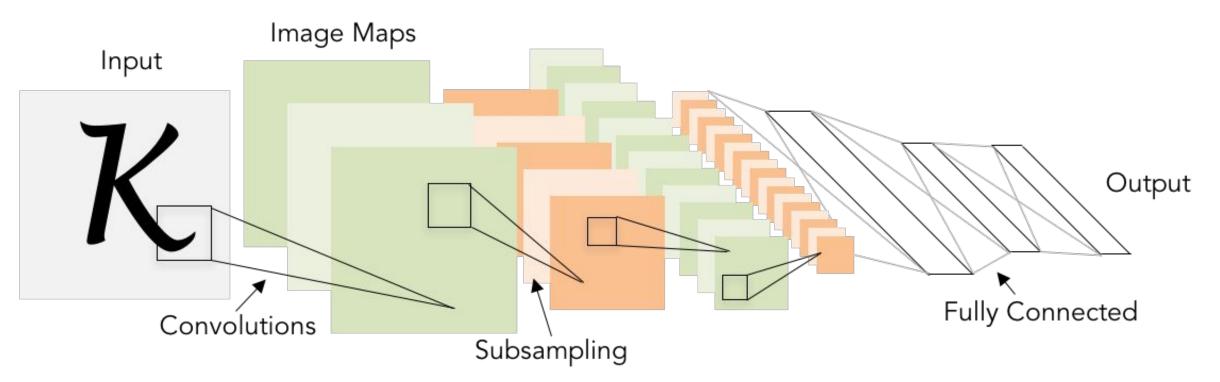
$$h_{j}^{n}(x, y) = \sqrt{\sum_{\bar{x} \in N(x), \bar{y} \in N(y)} h_{j}^{n-1}(\bar{x}, \bar{y})^{2}}$$

L2-pooling over features:

$$h_{j}^{n}(x, y) = \sqrt{\sum_{k \in N(j)} h_{k}^{n-1}(x, y)^{2}}$$

Review: LeNet-5

[LeCun et al., 1998]



Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-FC-FC]

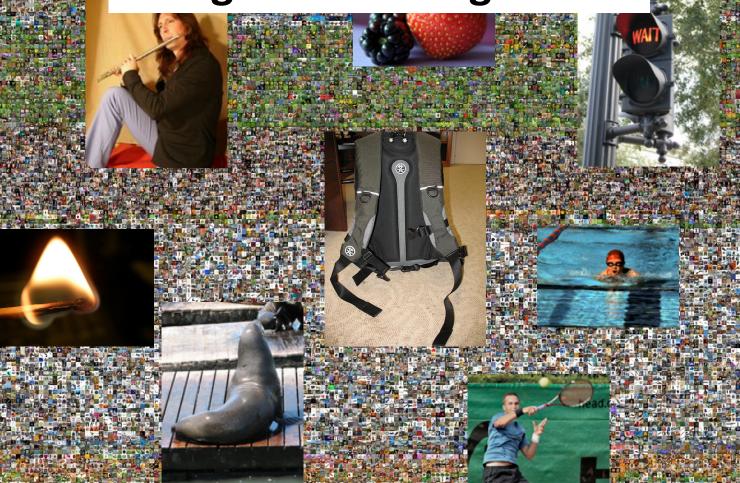
Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 20 April 30, 2019

- Challenges in Computer Vision
- Introducing Neural Networks
- Advanced Computer Vision Models

ImageNet Challenge

Large-scale recognition



1000 categories

1M training images

Case Study: AlexNet

[Krizhevsky et al. 2012]

Architecture: CONV1 MAX POOL1 NORM1 CONV2 MAX POOL2 NORM2 CONV3 CONV4 CONV5 Max POOL3 FC6 FC7 FC8

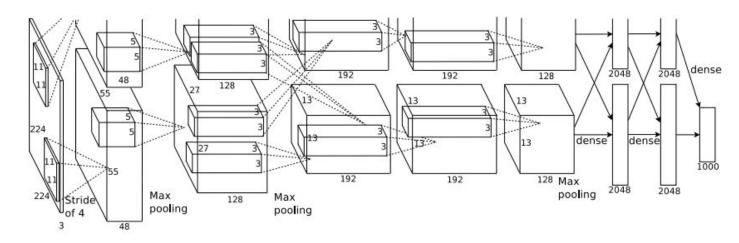
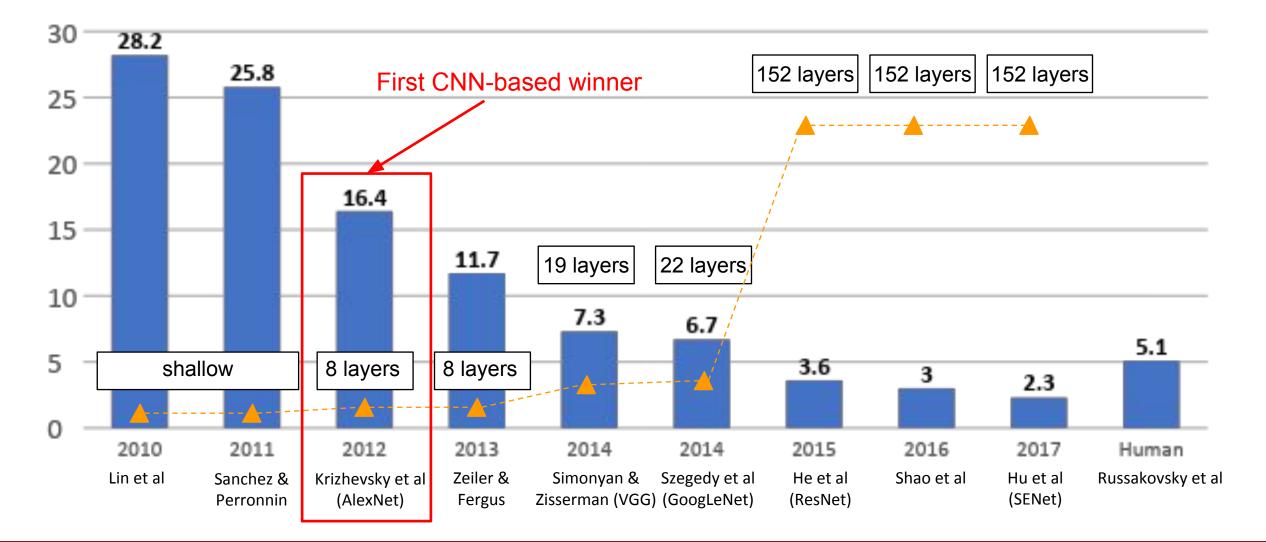


Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 21 April 30, 2019

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners



Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 35 April 30, 2019

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet) -> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC'13 (ZFNet) -> 7.3% top 5 error in ILSVRC'14

	Softmax
	FC 1000
Softmax	FC 4096
FC 1000	FC 4096
FC 4096	Pool
FC 4096	3x3 conv, 512
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	Pool
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
Pool	Pool
3x3 conv, 256	3x3 conv, 256
3x3 conv, 256	3x3 conv, 256
Pool	Pool
3x3 conv, 128	3x3 conv, 128
3x3 conv, 128	3x3 conv, 128
Pool	Pool
3x3 conv, 64	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input
VGG16	VGG19

Softmax

FC 1000 FC 4096 FC 4096

Pool

Pool

Pool

Input

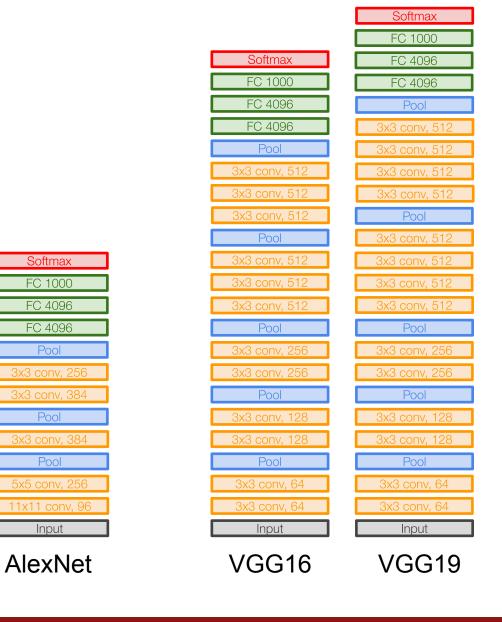
AlexNet

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 39 April 30, 2019

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)



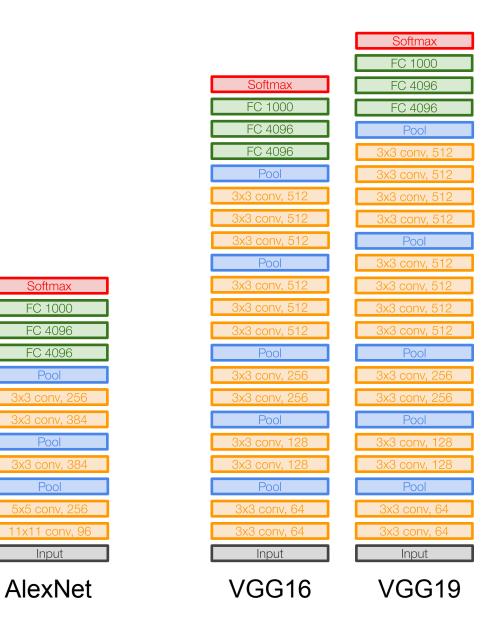
Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 40 April 30, 2019

[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same effective receptive field as one 7x7 conv layer



Pool

Pool

Input

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 -April 30, 2019 41

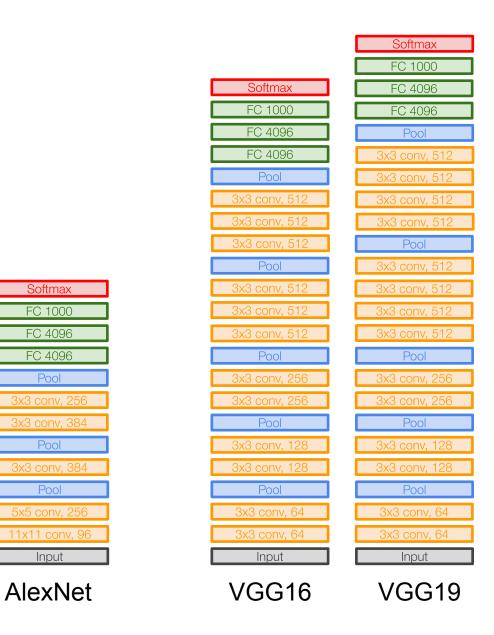
[Simonyan and Zisserman, 2014]

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same effective receptive field as one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: $3 * (3^2C^2)$ vs. 7²C² for C channels per layer



Softmax

FC 4096

Pool

Pool

Input

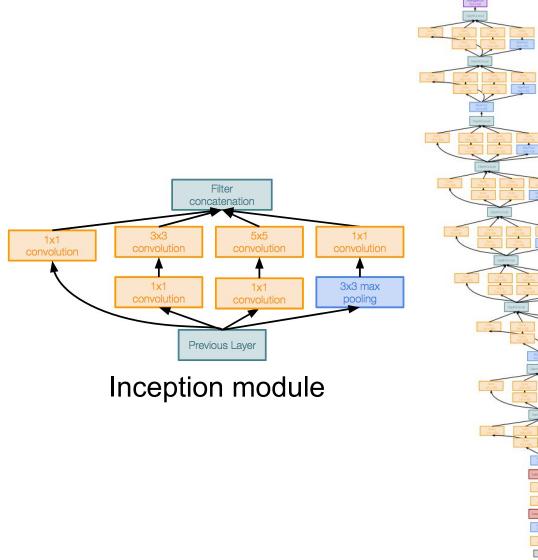
Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 -April 30, 2019 43

[Szegedy et al., 2014]

Deeper networks, with computational efficiency

- 22 layers
- Efficient "Inception" module
- No FC layers
- Only 5 million parameters!
 12x less than AlexNet
- ILSVRC'14 classification winner (6.7% top 5 error)

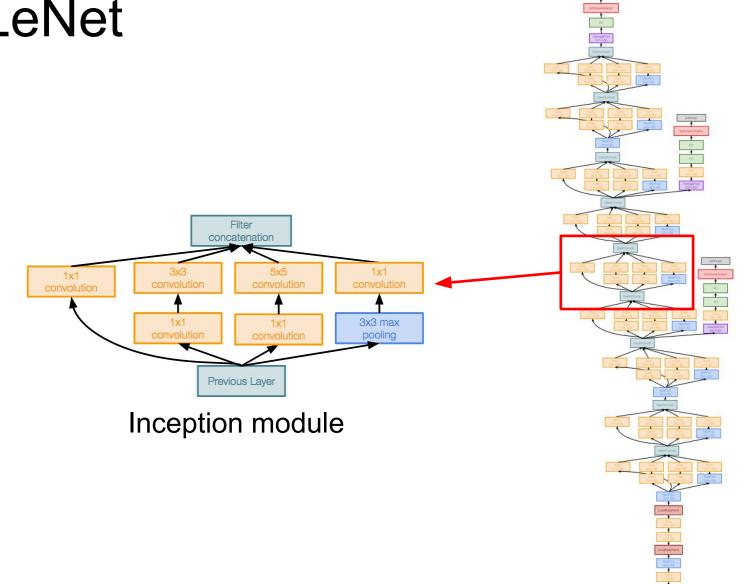


Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 50 April 30, 2019

[Szegedy et al., 2014]

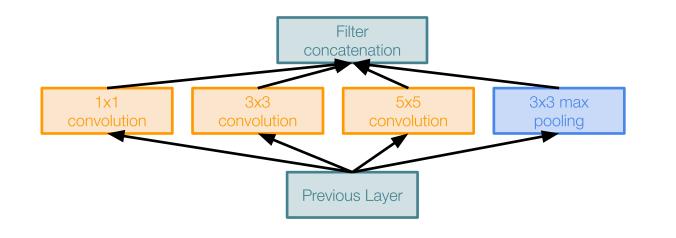
"Inception module": design a good local network topology (network within a network) and then stack these modules on top of each other



Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 51 April 30, 2019

[Szegedy et al., 2014]



Naive Inception module

Apply parallel filter operations on the input from previous layer:

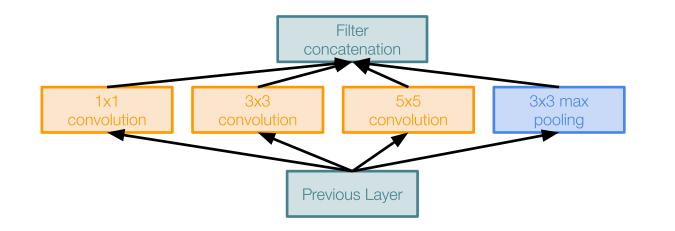
- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together depth-wise

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 52 April 30, 2019

[Szegedy et al., 2014]



Naive Inception module

Apply parallel filter operations on the input from previous layer:

- Multiple receptive field sizes for convolution (1x1, 3x3, 5x5)
- Pooling operation (3x3)

Concatenate all filter outputs together depth-wise

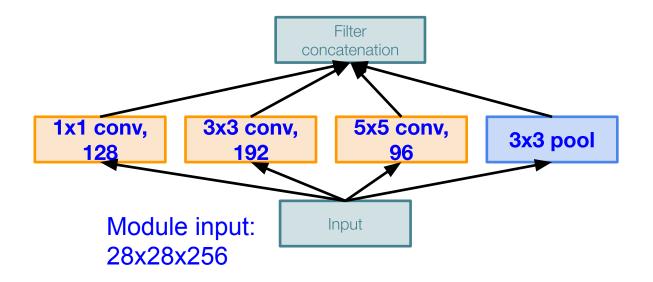
Q: What is the problem with this? [Hint: Computational complexity]

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 53 April 30, 2019

[Szegedy et al., 2014]

Example:



Naive Inception module

Fei-Fei Li & Justin Johnson & Serena Yeung

Q: What is the problem with this? [Hint: Computational complexity]

April 30, 2019

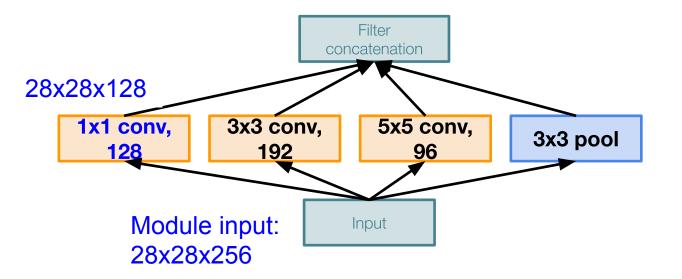
Lecture 9 -

54

[Szegedy et al., 2014]

Example:

Q1: What is the output size of the 1x1 conv, with 128 filters?



Naive Inception module

Fei-Fei Li & Justin Johnson & Serena Yeung

Q: What is the problem with this? [Hint: Computational complexity]

56

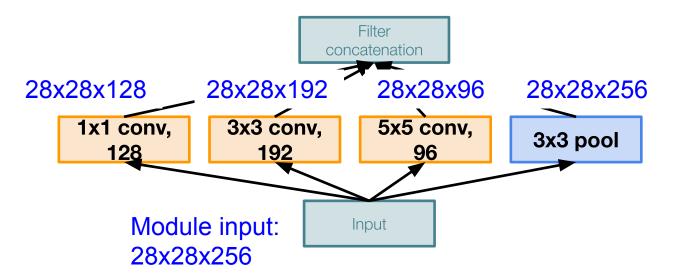
April 30, 2019

Lecture 9 -

[Szegedy et al., 2014]

Example:

Q2: What are the output sizes of all different filter operations?



Naive Inception module

Fei-Fei Li & Justin Johnson & Serena Yeung

Q: What is the problem with this? [Hint: Computational complexity]

58

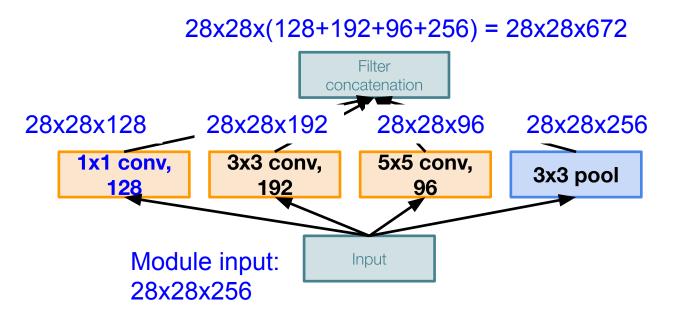
April 30, 2019

Lecture 9 -

[Szegedy et al., 2014]

Example:

Q3:What is output size after filter concatenation?



Naive Inception module

Fei-Fei Li & Justin Johnson & Serena Yeung

Q: What is the problem with this? [Hint: Computational complexity]

60

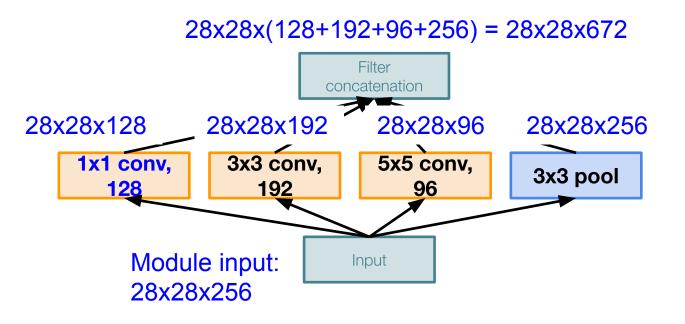
April 30, 2019

Lecture 9 -

[Szegedy et al., 2014]

Example:

Q3:What is output size after filter concatenation?



Q: What is the problem with this? [Hint: Computational complexity]

Conv Ops:

[1x1 conv, 128] 28x28x128x1x1x256 [3x3 conv, 192] 28x28x192x3x3x256 [5x5 conv, 96] 28x28x96x5x5x256 **Total: 854M ops**

Naive Inception module

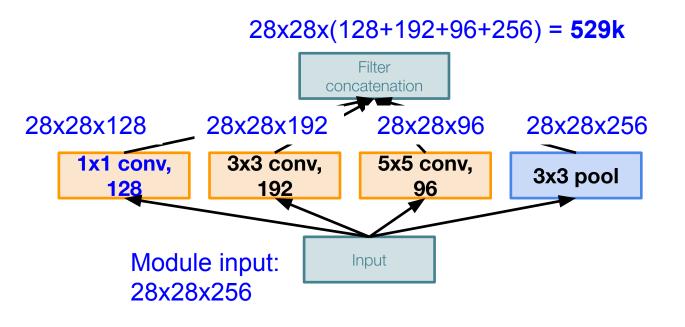
Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 61 April 30, 2019

[Szegedy et al., 2014]

Example:

Q3:What is output size after filter concatenation?



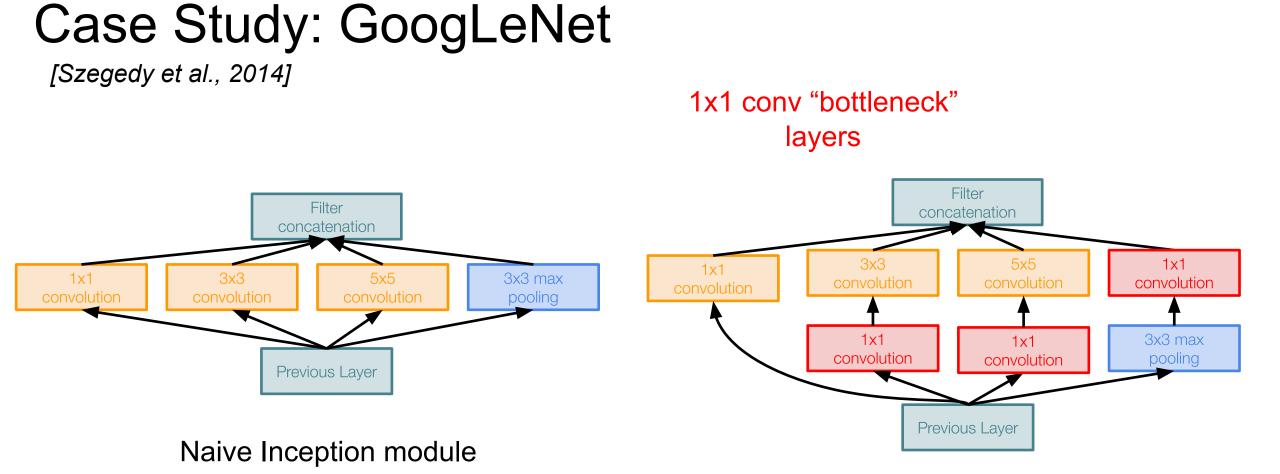
Q: What is the problem with this? [Hint: Computational complexity]

Solution: "bottleneck" layers that use 1x1 convolutions to reduce feature depth

Naive Inception module

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 63 April 30, 2019

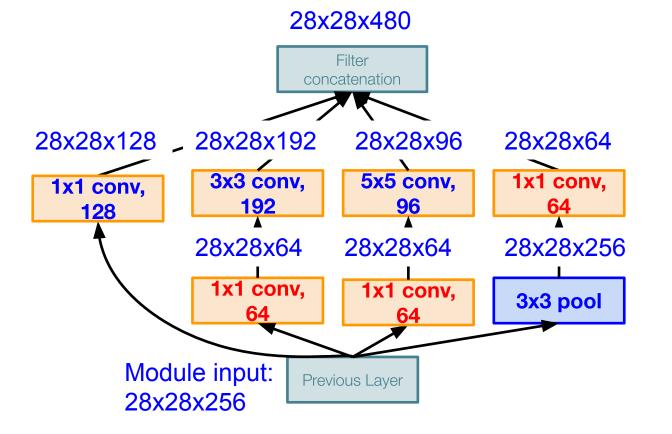


Inception module with dimension reduction

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 67 April 30, 2019

[Szegedy et al., 2014]



Inception module with dimension reduction

Using same parallel layers as naive example, and adding "1x1 conv, 64 filter" bottlenecks:

Conv Ops:

[1x1 conv, 64] 28x28x64x1x1x256 [1x1 conv, 64] 28x28x64x1x1x256 [1x1 conv, 128] 28x28x128x1x1x256 [3x3 conv, 192] 28x28x192x3x3x64 [5x5 conv, 96] 28x28x96x5x5x64 [1x1 conv, 64] 28x28x64x1x1x256 **Total: 358M ops**

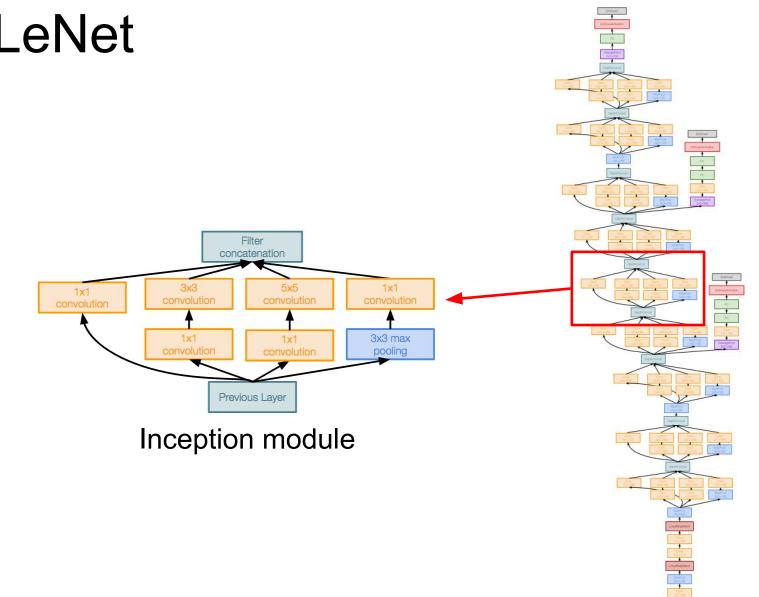
Compared to 854M ops for naive version Bottleneck can also reduce depth after pooling layer

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 68 April 30, 2019

[Szegedy et al., 2014]

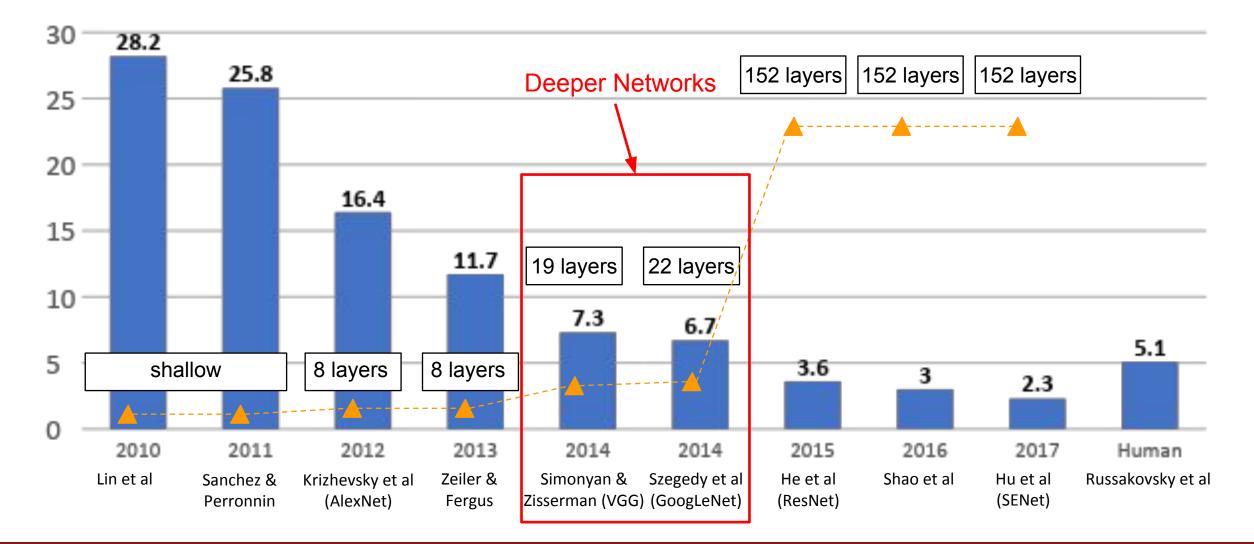
Stack Inception modules with dimension reduction on top of each other



Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 69 April 30, 2019

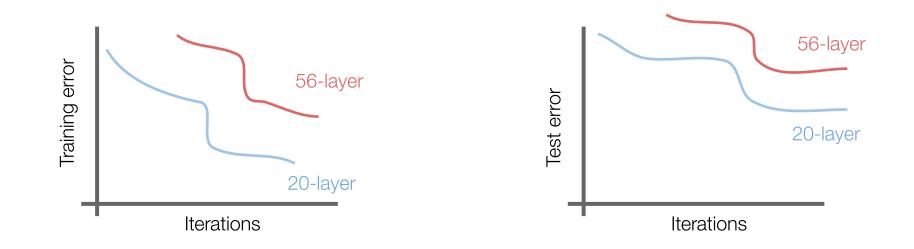
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners



Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 38 April 30, 2019

What happens when we continue stacking deeper layers on a "plain" convolutional neural network?



56-layer model performs worse on both training and test error -> The deeper model performs worse, but it's not caused by overfitting!

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 81 April 30, 2019

Hypothesis: the problem is an *optimization* problem, deeper models are harder to optimize

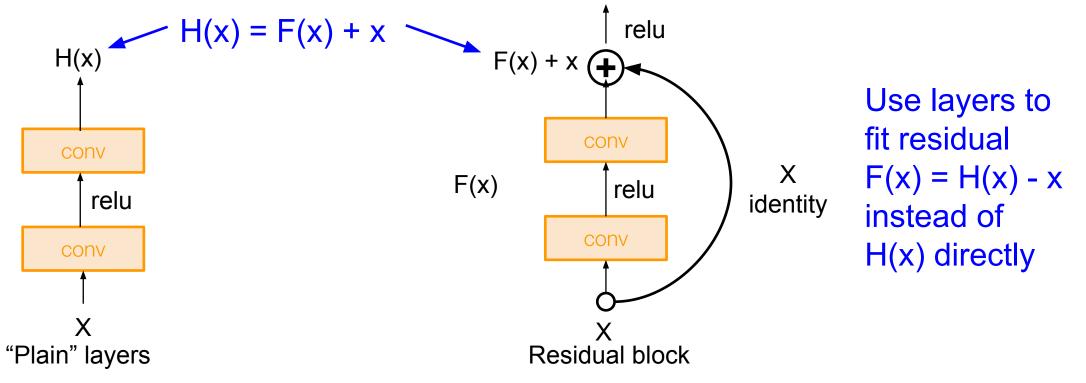
The deeper model should be able to perform at least as well as the shallower model.

A solution by construction is copying the learned layers from the shallower model and setting additional layers to identity mapping.

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 83 April 30, 2019

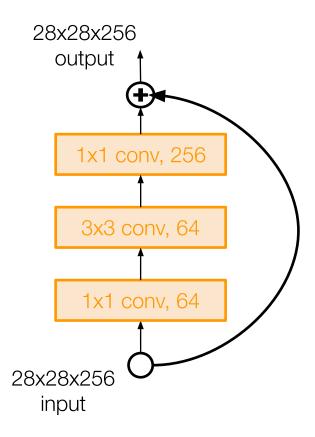
Solution: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping



Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 85 April 30, 2019

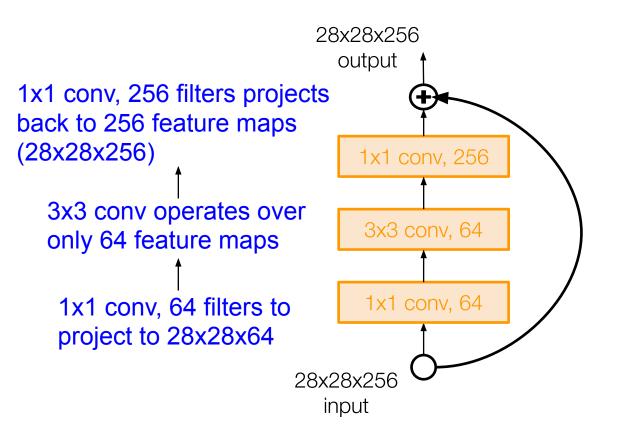
For deeper networks (ResNet-50+), use "bottleneck" layer to improve efficiency (similar to GoogLeNet)



Fei-Fei Li & Justin Johnson & Serena Yeung

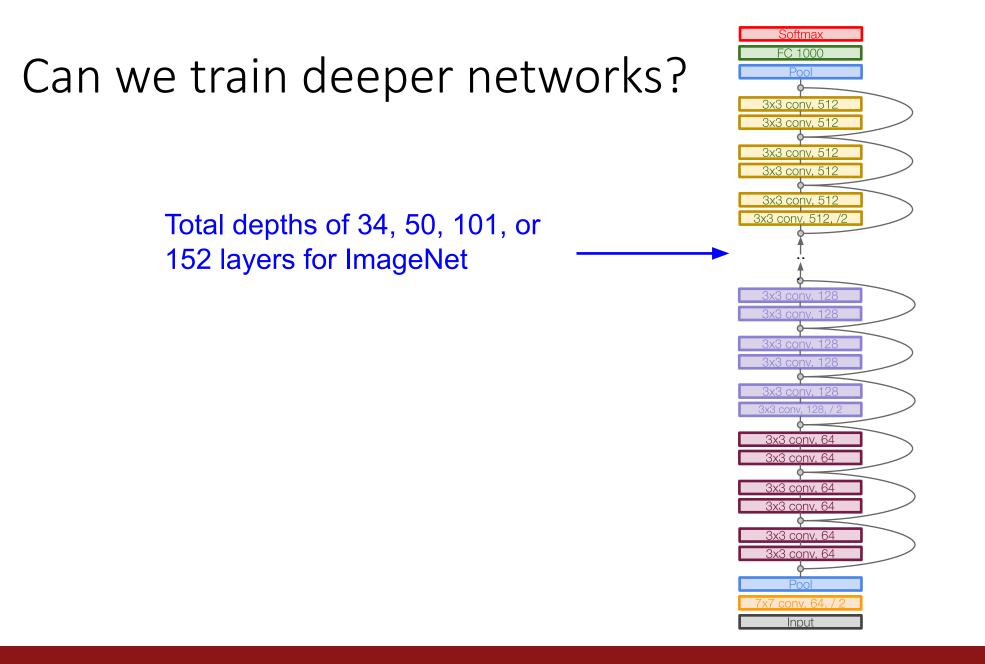
Lecture 9 - 91 April 30, 2019

For deeper networks (ResNet-50+), use "bottleneck" layer to improve efficiency (similar to GoogLeNet)



Fei-Fei Li & Justin Johnson & Serena Yeung

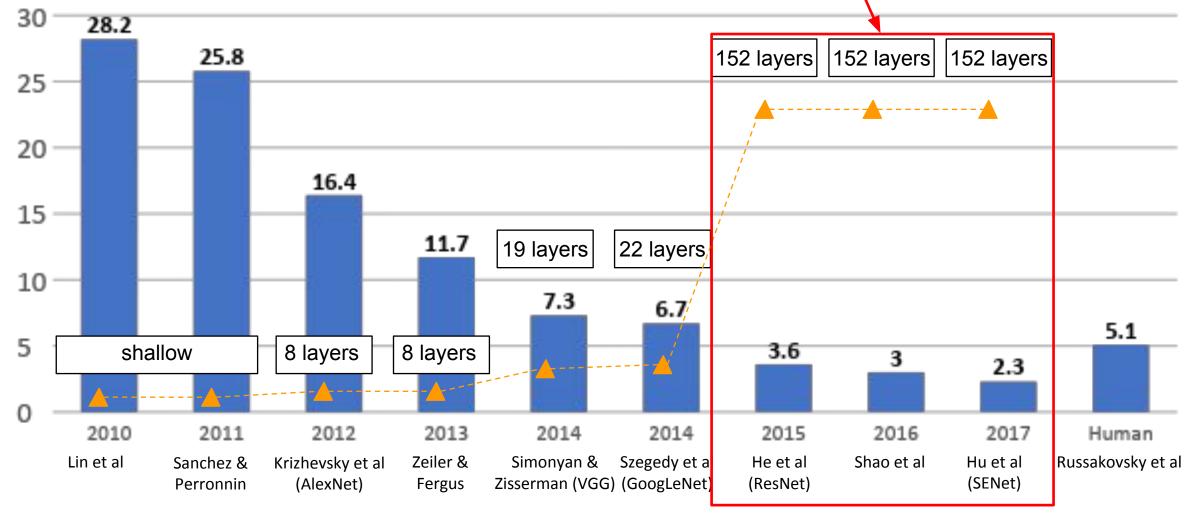
Lecture 9 - 92 April 30, 2019



Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 90 April 30, 2019

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners "Revolution of Depth"



Fei-Fei Li & Justin Johnson & Serena Yeung

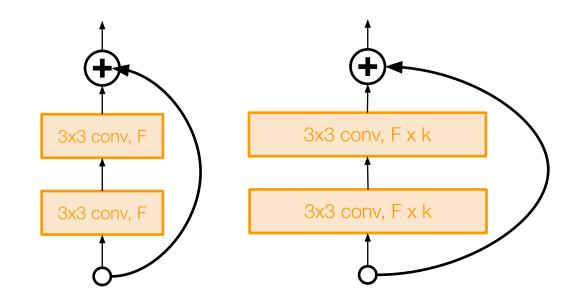
Lecture 9 - 77 April 30, 2019

Improving ResNets...

Wide Residual Networks

[Zagoruyko et al. 2016]

- Argues that residuals are the important factor, not depth
- User wider residual blocks (F x k filters instead of F filters in each layer)
- 50-layer wide ResNet outperforms
 152-layer original ResNet
- Increasing width instead of depth more computationally efficient (parallelizable)



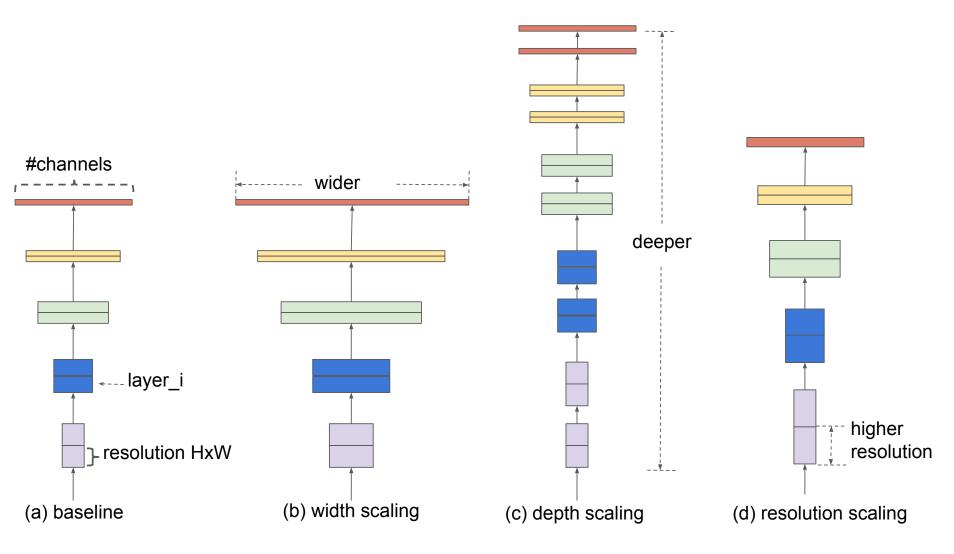
Basic residual block

Wide residual block

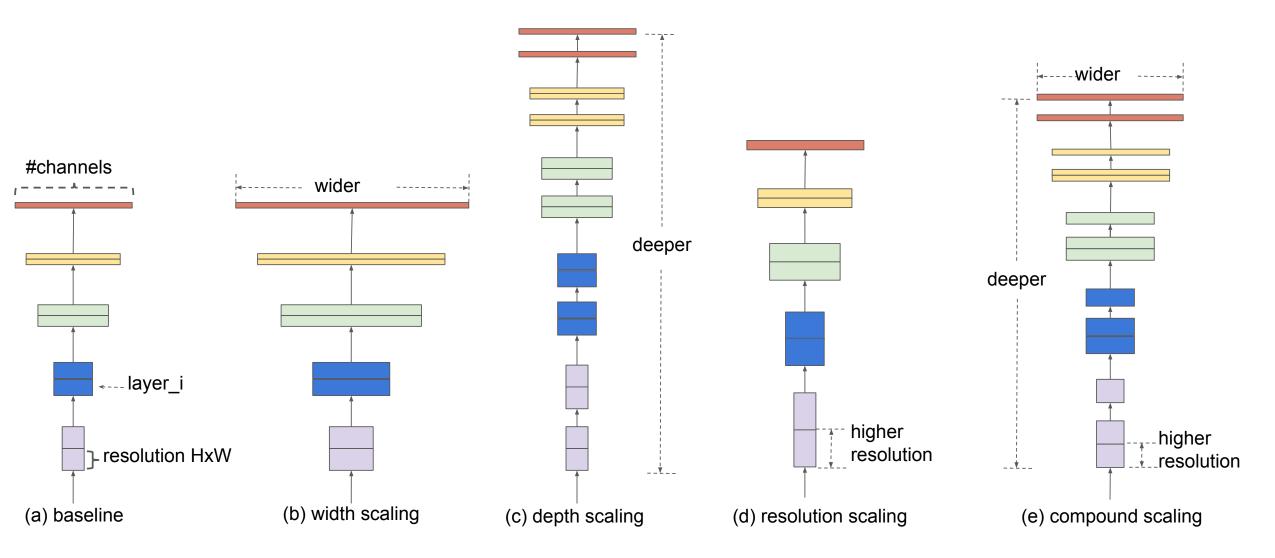
Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 9 - 112 April 30, 2019

EfficientNet --- current SOTA on ImageNet Classification



EfficientNet --- current SOTA on ImageNet Classification



EfficientNet --- current SOTA on ImageNet Classification

