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I. PHOTON COUNTING IN VISION

Imagine sitting quietly in a dark room, staring straight
ahead. A light flashes. Do you see it? Surely if the flash
is bright enough the answer is yes, but how dim can the
flash be before we fail? Do we fail abruptly, so that there
is a well defined threshold—lights brighter than threshold
are always seen, lights dimmer than threshold are never
seen—or is the transition from seeing to not seeing some-
how more gradual? These questions are classical exam-
ples of “psychophysics,” studies on the relationship be-
tween perception and the physical variables in the world
around us, and have a history reaching back at least into
the nineteenth century.

In 1911, the physicist Lorentz was sitting in a lecture
that included an estimate of the “minimum visible,” the
energy of the dimmest flash of light that could be consis-
tently and reliably perceived by human observers. But
by 1911 we knew that light was composed of photons,
and if the light is of well defined frequency or wavelength
then the energy E of the flash is equivalent to an eas-
ily calculable number of photons n, n = E/!ω. Doing
this calculation, Lorentz found that just visible flashes
of light correspond to roughly 100 photons incident on
our eyeball. Turning to his physiologist colleague Zwaa-
dermaker, Lorentz asked if much of the light incident on
the cornea might get lost (scattered or absorbed) on its
way through the gooey interior of the eyeball, or if the
experiments could be off by as much as a factor of ten.
In other words, is it possible that the real limit to human
vision is the counting of single photons?

Lorentz’ suggestion really is quite astonishing. If cor-
rect, it would mean that the boundaries of our perception
are set by basic laws of physics, and that we reach the
limits of what is possible. Further, if the visual system
really is sensitive to individual light quanta, then some of
the irreducible randomness of quantum events should be
evident in our perceptions of the world around us, which
is a startling thought.

In this Chapter, we will see that humans (and other
animals) really can detect the arrival of individual pho-
tons at the retina. Tracing through the many steps from
photon arrival to perception we will see a sampling of
the physics problems posed by biological systems, rang-
ing from the dynamics of single molecules through am-
plification and adaptation in biochemical reaction net-
works, coding and computation in neural networks, all
the way to learning and cognition. For photon counting
some of these problems are solved, but even in this well
studied case many problems are open and ripe for new
theoretical and experimental work. The problem of pho-
ton counting also introduces us to methods and concepts
of much broader applicability. We begin by exploring
the phenomenology, aiming at the formulation of the key
physics problems. By the end of the Chapter I hope to
have formulated an approach to the exploration of bio-

logical systems more generally, and identified some of the
larger questions that will occupy us in Chapters to come.

A. Posing the problem

One of the fundamental features of quantum mechan-
ics is randomness. If we watch a single molecule and ask
if absorbs a photon, this is a random process, with some
probability per unit time related to the light intensity.
The emission of photons is also random, so that a typical
light source does not deliver a fixed number of photons.
Thus, when we look at a flash of light, the number of
photons that will be absorbed by the sensitive cells in
our retina is a random number, not because biology is
noisy but because of the physics governing the interac-
tion of light and matter. One way of testing whether
we can count single photons, then, is to see if we can
detect the signatures of this quantum randomness in our
perceptions. This line of reasoning came to fruition in ex-
periments by Hecht, Shlaer and Pirenne (in New York)
and by van der Velden (in the Netherlands) in the early
1940s. [Need to check what was done by Barnes & Cz-
erny, between Lorentz and 1940s]
What we think of classically as the intensity of a beam

of light is proportional to the mean number of photons
per second that arrive at some region where they can be
counted.7 For most conventional light sources, however,
the stream of photons is not regular, but completely ran-
dom. Thus, in any very small window of time dt, there is
a probability rdt that a photon will be counted, where r is
the mean counting rate or light intensity, and the events
in different time windows are independent of one another.
These are the defining characteristics of a “Poisson pro-
cess,” which is the maximally random sequence of point
events in time—if we think of the times at which photons
are counted as being like the positions of particles, then
the sequence of photon counts is like an ideal gas, with
no correlations or “interactions” among the particles at
different positions.
As explained in detail in Appendix A.1, if events occur

as a Poisson process with rate r, then if we count the
events over some time T , the mean number of counts will
be M = rT , but the probability that we actually obtain
a count of n will be given by the Poisson distribution,

P (n|M) = e−M Mn

n!
. (1)

In our case, the mean number of photons that will be
counted at the retina is proportional to the classical in-
tensity of the light flash, M = αI, where the constant

7 More precisely, we can measure the mean number of photons per
second per unit area.
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FIG. 1 Probability of seeing calculated from Eq. (2), where
the intnesity I is measured as the mean number of photons
incident on the cornea, so that α is dimensionless. Curves are
shown for different values of the threshold photon count K
and the scaling factor α. Note the distinct shapes for different
K, but when we change α at fixed K we just translate the
curve along the the log intensity axis, as shown by the red
dashed arrow.

α includes all the messy details of what happens to the
light on its way through the eyeball.8 Thus, when we
deliver the “same” flash of light again and again, the ac-
tual physical stimulus to the retina will fluctuate, and it
is plausible that our perceptions will fluctuate as well.

Let’s be a bit more precise about all of this. In the
simplest view, you would be willing to say “yes, I saw
the flash” once you had countedK photons. Equation (1)
tell us the probability of counting exactly n photons given
the mean, and the mean is connected to the intensity of
the flash by M = αI. Thus we predict that there is a
probability of seeing a flash of intensity I,

Psee(I) =
∞∑

n=K

P (n|M = αI) = e−αI
∞∑

n=K

(αI)n

n!
. (2)

So, if we sit in a dark room and watch as dim lights are
flashed, we expect that our perceptions will fluctuate—
sometimes we see the flash and sometimes we don’t—but
there will be an orderly dependence of the probability of
seeing on the intensity, given by Eq (2). Importantly, if

8 The units for light intensity are especially problematic. Today
we know that we should measure the number of photons arriv-
ing per second, per unit area, but many of the units were set
before this was understood. Also, if we have a broad spectrum
of wavelengths, we might want to weight the contributions from
different wavelengths not just by their contribution to the total
energy but by their contribution to the overall appearance of
brightness. Thus, some of the complications have honest origins.

we plot Psee vs. log I, as in Fig. 1, then the shape of the
curve depends crucially on the threshold photon count
K, but changing the unknown constant α just translates
the curve along the x–axis. So we have a chance to mea-
sure the thresholdK by looking at the shape of the curve;
more fundamentally we might say we are testing the hy-
pothesis that the probabilistic nature of our perceptions
is determined by the physics of photon counting.

Problem 1: Photon statistics, part one. There are two
reasons why the arrival of photons might be described by a Pois-
son process. The first is a very general “law of small numbers”
argument. Imagine a general point process in which events occur
at times {ti}, with some correlations among the events. Assume
that these correlations die away with some correlation time, so that
events i and j are independent if |ti−tj| " τc. Explain qualitatively
why, if we select events out of the original sequence at random, then
if we select a sufficiently small fraction of these events the result-
ing sparse sequence will be approximately Poisson. What is the
condition for the Poisson approximation to be a good one? What
does this have to do with why, for example, the light which reaches
us from an incandescent light bulb comes in a Poisson stream of
photons?

Problem 2: How many sources of randomness? As noted
above, the defining feature of a Poisson process is the independence
of events at different times, and typical light sources generate a
stream of photons whose arrival times approximate a Poisson pro-
cess. But when we count these photons, we don’t catch every one.
Show that if the photon arrivals are a Poisson process with rate
r, and we count a fraction f these, selected at random, then the
times at which events are counted will also be a Poisson process,
with rate fr. Why doesn’t the random selection of events to be
counted result in some “extra” variance beyond expectations for
the Poisson process?

Hecht, Shlaer and Pirenne did exactly the experiment
we are analyzing. Subjects (the three co–authors) sat in a
dark room, and reported whether they did or did not see
a dim flash of light. For each setting of the intensity, there
were many trials, and responses were variable, but the
subjects were forced to say yes or no, with no “maybe.”
Thus, it was possible to measure at each intensity the
probability that the subject would say yes, and this is
plotted in Fig 2.
The first nontrivial result of these experiments is that

human perception of dim light flashes really is probabilis-
tic. No matter how hard we try, there is a range of light
intensities in which our perceptions fluctuate from flash
to flash of the same intensity, seeing one and missing an-
other. Quantitatively, the plot of probability of seeing
vs log(intensity) is fit very well by the predictions from
the Poisson statistics of photon arrivals. In particular,
Hecht, Shlaer and Pirenne found a beautiful fit in the
range from K = 5 to K = 7; subjects of different age
had very different values for α (as must be true if light
transmission through the eye gets worse with age) but
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FIG. 2 Probability of seeing calculated from Eq. (2), with the
threshold photon count K = 6, compared with experimental
results from Hecht, Shlaer and Pirenne. For each observer we
can find the value of α that provides the best fit, and then
plot all the data on a common scale as shown here. Error bars
are computed on the assumption that each trial is indepen-
dent, which probably generates errors bars that are slightly
too small.

similar values of K. In Fig 2 I’ve shown all three ob-
servers’ data fit to K = 6, along with error bars (absent
in the original paper); although one could do better by
allowing each person to have a different value of K, it’s
not clear that this would be supported by the statistics.
The different values of α, however, are quite important.
Details aside, the frequency of seeing experiment

brings forward a beautiful idea: the probabilistic na-
ture of our perceptions just reflects the physics of ran-
dom photon arrivals. An absolutely crucial point is that
Hecht, Shlaer and Pirenne chose stimulus conditions such
that the 5 to 7 photons needed for seeing are distributed
across a broad area on the retina, an area that contains
hundreds of photoreceptor cells [perhaps this needs to
be clearer?] Thus the probability of one receptor (rod)
cell getting more than one photon is very small. The
experiments on human behavior therefore indicate that
individual photoreceptor cells generate reliable responses
to single photons. In fact, vision begins (as we discuss in
more detail soon) with the absorption of light by the vi-
sual pigment rhodopsin, and so sensitivity to single pho-
tons means that each cell is capable of responding to a
single molecular event. This is a wonderful example of us-
ing macroscopic experiments to draw conclusions about
single cells and their microscopic mechanisms.

Problem 3: Simulating a Poisson process. Much of what
we want to know about Poisson processes can be determined ana-
lytically (see Appendix A.1). Thus if we do simulations we know

what answer we should get (!). This provides us with an opportu-
nity to exercise our skills, even if we don’t get any new answers. In
particular, doing a simulation is never enough; you have to analyze
the results, just as you analyze the results of an experiment. Now
is as good a time as any to get started. If you are comfortable do-
ing everything in a programming language like C or Fortran, that’s
great. On the other hand, high–level languages such as MAT-
LAB or Mathematica have certain advantages. Here you should
use MATLAB to simulate a Poisson process, and then analyze the
results to be sure that you actually did what you expected to do.
[Before finalizing, check on the use of free version of MATLAB,
Octave.]

(a) MATLAB has a command rand that generates random num-
bers with a uniform distribution from 0 to 1. Consider a time
window of length T , and divide this window into many small bins
of size dt. In each bin you can use rand to generate a number
which you can compare with a threshold—if the random number
is above threshold you put an event in the bin, and you can adjust
the threshold to set the average number of events in the window.
You might choose T = 103 sec and arrange that the average rate
of the events is r̄ ∼ 10 per second; note that you should be able
to relate the threshold to the mean rate r̄ analytically. Notice that
this implements (in the limit dt → 0) the definition of the Poisson
process as independent point events.

(b) The next step is to check that the events you have made
really do obey Poisson statistics. Start by counting events in win-
dows of some size τ . What is the mean count? The variance? Do
you have enough data to fill in the whole probability distribution
Pτ (n) for counting n of events in the window? How do all of these
things change as you change τ? What if you go back and make
events with a different average rate? Do your numerical results
agree with the theoretical expressions? In answering this ques-
tion, you could try to generate sufficiently large data sets that the
agreement between theory and experiment is almost perfect, but
you could also make smaller data sets and ask if the agreement is
good within some estimated error bars; this will force you to think
about how to put error bars on a probability distribution. [Do we
need to have some more about error bars somewhere in the text?]
You should also make a histogram (hist should help) of the times
between successive events; this should be an exponential function,
and you should work to get this into a form where it is a properly
normalized probability density. Relate the mean rate of the events
to the shape of this distribution, and check this in your data.

(c) Instead of deciding within each bin about the presence or ab-
sence of an event, use the command rand to choose N random times
in the big window T . Examine as before the statistics of counts
in windows of size τ % T . Do you still have an approximately
Poisson process? Why? Do you see connections to the statistical
mechanics of ideal gases and the equivalence of ensembles?

Problem 4: Photon statistics, part two. The other reason
why we might find photon arrivals to be a Poisson process comes
from a very specific quantum mechanical argument about coherent
states. This argument may be familiar from your quantum me-
chanics courses, but this is a good time to review. If you are not
familiar with the description of the harmonic oscillator in terms
of raising and lowering or creation and annihilation operators, try
the next problem, which derives many of the same conclusions by
making explicit use of wave functions.

(a.) We recall that modes of the electromagnetic field (in a free
space, in a cavity, or in a laser) are described by harmonic oscilla-
tors. The Hamiltonian of a harmonic oscillator with frequency ω
can be written as

H = !ω(a†a+ 1/2), (3)

where a† and a are the creation and annihilation operators that
connect states with different numbers of quanta,

a†|n〉 =
√
n+ 1|n+ 1〉, (4)

a|n〉 =
√
n|n− 1〉. (5)

There is a special family of states called coherent states, defined as
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eigenstates of the annihilation operator,

a|α〉 = α|α〉. (6)

If we write the coherent state as a superposition of states with
different numbers of quanta,

|α〉 =
∞∑

n=0

ψn|n〉, (7)

then you can use the defining Eq (6) to give a recursion relation
for the ψn. Solve this, and show that the probability of counting
n quanta in this state is given by the Poisson distribution, that is

Pα(n) ≡
∣∣∣∣〈n|α〉

∣∣∣∣
2

= |ψn|2 = e−M Mn

n!
, (8)

where the mean number of quanta is M = |α|2.
(b.) The specialness of the coherent states relates to their dy-

namics and to their representation in position space. For the dy-
namics, recall that any quantum mechanical state |φ〉 evolves in
time according to

i!d|φ〉
dt

= H|φ〉. (9)

Show that if the system starts in a coherent state |α(0)〉 at time
t = 0, it remains in a coherent state for all time. Find α(t).

(c.) If we go back to the mechanical realization of the harmonic
oscillator as a mass m hanging from a spring, the Hamiltonian is

H =
1

2m
p2 +

mω2

2
q2, (10)

where p and q are the momentum and position of the mass. Remind
yourself of the relationship between the creation and annihilation
operators and the position and momentum operators (q̂, p̂).. In
position space, the ground state is a Gaussian wave function,

〈q|0〉 =
1

(2πσ2)1/4
exp

(
−

q2

4σ2

)
, (11)

where the variance of the zero point motion σ2 = !/(4mω). The
ground state is also a “minimum uncertainty wave packet,” so
called because the variance of position and the variance of mo-
mentum have a product that is the minimum value allowed by the
uncertainty principle; show that this is true. Consider the state
|ψ(q0)〉 obtained by displacing the ground state to a position q0,

|ψ(q0)〉 = eiq0p̂|0〉. (12)

Show that this is a minimum uncertainty wave packet, and also a
coherent state. Find the relationship between the coherent state
parameter α and the displacement q0.

(d.) Put all of these steps together to show that the coherent
state is a minimum uncertainty wave packet with expected values
of the position and momentum that follow the classical equations
of motion.

Problem 5: Photon statistics, part two, with wave func-
tions. Work out a problem that gives the essence of the above using
wave functions, without referring to a and a†.

There is a very important point in the background of
this discussion. By placing results from all three ob-
servers on the same plot, and fitting with the same value
of K, we are claiming that there is something repro-
ducible, from individual to individual, about our per-
ceptions. On the other hand, the fact that each observer
has a different value for α means that there are individ-
ual differences, even in this simplest of tasks. Happily,
what seems to be reproducible is something that feels

like a fundamental property of the system, the number
of photons we need to count in order to be sure that we
saw something. But suppose that we just plot the prob-
ability of seeing vs the (raw) intensity of the light flash.
If we average across individuals with different αs, we will
obtain a result which does not correspond to the theory,
and this failure might even lead us to believe that the
visual system does not count single photons. This shows
us that (a) finding what is reproducible can be difficult,
and (b) averaging across an ensemble of individuals can
be qualitativelymisleading. Here we see these conclusions
in the context of human behavior, but it seems likely that
similar issues arise in the behavior of single cells. The dif-
ference is that techniques for monitoring the behavior of
single cells (e.g., bacteria), as opposed to averages over
populations of cells, have emerged much more recently.
As an example, it still is almost impossible to monitor,
in real time, the metabolism of single cells, whereas si-
multaneous measurements on many metabolic reactions,
averaged over populations of cells, have become common.
We still have much to learn from these older experiments!

Problem 6: Averaging over observers. Go back to the
original paper by Hecht, Shlaer and Pirenne9 and use their data to
plot, vs. the intensity of the light flash, the probability of seeing
averaged over all three observers. Does this look anything like what
you find for individual observers? Can you simulate this effect, say
in a larger population of subjects, by assuming that the factor α is
drawn from a distribution? Explore this a bit, and see how badly
misled you could be. This is not too complicated, I hope, but
deliberately open ended.

Before moving on, a few more remarks about the his-
tory. [I have some concern that this is a bit colloquial,
and maybe more like notes to add to the references than
substance for the text. Feedback is welcome here.] It’s
worth noting that van der Velden’s seminal paper was
published in Dutch, a reminder of a time when anglo-
phone cultural hegemony was not yet complete. Also
(maybe more relevant for us), it was published in a
physics journal. The physics community in the Nether-
lands during this period had a very active interest in
problems of noise, and van der Velden’s work was in this
tradition. In contrast, Hecht was a distinguished con-
tributor to understanding vision but had worked within
a “photochemical” view which he would soon abandon as
inconsistent with the detectability of single photons and
hence single molecules of activated rhodopsin. Parallel

9 As will be true throughout the text, references are found at the
end of the section.
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FIG. 3 (a) A single rod photoreceptor cell from a toad, in a
suction pipette. Viewing is with infrared light, and the bright
bar is a stimulus of 500 nm light. (b) Equivalent electrical
circuit for recording the current across the cell membrane [re-
ally needs to be redrawn, with labels!]. (c) Mean current
in response to light flashes of varying intensity. Smallest re-
sponse is to flashes that deliver a mean ∼ 4 photons, succes-
sive flashes are brighter by factors of 4. (d) Current responses
to repeated dim light flashes at times indicated by the tick
marks. Note the apparently distinct classes of responses to
zero, one or two photons. From Rieke & Baylor (1998).

to this work, Rose and de Vries (independently) empha-
sized that noise due to the random arrival of photons at
the retina also would limit the reliability of perception
at intensities well above the point where things become
barely visible. In particular, de Vries saw these issues as
part of the larger problem of understanding the physical
limits to biological function, and I think his perspective
on the interaction of physics and biology was far ahead
of its time.

It took many years before anyone could measure di-
rectly the responses of photoreceptors to single photons.
It was done first in the (invertebrate) horseshoe crab [be
sure to add refs to Fuortes & Yeandle; maybe show a fig-
ure?], and eventually by Baylor and coworkers in toads
and then in monkeys. The complication in the lower ver-
tebrate systems is that the cells are coupled together, so
that the retina can do something like adjusting the size
of pixels as a function of light intensity. This means that
the nice big current generated by one cell is spread as a
small voltage in many cells, so the usual method of mea-
suring the voltage across the membrane of one cell won’t
work; you have to suck the cell into a pipette and collect
the current, as seen in Fig 3.

Problem 7: Gigaseals. As we will see, the currents that
are relevant in biological systems are on the order of picoAmps.

Although the response of rods to single photons is slow, many pro-
cesses in the nervous system occur on the millisecond times scale.
Show that if we want to resolve picoAmps in milliseconds, then the
leakage resistance (e.g. between rod cell membrane and the pipette
in Fig 3) must be ∼ 109 ohm, to prevent the signal being lost in
Johnson noise.

In complete darkness, there is a ‘standing current’ of
roughly 20 pA flowing through the membrane of the rod
cell’s outer segment. You should keep in mind that cur-
rents in biological systems are carried not by electrons or
holes, as in solids, but by ions moving through water; we
will learn more about this below [be sure we do!]. In the
rod cell, the standing current is carried largely by sodium
ions, although there are contributions from other ions as
well. This is a hint that the channels in the membrane
that allow the ions to pass are not especially selective for
one ion over the other. The current which flows across
the membrane of course has to go somewhere, and in fact
the circuit is completed within the rod cell itself, so that
what flows across the outer segment of the cell is com-
pensated by flow across the inner segment [improve the
figures to show this clearly]. When the rod cell is ex-
posed to light, the standing current is reduced, and with
sufficiently bright flashes it is turned off all together.
As in any circuit, current flow generates changes in

the voltage across the cell membrane. Near the bottom
of the cell [should point to better schematic, one figure
with everything we need for this paragraph] there are
special channels that allow calcium ions to flow into the
cell in response to these voltage changes, and calcium
in turn triggers the fusion of vesicles with the cell mem-
brane. These vesicles are filled with a small molecule, a
neurotransmitter, which can then diffuse across a small
cleft and bind to receptors on the surface of neighbor-
ing cells; these receptors then respond (in the simplest
case) by opening channels in the membrane of this sec-
ond cell, allowing currents to flow. In this way, currents
and voltages in one cell are converted, via a chemical in-
termediate, into currents and voltages in the next cell,
and so on through the nervous system. The place where
two cells connect in this way is called a synapse, and in
the retina the rod cells form synapses onto a class of cells
called bipolar cells. More about this later, but for now
you should keep in mind that the electrical signal we are
looking at in the rod cell is the first in a sequence of elec-
trical signals that ultimately are transmitted along the
cells in the optic nerve, connecting the eye to the brain
and hence providing the input for visual perception.
Very dim flashes of light seem to produce a quantized

reduction in the standing current, and the magnitude
of these current pulses is roughly 1 pA, as seen in Fig
3. When we look closely at the standing current, we
see that it is fluctuating, so that there is a continuous
background noise of ∼ 0.1 pA, so the quantal events are
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FIG. 4 A closer look at the currents in toad rods. At left,
five instances in which the rod is exposed to a dim flash at
t = 0. It looks as if two of these flashes delivered two photons
(peak current ∼ 2 pA), one delivered one photon (peak cur-
rent ∼ 1 pA), and two delivered zero. The top panel shows the
raw current traces, and the bottom panel shows what happens
when we smooth with a 100ms window to remove some of the
high frequency noise. At right, the distribution of smoothed
currents at the moment tpeak when the average current peaks;
the data (circles) are accumulated from 350 flashes in one cell,
and the error bars indicate standard errors of the mean due
to this finite sample size. Solid green line is the fit to Eq
(19), composed of contributions from n = 0, n = 1, · · · pho-
ton events, shown red. Dashed blue lines divide the range of
observed currents into the most likely assignments to different
photon counts. These data are from unpublished experiments
by FM Rieke at the University of Washington; many thanks
to Fred for providing the data in raw form.

easily detected. It takes a bit of work to convince your-
self that these events really are the responses to single
photons. Perhaps the most direct experiment is to mea-
sure the cross–section for generating the quantal events,
and compare this with the absorption cross–section of the
rod, showing that a little more than 2/3 of the photons
which are absorbed produce current pulses. In response
to steady dim light, we can observe a continuous stream
of pulses, the rate of the pulses is proportional to the
light intensity, and the intervals between pulses are dis-
tributed exponentially, as expected if they represent the
responses to single photons (cf Section A.1).

Problem 8: Are they really single photon responses?
Work out a problem to ask what aspects of experiments in Fig
4 are the smoking gun. In particular, if one pulse were from the
coincidence of two photons, how would the distribution of peak
heights shift with changing flash intensity?

When you look at the currents flowing across the rod
cell membrane, the statement that single photon events

are detectable above background noise seems pretty ob-
vious, but it would be good to be careful about what we
mean here. In Fig 4 we take a closer look at the currents
flowing in response to dim flashes of light. These data
were recorded with a very high bandwidth, so you can see
a lot of high frequency noise. Nonetheless, in these five
flashes, it’s pretty clear that twice the cell counted zero
photons, once it counted one photon (for a peak current
∼ 1 pA) and twice it counted two photons; this becomes
even clearer if we smooth the data to get rid of some of
the noise. Still, these are anecdotes, and one would like
to be more quantitative.
Even in the absence of light there are fluctuations in

the current, and for simplicity let’s imagine that this
background noise is Gaussian with some variance σ2

0 . The
simplest way to decide whether we saw something is to
look at the rod current at one moment in time, say at
t = tpeak ∼ 2 s after the flash, where on average the cur-
rent is at its peak. Then given that no photons were
counted, this current i should be drawn out of the prob-
ability distribution

P (i|n = 0) =
1√
2πσ2

0

exp

[
− i2

2σ2
0

]
. (13)

If one photon is counted, then there should be a mean
current 〈i〉 = i1, but there is still some noise. Plausibly
the noise has two pieces—first, the background noise still
is present, with its variance σ2

0 , and in addition the am-
plitude of the single photon response itself can fluctuate;
we assume that these fluctuations are also Gaussian and
independent of the background, so they just add σ2

1 to
the variance. Thus we expect that, in response to one
photon, the current will be drawn from the distribution

P (i|n = 1) =
1√

2π(σ2
0 + σ2

1)
exp

[
− (i− i1)2

2(σ2
0 + σ2

1)

]
. (14)

If each single photon event is independent of the others,
then we can generalize this to get the distribution of cur-
rents expected in response of n = 2 photons, [need to
explain additions of variances for multiphoton responses]

P (i|n = 2) =
1√

2π(σ2
0 + 2σ2

1)
exp

[
− (i− 2i1)2

2(σ2
0 + 2σ2

1)

]
,

(15)
and more generally n photons,

P (i|n) = 1√
2π(σ2

0 + nσ2
1)

exp

[
− (i− ni1)2

2(σ2
0 + nσ2

1)

]
. (16)

Finally, since we know that the photon count n should
be drawn out of the Poisson distribution, we can write
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the expected distribution of currents as

P (i) =
∞∑

n=0

P (i|n)P (n) (17)

=
∞∑

n=0

P (i|n)e−n̄ n̄
n

n!
(18)

=
∞∑

n=0

n̄n

n!

e−n̄

√
2π(σ2

0 + nσ2
1)

exp

[
− (i− ni1)2

2(σ2
0 + nσ2

1)

]
.(19)

In Fig 4, we see that this really gives a very good descrip-
tion of the distribution that we observe when we sample
the currents in response to a large number of flashes.

Problem 9: Exploring the sampling problem. The data
that we see in Fig 4 are not a perfect fit to our model. On the other
hand, there are only 350 samples that we are using to estimate
the shape of the underlying probability distribution. This is an
example of a problem that you will meet many times in comparing
theory and experiment; perhaps you have some experience from
physics lab courses which is relevant here. We will return to these
issues of sampling and fitting nearer the end of the course, when
we have some more powerful mathematical tools, but for now let
me encourage you to play a bit. Use the model that leads to Eq
(19) to generate samples of the peak current, and then use these
samples to estimate the probability distribution. For simplicity,
assume that i1 = 1, σ0 = 0.1, σ1 = 0.2, and n̄ = 1. Notice that
since the current is continuous, you have to make bins along the
current axis; smaller bins reveal more structure, but also generate
noisier results because the number of counts in each bin is smaller.
As you experiment with different size bins and different numbers
of samples, try to develop some feeling for whether the agreement
between theory and experiment in Fig 4 really is convincing.

Seeing this distribution, and especially seeing analyti-
cally how it is constructed, it is tempting to draw lines
along the current axis in the ‘troughs’ of the distribution,
and say that (for example) when we observe a current of
less then 0.5 pA, this reflects zero photons. Is this the
right way for us—or for the toad’s brain—to interpret
these data? To be precise, suppose that we want to set a
threshold for deciding between n = 0 and n = 1 photon.
Where should we put this threshold to be sure that we
get the right answer as often as possible?
Suppose we set our threshold at some current i = θ.

If there really were zero photons absorbed, then if by
chance i > θ we will incorrectly say that there was one
photon. This error has a probability

P (say n = 1|n = 0) =

∫ ∞

θ
di P (i|n = 0). (20)

On the other hand, if there really was one photon, but
by chance the current was less than the threshold, then
we’ll say 0 when we should have said 1, and this has a
probability

P (say n = 0|n = 1) =

∫ θ

−∞
di P (i|n = 1). (21)

There could be errors in which we confuse two photons
for zero photons, but looking at Fig 4 it seems that these
higher order errors are negligible. So then the total prob-
ability of making a mistake in the n = 0 vs. n = 1
decision is

Perror(θ) = P (say n = 1|n = 0)P (n = 0) + P (say n = 0|n = 1)P (n = 1) (22)

= P (n = 0)

∫ ∞

θ
di P (i|n = 0) + P (n = 1)

∫ θ

−∞
di P (i|n = 1). (23)

We can minimize the probability of error in the usual way by taking the derivative and setting the result to zero at
the optimal setting of the threshold, θ = θ∗:

dPerror(θ)

dθ
= P (n = 0)

d

dθ

∫ ∞

θ
di P (i|n = 0) + P (n = 1)

d

dθ

∫ θ

−∞
di P (i|n = 1) (24)

= P (n = 0)(−1)P (i = θ|n = 0) + P (n = 1)P (i = θ|n = 1); (25)

dPerror(θ)

dθ

∣∣∣∣∣
θ=θ∗

= 0 ⇒ P (i = θ∗|n = 0)P (n = 0) = P (i = θ∗|n = 1)P (n = 1). (26)

This result has a simple interpretation. Given that we
have observed some current i, we can calculate the prob-
ability that n photons were detected using Bayes’ rule for

conditional probabilities:

P (n|i) = P (i|n)P (n)

P (i)
. (27)
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The combination P (i|n = 0)P (n = 0) thus is propor-
tional to the probability that the observed current i was
generated by counting n = 0 photons, and similarly the
combination P (i|n = 1)P (n = 1) is proportional to the
probability that the observed current was generated by
counting n = 1 photons. The optimal setting of the
threshold, from Eq (26), is when these two probabilities
are equal. Another way to say this is that for each observ-
able current i we should compute the probability P (n|i),
and then our “best guess” about the photon count n is
the one which maximizes this probability. This guess is
best in the sense that it minimizes the total probability
of errors. This is how we draw the boundaries shown
by dashed lines in Fig 4 [Check details! Also introduce
names for these things—maximum likelihood, maximum
a posterioi probability, ... . This is also a place to antici-
pate the role of prior expectations in setting thresholds!]

Problem 10: More careful discrimination. You observe
some variable x (e.g., the current flowing across the rod cell
membrane) that is chosen either from the probability distribution
P (x|+) or from the distribution P (x|−). Your task is to look at
a particular x and decide whether it came from the + or the −
distribution. Rather than just setting a threshold, as in the dis-
cussion above, suppose that when you see x you assign it to the +
distribution with a probability p(x). You might think this is a good
idea since, if you’re not completely sure of the right answer, you
can hedge your bets by a little bit of random guessing. Express the
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FIG. 5 Schematic of discrimination in the presence of noise.
We have two possible signals, A and B, and we measure some-
thing, for example the current flowing across a cell membrane.
Given either A or B, the current fluctuates. As explained in
the text, the overall probability of confusing A with B is min-
imized if we draw a threshold at the point where the proba-
bility distributions cross, and identify all currents larger than
this threshold as being B, all currents smaller than threshold
as being A. Because the distributions overlap, it is not pos-
sible to avoid errors, and the area of the red shaded region
counts the probability that we will misidentify A as B.

probability of a correct answer in terms of p(x); this is a functional
Pcorrect[p(x)]. Now solve the optimization problem for the function
p(x), maximizing Pcorrect. Show that the solution is deterministic
[p(x) = 1 or p(x) = 0], so that if the goal is to be correct as often
as possible you shouldn’t hesitate to make a crisp assignment even
at values of x where you aren’t sure (!). Hint: Usually, you would
try to maximize the Pcorrect by solving the variational equation
δPcorrect/δp(x) = 0. You should find that, in this case, this ap-
proach doesn’t work. What does this mean? Remember that p(x)
is a probability, and hence can’t take on arbitrary values.

Once we have found the decision rules that minimize
the probability of error, we can ask about the error prob-
ability itself. As schematized in Fig 5, we can calculate
this by integrating the relevant probability distributions
on the ‘wrong sides’ of the threshold. For Fig 4, this
error probability is less than three percent. Thus, un-
der these conditions, we can look at the current flowing
across the rod cell membrane and decide whether we saw
n = 0, 1, 2 · · · photons with a precision such that we are
wrong only on a few flashes out of one hundred. In fact,
we might even be able to do better if instead of looking at
the current at one moment in time we look at the whole
trajectory of current vs. time, but to do this analysis we
need a few more mathematical tools. Even without such
a more sophisticated analysis, it’s clear that these cells
really are acting as near perfect photon counters, at least
over some range of conditions.

Problem 11: Asymptotic error probabilities. Should add
a problem deriving the asymptotic probabilities of errors at high
signal–to–noise ratios, including effects of prior probability.

A slight problem in our simple identification of the
probability of seeing with the probability of counting K
photons is that van der Velden found a threshold photon
count of K = 2, which is completely inconsistent with
the K = 5− 7 found by Hecht, Shlaer and Pirenne. Bar-
low explained this discrepancy by noting that even when
counting single photons we may have to discriminate (as
in photomultipliers) against a background of dark noise.
Hecht, Shlaer and Pirenne inserted blanks in their ex-

periments to be sure that you almost never say “I saw
it” when nothing is there, which means you have to set
a high threshold to discriminate against any background
noise. On the other hand, van der Velden was willing
to allow for some false positive responses, so his subjects
could afford to set a lower threshold. Qualitatively, as
shown in Fig 6, this makes sense, but to be a quantita-
tive explanation the noise has to be at the right level.
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FIG. 6 Trading of errors in the presence of noise. We observe
some quantity that fluctuates even in the absence of a sig-
nal. When we add the signal these fluctuations continue, but
the overall distribution of the observable is shifted. If set a
threshold, declaring the signal is present whenever the thresh-
old is exceeded, then we can trade between the two kinds of
errors. At low thresholds, we never miss a signal, but there
will be many false alarms. At high thresholds, there are few
false alarms, but we miss most of the signals too. At some in-
termediate setting of the threshold, the total number of errors
will be minimized.

One of the key ideas in the analysis of signals and noise
is “referring noise to the input,” and we will meet this
concept many times in what follows [more specific point-
ers]. Imagine that we have a system to measure some-
thing (here, the intensity of light, but it could be any-
thing), and it has a very small amount of noise somewhere
along the path from input to output. In many systems
we will also find, along the path from input to output,
an amplifier that makes all of the signals larger. But the
amplifier doesn’t “know” which of its inputs are signal
and which are noise, so everything is amplified. Thus, a
small noise near the input can become a large noise near
the output, but the size of this noise at the output does
not, by itself, tell us how hard it will be to detect signals
at the input. What we can do is to imagine that the
whole system is noiseless, and that any noise we see at
the output really was injected at the input, and thus fol-
lowed exactly the same path as the signals we are trying
to detect. Then we can ask how big this effective input
noise needs to be in order to account for the output noise.

If the qualitative picture of Fig 6 is correct, then the
minimum number of photons that we need in order to
say “I saw it” should be reduced if we allow the observer
the option of saying “I’m pretty sure I saw it,” in effect
taking control over the trade between misses and false
alarms. Barlow showed that this worked, quantitatively.

In the case of counting photons, we can think of the
effective input noise as being nothing more than extra

“dark” photons, also drawn from a Poisson distribution.
Thus if in the relevant window of time for detecting the
light flash there are an average of 10 dark photons, for
example, then because the variance of the Poisson distri-
bution is equal to the mean, there will be fluctuations on
the scale of

√
10 counts. To be very sure that we have

seen something, we need an extra K real photons, with
K '

√
10. Barlow’s argument was that we could un-

derstand the need for K ∼ 6 in the Hecht, Shaler and
Pirenne experiments if indeed there were a noise source
in the visual system that was equivalent to counting an
extra ten photons over the window in time and area of
the retina that was being stimulated. What could this
noise be?
In the frequency of seeing experiments, as noted above,

the flash of light illuminated roughly 500 receptor cells
on the retina, and subsequent experiments showed that
one could find essentially the same threshold number
of photons when the flash covered many thousands of
cells. Furthermore, experiments with different durations
for the flash show that human observers are integrat-
ing over ∼ 0.1 s in order to make their decisions about
whether they saw something. Thus, the “dark noise”
in the system seems to equivalent, roughly, to 0.1 photon
per receptor cell per second, or less. To place this number
in perspective, it is important to note that vision begins
when the pigment molecule rhodopsin absorbs light and
changes its structure to trigger some sequence of events
in the receptor cell. We will learn much more about the
dynamics of rhodopsin and the cascade of events respon-
sible for converting this molecular event into electrical
signals that can be transmitted to the brain, but for now
we should note that if rhodopsin can change its struc-
ture by absorbing a photon, there must also be some
(small) probability that this same structural change or
“isomerization” will happen as the result of a thermal
fluctuation. If this does happen, then it will trigger a
response that is identical to that triggered by a real pho-
ton. Further, such rare, thermally activated events really
are Poisson processes (see Section II.A), so that ther-
mal activation of rhodopsin would contribute exactly a
“dark light” of the sort we have been trying to estimate
as a background noise in the visual system. But there
are roughly one billion rhodopsin molecules per receptor
cell, so that a dark noise of ∼ 0.1 per second per cell
corresponds to a rate of once per ∼ 1000 years for the
spontaneous isomerization of rhodopsin.
One of the key points here is that Barlow’s explanation

works only if people actually can adjust the “threshold”
K in response to different situations. The realization
that this is possible was part of the more general recog-
nition that detecting a sensory signal does not involve
a true threshold between (for example) seeing and not
seeing. Instead, all sensory tasks involve a discrimina-
tion between signal and noise, and hence there are dif-
ferent strategies which provide different ways of trading
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off among the different kinds of errors. Notice that this
picture matches what we know from the physics lab.

Problem 12: Simple analysis of dark noise. Suppose that
we observe events drawn out of a Poisson distribution, and we can
count these events perfectly. Assume that the mean number of
events has two contributions, n̄ = n̄dark + n̄flash, where n̄flash = 0
if there is no light flash and n̄flash = N if there is a flash. As an ob-
server, you have the right to set a criterion, so that you declare the
flash to be present only if you count n ≥ K events. As you change
K, you change the errors that you make—when K is small you of-
ten say you saw something when nothing was there, but of hardly
ever miss a real flash, while at large K the situation is reversed.
The conventional way of describing this is to plot the fraction of
“hits” (probability that you correctly identify a real flash) against
the probability of a false alarm (i.e., the probability that you say
a flash is present when it isn’t), with the criterion changing along
the curve. Plot this “receiver operating characteristic” for the case
n̄dark = 10 and N = 10. Hold n̄dark fixed and change N to see how
the curvse changes. Explain which slice through this set of curves
was measured by Hecht et al, and the relationship of this analysis
to what we saw in Fig 2.

There are classic experiments to show that people will
adjust their thresholds automatically when we change
the a priori probabilities of the signal being present, as
expected for optimal performance. This can be done
without any explicit instructions—you don’t have to tell
someone that you are changing the probabilities—and it
works in all sensory modalities, not just vision. At least
implicitly, then, people learn something about probabil-
ities and adjust their criteria appropriately. Threshold
adjustments also can be driven by changing the rewards
for correct answers or the penalties for wrong answers.
In this view, it is likely that Hecht et al. drove their
observers to high thresholds by having a large effective
penalty for false positive detections. Although it’s not
a huge literature, people have since manipulated these
penalties and rewards in frequency of seeing experiments,
with the expected results. Perhaps more dramatically,
modern quantum optics techniques have been used to
manipulate the statistics of photon arrivals at the retina,
so that the tradeoffs among the different kinds of errors
are changed ... again with the expected results.10

Not only did Baylor and coworkers detect the single
photon responses from toad photoreceptor cells, they also
found that single receptor cells in the dark show spon-
taneous photon–like events roughly at the right rate to
be the source of dark noise identified by Barlow. If you

10 It is perhaps too much to go through all of these results here,
beautiful as they are. To explore, see the references at the end
of the section.
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FIG. 7 [fill in the caption] From Aho et al (1988).

look closely you can find one of these spontaneous events
in the earlier illustration of the rod cell responses to dim
flashes, Fig 3. Just to be clear, Barlow identified a max-
imum dark noise level; anything higher and the observed
reliable detection is impossible. The fact that the real
rod cells have essentially this level of dark noise means
that the visual system is operating near the limits of re-
liability set by thermal noise in the input. It would be
nice to give a more direct test of this idea.
In the lab we often lower the noise level of photode-

tectors by cooling them. This should work in vision too,
since one can verify that the rate of spontaneous photon–
like events in the rod cell current is strongly tempera-
ture dependent, increasing by a factor of roughly four
for every ten degree increase in temperature. Changing
temperature isn’t so easy in humans, but it does work
with cold blooded animals like frogs and toads. To set
the stage, it is worth noting that one species of toad in
particular (Bufo bufo) manages to catch its prey under
conditions so dark that human observers cannot see the
toad, much less the prey [add the reference!]. So, Aho et
al. convinced toads to strike with their tongues at small
worm–like objects illuminated by very dim lights, and
measured how the threshold for reliable striking varied
with temperature, as shown in Fig 7. Because one can
actually make measurements on the retina itself, it is
possible to calibrate light intensities as the rate at which
rhodopsin molecules are absorbing photons and isomer-
izing, and the toad’s responses are almost deterministic
once this rate is r ∼ 10−11 s−1 in experiments at 15 ◦C,
and responses are detectable at intensities a factor of
three to five below this. For comparison, the rate of ther-
mal isomerizations at this temperature is ∼ 5×10−12 s−1.
If the dark noise consists of rhodopsin molecules spon-

taneously isomerizing at a rate rd, then the mean number
of dark events will be nd = rdTNrNc, where T ∼ 1 s is the
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FIG. 8 [fill in the caption] From Aho et al (1987, 1988).

relevant integration time for the decision, Nr ∼ 3×109 is
the number of rhodopsin molecules per cell in this retina,
and Nc ∼ 4, 500 is the number of receptor cells that are
illuminated by the image of the worm–like object. Sim-
ilarly, the mean number of real events is n = rTNrNc,
and reliable detection requires n >

√
nd, or

r >

√
rd

TNrNc
∼ 6× 10−13 s−1. (28)

Thus, if the toad knows exactly which part of the retina
it should be looking at, then it should reach a signal–
to–noise ratio of one at light intensities a factor of ten
below the nominal dark noise level. But there is no way
to be sure where to look before the target appears, and
the toad probably needs a rather higher signal–to–noise
ratio before it is willing to strike. Thus it is plausible that
the threshold light intensities in this experiment should
be comparable to the dark noise level, as observed.

One can do an experiment very similar to the one with
toads using human subjects (who say yes or no, rather
than sticking out their tongues), asking for a response to
small targets illuminated by steady, dim lights. Frogs will
spontaneously jump at dimly illuminated patch of the
ceiling, in an attempt to escape from an otherwise dark
box. Combining theses experiments, with the frogs held
at temperatures from 10 to 20 ◦C, one can span a range of
almost two orders of magnitude in the thermal isomeriza-
tion rate of rhodopsin. It’s not clear whether individual
organisms hold their integration times T fixed as temper-
ature is varied, or if the experiments on different organ-
isms correspond to asking for integration over a similar
total number of rhodopsin molecules (NrNc). Nonethe-
less, it satisfying to see, in Fig 8, that the “threshold”
light intensity, where response occur 50% of the time, is
varying systematically with the dark noise level. It is cer-
tainly true that operating at lower temperatures allows

the detection of dimmer lights, or equivalently more reli-
able detection of the same light intensity,11 as expected if
the dominant noise source was thermal in origin. These
experiments support the hypothesis that visual process-
ing in dim lights really is limited by input noise and not
by any inefficiencies of the brain.

Problem 13: Getting a feel for the brain’s problem. Let’s
go back to Problem 3, where you simulated a Poisson process.

(a) If you use the strategy of making small bins ∆τ and testing
a random number in each bin against a threshold, then it should
be no problem to generalize this to the case where the threshold is
different at different times, so you are simulating a Poisson process
in which the rate is varying as a function of time. As an example,
consider a two second interval in which the counting rate has some
background (like the dark noise in rods) value rdark except in a
100 msec window where the rate is higher, say r = rdark + rsignal.
Remember that for one rod cell, rdark is∼ 0.02 sec−1, while humans
can see flashes which have rsignal ∼ 0.01 sec−1 if they can integrate
over 1000 rods. Try to simulate events in this parameter range and
actually look at examples, perhaps plotted with x’s to show you
where the events occur on a single trial.

(b) Can you tell the difference between a trial where you have
rsignal = 0.01 sec−1 and one in which rsignal = 0? Does it matter
whether you know when to expect the extra events? In effect these
plots give a picture of the problem that the brain has to solve in
the Hecht–Shaler–Pirenne experiment, or at least an approximate
picture.

(c) Sitting in a dark room to repeat the HSP experiment would
take a long time, but maybe you can go from your simulations here
to design a psychophysical experiment simple enough that you can
do it on one another. Can you measure the reliability of discrimi-
nation between the different patterns of x’s that correspond to the
signal being present or absent? Do you see an effect of “know-
ing when to look”? Do people seem to get better with practice?
Can you calculate the theoretical limit to how well one can do this
task? Do people get anywhere near this limit? This is an open
ended problem.

Problem 14: A better analysis? Go back to the original pa-
per by Aho et (1988) and see if you can give a more compelling com-
parison between thresholds and spontaneous isomerization rates.
From Eq (28), we expect that the light intensity required for some
criterion level of reliability scales as the square root of the dark
noise level, but also depends on the total number of rhodospin
molecules over which the subject must integrate. Can you esti-
mate this quantity for the experiments on frogs and humans? Does
this lead to an improved version of Fig 8? Again, this is an open
ended problem.

The dominant role of spontaneous isomerization as a
source of dark noise leads to a wonderfully counterin-
tuitive result, namely that the photoreceptor which is

11 The sign of this prediction is important. If we were looking for
more reliable behaviors at higher temperatures, there could be
many reasons for this, such as quicker responses of the muscles.
Instead, the prediction is that we should see more reliable be-
havior as you cool down—all the way down to the temperature
where behavior stops—and this is what is observed.
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designed to maximize the signal–to–noise ratio for de-
tection of dim lights will allow a significant number of
photons to pass by undetected. Consider a rod photore-
ceptor cell of length &, with concentration C of rhodopsin;
let the absorption cross section of rhodopsin be σ. [Do
I need to explain the definition of cross sections, and/or
the derivation of Beer’s law?] As a photon passes along
the length of rod, the probability that it will be absorbed
(and, presumably, counted) is p = 1 − exp(−Cσ&), sug-
gesting that we should make C or & larger in order to
capture more of the photons. But, as we increase C or
&, we are increasing the number of rhodopsin molecules,
Nrh = CA&, with A the area of the cell, so we we also
increase the rate of dark noise events, which occurs at a
rate rdark per molecule.

If we integrate over a time τ , we will see a mean num-
ber of dark events (spontaneous isomerizations) n̄dark =
rdarkτNrh. The actual number will fluctuate, with a stan-
dard deviation δn =

√
n̄dark. On the other hand, if

nflash photons are incident on the cell, the mean number
counted will be n̄count = nflashp. Putting these factors
together we can define a signal–to–noise ratio

SNR ≡ n̄count

δn
= nflash

[1− exp(−Cσ&)]√
CA&rdarkτ

. (29)

The absorption cross section σ and the spontaneous iso-
merization rate rdark are properties of the rhodopsin
molecule, but as the rod cell assembles itself, it can adjust
both its length & and the concentration C of rhodopsin;
in fact these enter together, as the product C&. When
C& is larger, photons are captured more efficiently and
this leads to an increase in the numerator, but there also
are more rhodopsin molecules and hence more dark noise,
which leads to an increase in the denominator. Viewed
as a function of C&, the signal–to–noise ratio has a max-
imum at which these competing effects balance; working
out the numbers one finds that the maximum is reached
when C& ∼ 1.26/σ, and we note that all the other param-
eters have dropped out. In particular, this means that
the probability of an incident photon not being absorbed
is 1 − p = exp(−Cσ&) ∼ e−1.26 ∼ 0.28. Thus, to maxi-
mize the signal–to–noise ratio for detecting dim flashes of
light, nearly 30% of photons should pass through the rod
without being absorbed (!). Say something about how
this compares with experiment!

Problem 15: Escape from the tradeoff. Derive for yourself
the numerical factor (C))opt ∼ 1.26/σ. Can you see any way to
design an eye which gets around this tradeoff between more efficient
counting and extra dark noise? Hint: Think about what you see
looking into a cat’s eyes at night.
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FIG. 9 Results of experiments in which observers are asked
to rate the intensity of dim flashes, including blanks, on a
scale from 0 to 6. Main figure shows that the variance of the
ratings at fixed intensity is equal to the mean, as expected if
the ratings are Poisson distributed. Insets show that the full
distribution is approximately Poisson (upper) and that the
mean rating is linearly related to the flash intensity, measured
here as the mean number of photons delivered to the cornea.
From Sakitt (1972).

If this is all correct, it should be possible to coax human
subjects into giving responses that reflect the counting
of individual photons, rather than just the summation
of multiple counts up to some threshold of confidence or
reliability. Suppose we ask observers not to say yes or no,
but rather to rate the apparent intensity of the flash, say
on a scale from 0 to 7. Remarkably, as shown in Fig 9,
in response to very dim flashes interspersed with blanks,
at least some observers will generate rating that, given
the intensity, are approximately Poisson distributed: the
variance of the ratings is essentially equal to the mean,
and even the full distribution of ratings over hundreds
of trials is close to Poisson. Further, the mean rating is
linearly related to the light intensity, with an offset that
agrees with other measurements of the dark noise level.
Thus, the observers behaves exactly as if she can give a
rating that is equal to the number of photons counted.
This astonishing result would be almost too good to be
true were it not that some observers deviate from this
ideal behavior—they starting counting at two or three,
but otherwise follow all the same rules.
While the phenomena of photon counting are very

beautiful, one might worry that this represents just a
very small corner of vision. Does the visual system con-
tinue to count photons reliably even when it’s not com-
pletely dark outside? To answer this let’s look at vision
in a rather different animal, as in Fig 10. When you look
down on the head of a fly, you see—almost to the exclu-
sion of anything else—the large compound eyes. Each
little hexagon that you see on the fly’s head is a sepa-
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FIG. 10 The fly’s eye(s). At left a photograph taken by H
Leertouwer at the Rijksuniversiteit Groningen, showing (even
in this poor reproduction) the hexagonal lattice of lenses in
the compound eye. This is the blowfly Calliphora vicina. At
right, a schematic of what a fly might see, due to Gary Larson.
The schematic is incorrect because each lens actually looks in
a different direction, so that whole eye (like ours) only has
one image of the visual world. In our eye the “pixelation”
of the image is enforced by the much less regular lattice of
receptors on the retina; in the fly pixelation occurs already
with the lenses.

rate lens, and in large flies there are ∼ 5, 000 lenses in
each eye, with approximately 1 receptor cell behind each
lens, and roughly 100 brain cells per lens devoted to the
processing of visual information. The lens focuses light
on the receptor, which is small enough to act as an op-
tical waveguide. Each receptor sees only a small portion
of the world, just as in our eyes; one difference between
flies and us is that diffraction is much more significant
for organisms with compound eyes—because the lenses
are so small, flies have an angular resolution of about 1◦,
while we do about 100× better. [Add figure to emphasize
similarity of two eye types.]

The last paragraph was a little sloppy (“approximately
one receptor cell”?), so let’s try to be more precise. For
flies there actually are eight receptors behind each lens.
Two provide sensitivity to polarization and some color
vision, which we will ignore here. The other six receptors
look out through the same lens in different directions, but
as one moves to neighboring lenses one finds that there is
one cell under each of six neighboring lenses which looks
in the same direction. Thus these six cells are equivalent
to one cell with six times larger photon capture cross
section, and the signals from these cells are collected and
summed in the first processing stage (the lamina); one
can even see the expected six fold improvement in signal
to noise ratio, in experiments we’ll describe shortly.12

Because diffraction is such a serious limitation, one
might expect that there would be fairly strong selection

12 Talk about the developmental biology issues raised by these ob-
servations, and the role of the photoreceptors as a model system
in developmental decision making. For example, Lubensky et al
(2011). Not sure where to put this, though.

for eyes that make the most of the opportunities within
these constraints. Indeed, there is a beautiful literature
on optimization principles for the design of the compound
eye; the topic even makes an appearance in Feynman’s
undergraduate physics lectures. Roughly speaking (Fig
11), we can think of the fly’s head as being a sphere of
radius R, and imagine that the lens are pixels of linear
dimension d on the surface. Then the geometry deter-
mines an angular resolution (in radians) of δφgeo ∼ d/R;
resolution gets better if d gets smaller. On the other
hand, diffraction through an aperture of size d creates a
blur of angular width δφdiff ∼ λ/d, where λ ∼ 500 nm
is the wavelength of the light we are trying to image;
this limit of course improves as the aperture size d gets
larger. Although one could try to give a more detailed
theory, it seems clear that the optimum is reached when
the two different limits are about equal, corresponding to
an optimal pixel size

d∗ ∼
√
λR. (30)

This is the calculation in the Feynman lectures, and
Feynman notes that it gives the right answer within 10%
in the case of a honey bee.
A decade before Feynman’s lectures, Barlow had de-

rived the same formula and went into the drawers of the
natural history museum in Cambridge to find a variety
of insects with varying head sizes, and he verified that
the pixel size really does scale with the square root of
the head radius, as shown in Fig 12. I think this work
should be more widely appreciated, and it has several fea-
tures we might like to emulate. First, it explicitly brings
measurements on many species together in a quantita-
tive way. Second, the fact that multiple species can put

FIG. 11 At left, a schematic of the compound eye, with lenses
of width d on the surface of a spherical eye with radius R. At
right, the angular resolution of the eye as a function of the
lens size, showing the geometric (δφgeo ∼ d/R) and diffraction
(δφdiff ∼ λ/d) contributions in dashed lines; the full resolution
in solid lines.
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onto the same graph is not a phenomenological statement
about, for example, scaling of one body part relative to
another, but rather is based on a clearly stated physical
principle. Finally, and most importantly for our later
discussion in this course, Barlow makes an important
transition: rather than just asking whether a biological
system approaches the physical limits to performance, he
assumes that the physical limits are reached and uses this
hypothesis to predict something else about the structure
of the system. This is, to be sure, a simple example, but
an early and interesting example nonetheless.13
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FIG. 12 The size of lenses in compound eyes as a function of
head size, across many species of insect. From Barlow (1952).

[Should also point back to Mallock!]
Pushing toward diffraction–limited optics can’t be the

whole story, since at low light levels having lots of small
pixels isn’t much good—so few photons are captured in
each pixel that one has a dramatic loss of intensity res-
olution. There must be some tradeoff between spatial
resolution and intensity resolution, and the precise form
of this tradeoff will depend on the statistical structure
of the input images (if you are looking at clouds it will
be different than looking at tree branches). The difficult
question is how to quantify the relative worth of extra res-
olution in space vs intensity, and it has been suggested

13 This example also raises an interesting question. In Fig 12, each
species of insect is represented by a single point. But not all
members of the same species are the same size, as you must have
noticed. Is the relationship between R and d that optimizes func-
tion preserved across the natural sizes variations among individ-
uals? Does it matter whether the size differences are generated
by environmental or genetic factors? This is a question about
the reproducibility of spatial structures in development, a ques-
tion we will come back to (albeit in simpler forms) in Section
III.C. It would be good, though, if someone just measured the
variations in eye dimensions across many individuals!

that the right way to do this is to count bits—design the
eye not to maximize resolution, but rather to maximize
the information that can be captured about the input
image. This approach was a semi–quantitative success,
showing how insects that fly late at night or with very
high speeds (leading to blurring by photoreceptors with
finite time resolution) should have less than diffraction
limited spatial resolving power. I still think there are
open questions here, however.
Coming back to the question of photon counting, one

can record the voltage signals in the photoreceptor cells
and detect single photon responses, as in vertebrates. If
we want to see what happens at higher counting rates,
we have to be sure that we have the receptor cells in a
state where they don’t “run down” too much because the
increased activity. In particular, the rhodopsin molecule
itself has to be recycled after it absorbs a photon. In an-
imals with backbones, this actually happens not within
the photoreceptor, but in conjunction with other cells
that form the pigment epithelium. In contrast, in inver-
tebrates the “resetting” of the rhodopsin molecule occurs
within the receptor cell and can even be driven by absorp-
tion of additional long wavelength photons. Thus, if you
want to do experiments at high photon flux on isolated
vertebrate photoreceptors, there is a real problem of run-
ning out of functional rhodospin, but this doesn’t happen
in the fly’s eye. Also, the geometry of the fly’s eye makes
it easier to do stable intracellular measurements without
too much dissection.
To set the stage for experiments at higher counting

rates, consider a simple model in which each photon ar-
riving at time ti produces a pulse V0(t − ti), and these
pulses just add to give the voltage [maybe there should
be a sketch showing the summation of pulses to give the
total voltage]

V (t) = VDC +
∑

i

V0(t− ti), (31)

where VDC is the constant voltage that one observes
across the cell membrane in the absence of light. In
Section A.1, we can find the distribution of the arrival
times {ti} on the hypothesis that the photons arrive as
a Poisson process with a time dependent rate r(t); from
Eq (A13) we have

P [{ti}|r(t)] = exp

[
−
∫ T

0
dτ r(τ)

]
1

N !
r(t1)r(t2) · · · r(tN ),

(32)
where r(t) is the rate of photon arrivals—the light inten-
sity in appropriate units. To compute the average volt-
age response to a given time dependent light intensity,
we have to do a straightforward if tedious calculation:

〈
∑

i

V0(t−ti)

〉
=

∞∑

N=0

∫ T

0
dN ti P [{ti}|r(t)]

∑

i

V0(t−ti).

(33)
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This looks a terrible mess. Actually, it’s not so bad, and
one can proceed systematically to do all of the integrals.
Once you have had some practice, this isn’t too difficult,
but the first time through it is a bit painful, so I’ll push
the details off into Section A.1, along with all the other
details about Poisson processes. When the dust settles
[leading up to Eq (A64)], the voltage responds linearly
to the light intensity,

〈V (t)〉 = VDC +

∫ ∞

−∞
dt′V0(t− t′)r(t′). (34)

In particular, if we have some background photon count-
ing rate r̄ that undergoes fractional modulations C(t), so
that

r(t) = r̄[1 + C(t)], (35)

then there is a linear response of the voltage to the con-
trast C,

〈∆V (t)〉 = r̄

∫ ∞

−∞
dt′V0(t− t′)C(t′). (36)

Recall that such integral relationships (convolutions)
simplify when we use the Fourier transform. For a func-
tion of time f(t) we will define the Fourier transform with
the conventions

f̃(ω) =

∫ ∞

−∞
dt e+iωtf(t), (37)

f(t) =

∫ ∞

−∞

dω

2π
e−iωtf̃(ω). (38)

Then, for two functions of time f(t) and g(t), we have

∫ ∞

−∞
dt e+iωt

[∫ ∞

−∞
dt′ f(t− t′)g(t′)

]
= f̃(ω)g̃(ω). (39)

Problem 16: Convolutions. Verify the “convolution theo-
rem” in Eq (39). If you need some reminders, see, for example,
Lighthill (1958).

Armed with Eq (39), we can write the response of the
photoreceptor in the frequency domain,

〈∆Ṽ (ω)〉 = r̄Ṽ0(ω)C̃(ω), (40)

so that there is a transfer function, analogous to
impedance relating current and voltage in an electrical
circuit,

T̃ (ω) ≡ 〈∆Ṽ (ω)〉
C̃(ω)

= r̄Ṽ0(ω). (41)

Recall that this transfer function is a complex number at
every frequency, so it has an amplitude and a phase,

T̃ (ω) = |T̃ (ω)|eiφT (ω). (42)

The units of T̃ are simply voltage per contrast. The in-
terpretation is that if we generate a time varying contrast
C(t) = C cos(ωt), then the voltage will also vary at fre-
quency ω,

〈∆V (t)〉 = |T̃ (ω)|C cos[ωt− φT (ω)]. (43)

[Should we have one extra problem to verify this last
equation? Or is it obvious?]
If every photon generates a voltage pulse V0(t), but the

photons arrive at random, then the voltage must fluctu-
ate. To characterize these fluctuations, we’ll use some of
the general apparatus of correlation functions and power
spectra. A review of these ideas is given in Appendix
A.2.
We want to analyze the fluctuations of the voltage

around its mean, which we will call δV (t). By definition,
the mean of this fluctuation is zero, 〈δV (t)〉 = 0. There is
a nonzero variance, 〈[δV (t)]2〉, but to give a full descrip-
tion we need to describe the covariance between fluctua-
tions at different times, 〈δV (t)δV (t′)〉. Importantly, we
are interested in systems that have no internal clock, so
this covariance or correlation can’t depend separately on
t and t′, only on the difference. More formally, if we shift
our clock by a time τ , this can’t matter, so we must have

〈δV (t)δV (t′)〉 = 〈δV (t+ τ)δV (t′ + τ)〉; (44)

this is possible only if

〈δV (t)δV (t′)〉 = CV (t− t′), (45)

where CV (t) is the “correlation function of V .” Thus,
invariance under time translations restricts the form of
the covariance. Another way of expressing time transla-
tion invariance in the description of random functions is
to say that any particular wiggle in plotting the function
is equally likely to occur at any time. This property also
is called “stationarity,” and we say that fluctuations that
have this property are stationary fluctuations.

In Fourier space, the consequence of invariance under
time translations can be stated more simply—if we com-
pute the covariance between two frequency components,
we find

〈δṼ (ω1)δṼ (ω2)〉 = 2πδ(ω1 + ω2)SV (ω1), (46)

where SV (ω) is called the power spectrum (or power spec-
tral density) of the voltage V . Remembering that δ̃V (ω)
is a complex number, it might be more natural to write
this as

〈δṼ (ω1)δṼ
∗(ω2)〉 = 2πδ(ω1 − ω2)SV (ω1). (47)
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Time translation invariance thus implies that fluctua-
tions at different frequencies are independent.14 This
makes sense, since if (for example) fluctuations at 2Hz
and 3Hz were correlated, we could form beats between
these components and generate a clock that ticks every
second. Finally, the Wiener–Khinchine theorem states
that the power spectrum and the correlation function are
a Fourier transform pair,

SV (ω) =

∫
dτ e+iωτCV (τ), (48)

CV (τ) =

∫
dω

2π
e−iωτSV (ω). (49)

Notice that

〈[∆V (t)]2〉 ≡ CV (0) =

∫
dω

2π
SV (ω). (50)

Thus we can think of each frequency component as hav-
ing a variance ∼ SV (ω), and by summing these compo-
nents we obtain the total variance.

Problem 17: More on stationarity. Consider some fluctu-
ating variable x(t) that depends on time, with 〈x(t)〉 = 0. Show
that, because of time translation invariance, higher order correla-
tions among Fourier components are constrained:

〈x̃(ω1)x̃
∗(ω2)x̃

∗(ω3)〉 ∝ 2πδ(ω1 − ω2 − ω3) (51)

〈x̃(ω1)x̃(ω2)x̃
∗(ω3)x̃

∗(ω4)〉 ∝ 2πδ(ω1 + ω2 − ω3 − ω4). (52)

If you think of x̃∗ (or x̃) as being analogous to the operators for
creation (or annihilation) of particles, explain how these relations
are related to conservation of energy for scattering in quantum
systems.

Problem 18: Brownian motion in a harmonic potential.
[The harmonic oscillator gets used more than once, of course; check
for redundancy among problems in different sections!] Consider a
particle of mass m hanging from a spring of stiffness κ, surrounded
through a fluid. The effect of the fluid is, on average, to generate a
drag force, and in addition there is a ‘Langevin force’ that describes
the random collisions of the fluid molecules with the particle, re-
sulting in Brownian motion. The equation of motion is

m
d2x(t)

dt2
+ γ

dx(t)

dt
+ κx(t) = η(t), (53)

where γ is the drag coefficient and η(t) is the Langevin force. A
standard result of statistical mechanics is that the correlation func-
tion of the Langevin force is

〈η(t)η(t′)〉 = 2γkBTδ(t− t′), (54)

where T is the absolute temperature and kB = 1.36 × 10−23 J/K
is Boltzmann’s constant.

(a.) Show that the power spectrum of the Langevin force is
Sη(ω) = 2γkBT , independent of frequency. Fluctuations with such
a constant spectrum are called ‘white noise.’

14 Caution: this is true only at second order; it is possible for dif-
ferent frequencies to be correlated when we evaluate products of
three or more terms. See the next problem for an example.

(b.) Fourier transform Eq (53) and solve, showing how x̃(ω) is
related to η̃(ω). Use this result to find an expression for the power
spectrum of fluctuations in x, Sx(ω).

(c.) Integrate the power spectrm Sx(ω) to find the total variance
in x. Verify that your result agrees with the equipartition theorem,

〈
1

2
κx2

〉
=

1

2
kBT. (55)

Hint: The integral over ω can be done by closing a contour in the
complex plane.

(d.) Show that the power spectrum of the velocity, Sv(ω), is
related to the power spectrum of position through

Sv(ω) = ω2Sx(ω). (56)

Using this result, verify the other prediction of the equipartition
theorem for this system,

〈
1

2
mv2

〉
=

1

2
kBT. (57)

Now we have a language for describing the signals and
noise in the receptor cell voltage, by going to the fre-
quency domain. What does this have to do with counting
photons? The key point is that we can do a calculation
similar to the derivation of Eq (40) for 〈∆V (t)〉 to show
that, at C = 0, the voltage will undergo fluctuations—
responding to the random arrival of photons—with power
spectrum

NV (ω) = r̄|V0(ω)|2. (58)

We call this NV because it is noise. The noise has a
spectrum shaped by the pulses V0, and the magnitude is
determined by the photon counting rate; again see Ap-
pendix A.1 for details.
Notice that both the transfer function and noise spec-

trum depend on the details of V0(t). In particular, be-
cause this pulse has finite width in time, the transfer
function gets smaller at higher frequencies. Thus if you
watch a flickering light, the strength of the signal trans-
mitted by your photoreceptor cells will decrease with in-
creasing frequency.
The crucial point is that, for an ideal photon counter,

although higher frequency signals are attenuated the
signal–to–noise ratio actually doesn’t depend on fre-
quency. Thus if we form the ratio

|T̃ (ω)|2

NV (ω)
=

|r̄Ṽ0(ω)|2

r̄|V0(ω)|2
= r̄, (59)

we just recover the photon counting rate, independent
of details. Since this is proportional to the signal–to–
noise ratio for detecting contrast modulations C̃(ω), we
expect that real photodetectors will give less that this
ideal value. [Should be able to make a crisper statement
here—is it a theorem? Prove it, or give the proof as a
problem?]
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Problem 19: Frequency vs counting rate. [Need to give
more guidance through this problem! Step by step ...] If we are
counting photons at an average rate r̄, you might think that it is
easier to detect variations in light intensity at a frequency ω % r̄
than at higher frequencies, ω " r̄; after all, in the high frequency
case, the light changes from bright to dim and back even before (on
average) a single photon has been counted. But Eq (59) states that
the signal–to–noise ratio for detecting contrast in an ideal photon
counter is independent of frequency, counter to this intuition. Can
you produce a simple simulation to verify the predictions of Eq
(59)? As a hint, you should think about observing the photon
arrivals over a time T such that r̄T " 1. Also, if you are looking
for light intensity variations of the form r(t) = r̄[1 + C cos(ωt)],
you should process the photon arrival times {ti} to form a signal
s =

∑
i cos(ωti).

So now we have a way of testing the photoreceptors:
Measure the transfer function T̃ (ω) and the noise spec-
trumNV (ω), form the ratio |T̃ (ω)|2/NV (ω), and compare
this with the actual photon counting rate r̄. This was
done for the fly photoreceptors, with the results shown in
Fig 13. It’s interesting to look back at the original papers
and understand how they calibrated the measurement of
r̄ (I’ll leave this as an exercise for you!). [This account of
the experiments is too glib. I will go back to expand and
clarify. Rob has also offered new versions of the figures.]

What we see in Fig 13 is that, over some range of
frequencies, the performance of the fly photoreceptors is
close to the level expected for an ideal photon counter.
It’s interesting to see how this evolves as we change the
mean light intensity, as shown in Fig 14. The perfor-
mance of the receptors tracks the physical optimum up

FIG. 13 Signal and noise in fly photoreceptors, with experi-
ments at four different mean light intensities, from de Ruyter
van Steveninck & Laughlin (1996b). (a) Transfer function
|T̃ (ω)|2 from contrast to voltage. (b) Power spectrum of
voltage noise, NV (ω). (c) The ratio |T̃ (ω)|2/NV (ω), which
would equal the photon counting rate if the system were ideal;
dashed lines show the actual counting rates.

FIG. 14 Performance of fly photoreceptors vs light intensity.
[Should redraw this, and label with consistent notation.] Hav-
ing measured the quantity λeff = |T̃ (ω)|2/NV (ω), as in Fig
13, we plot the maximum value (typically at relatively low
frequencies) vs the actual photon counting rate r̄. We see
that, over an enormous dynamic range, the signal–to–noise
ratio tracks the value expected for an ideal photon counter.

to counting rates of r̄ ∼ 105 photons/s. Since the inte-
gration time of the receptors is ∼ 10ms, this means that
the cell can count, almost perfectly, up to about 1000.
An important point about these results is that they

wouldn’t work if the simple model were literally true. At
low photon counting rates r̄, the pulse V0 has an am-
plitude of several milliVolts, as you can work out from
panel (a) in Fig 13. If we count ∼ 103 events, this should
produce a signal of several Volts, which is absolutely im-
possible in a real cell! What happens is that the system
has an automatic gain control which reduces the size of
the pulse V0 as the light intensity is increased. Remark-
ably, this gain control or adaptation occurs while pre-
serving (indeed, enabling) nearly ideal photon counting.
Thus as the lights go up, the response to each photon
become smaller (and, if you look closely, faster), but no
less reliable.

Problem 20: Looking at the data. Explain how the data
in Fig 13 provide evidence for the adaption of the pulse V0 with
changes in the mean light intensity.

[This seems a little brief! Maybe there should be a
summary of what has happened, what we conclude ...
also explain where the loose ends remain vs where things
are solid.] These observations on the ability of the visual
system to count single photons—down to the limit set by
thermal noise in rhodopsin and up to counting rates of
∼ 105 s−1—raise questions at several different levels:
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1. At the level of single molecules, we will see that
the performance of the visual system depends crucially
on the dynamics of rhodopsin itself. In particular, the
structural response of the molecule to photon absorption
is astonishingly fast, while the dark noise level means that
the rate of spontaneous structural changes is extremely
slow.
2. At the level of single cells, there are challenges in un-

derstanding how a network of biochemical reactions con-
verts the structural changes of single rhodopsin molecules
into macroscopic electrical currents across the rod cell
membrane.
3. At the level of the retina as a whole, we would like

to understand how these signals are integrated without
being lost into the inevitable background of noise. Also
at the level of the retina, we need to understand how
single photon signals are encoded into the stereotyped
pulses that are the universal language of the brain.
4. At the level of the whole organism, there are issues

about how the brain learns to make the discriminations
that are required for optimal performance.
In the next sections we’ll look at these questions, in

order.

It is a pleasure to read classic papers, and surely Hecht et al (1942)
and van der Velden (1944) are classics, as is the discussion of dark
noise by Barlow (1956). The pre–history of the subject, includ-
ing the story about Lorentz, is covered by Bouman (1961). The
general idea that our perceptual “thresholds” are really thresholds
for discrimination against background noise with some criterion
level of reliability made its way into quantitative psychophysical
experiments in the 1950s and 60s, and this is now (happily) a stan-
dard part of experimental psychology; the canonical treatment is
by Green and Swets (1966). The origins of these ideas are an inter-
esting mix of physics and psychology, developed largely for radar
in during World War II, and a summary of this early work is in
the MIT Radar Lab series (Lawson & Uhlenbeck 1950). Another
nice mix of physics and psychology is the revisiting of the original
photon counting experiments using light sources with non–Poisson
statistics (Teich et al 1982). The idea that random arrival of pho-
tons could limit our visual perception beyond the “just visible” was
explored, early on, by de Vries (1943) and Rose (1948). Some of
the early work by de Vries and coworkers on the physics of the
sense organs (not just vision) is described in a lovely review (de
Vries 1956). As a sociological note, de Vries was an experimental
physicist with very broad interests, from biophysics to radiocarbon
dating; for a short biography see de Waard (1960).
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Single photon responses in receptor cells of the horseshoe crab were
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For the discussion of compound eyes, useful background is con-
tained in Stavenga and Hardie (1989), and in the beautiful com-
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http://flybrain.neurobio.arizona.edu/Flybrain/html/. There
is also the more recent Land & Nilsson (2002). Evidently Larson
(2003) is an imperfect guide to these matters. Everyone should have
a copy of the Feynman lectures (Feynman et al 1963), and check
the chapters on vision. The early work by Barlow (1952) deserves
more appreciation, as noted in the main text, and the realization
that diffraction must be important for insect eyes goes back to
Mallock (1894). For a gentle introduction to the wider set of ideas
about scaling relations between different body parts, see McMa-
hon & Bonner (1983). The experiments on signal–to–noise ratio in
fly photoreceptors are by de Ruyter van Steveninck and Laughlin
(1996a, 1996b). For a review of relevant ideas in Fourier analysis
and related matters, see Appendix A.2 and Lighthill (1958). You
should come back to the ideas of Snyder et al (Snyder 1977, Snyder
et al 1977) near the end of the book, after we have covered some
of the basics of information theory.
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FIG. 15 Schematic structure of rhodopsin, showing the or-
ganic pigment retinal nestled in a pocket formed by the sur-
rounding opsin protein. This conformation of the retinal is
called 11–cis, since there is a rotation around the bond be-
tween carbons numbered 11 and 12 (starting at the lower right
in the ring). Insets illustrate the conventions in such chemical
structures, with carbons at nodes of the skeleton, and hydro-
gens not shown, but sufficient to make sure that each carbon
forms four bonds.

B. Single molecule dynamics

To a remarkable extent, our ability to see in the dark
is limited by the properties of rhodopsin itself, essen-
tially because everything else works so well. Rhodopsin
consists of a medium sized organic pigment, retinal, en-
veloped by a large protein, opsin (cf Fig 15). The pri-
mary photo–induced reaction is isomerization of the reti-
nal, which ultimately couples to structural changes in the
protein. The effort to understand the dynamics of these
processes goes back to Wald’s isolation of retinal (a vi-
tamin A derivative) in the 1930s, his discovery of the
isomerization, and the identification of numerous states
through which the molecule cycles. The field was given
a big boost by the discovery that there are bacterial
rhodopsins, some of which serve a sensory function while
others are energy transducing molecules, using the en-
ergy of the absorbed photon to pump protons across the
cell membrane; the resulting difference in electrochem-
ical potential for protons is a universal intermediate in
cellular energy conversion, not just in bacteria but in us
as well. [Maybe a pointer to channel rhodopsins would
be good here too.]
By now we know much more than Wald did about the

structure of the rhodopsin molecule [need to point to a
better figure, more details].
While there are many remarkable features of the

rhodopsin molecule, we would like to understand those
particular features that contribute to the reliability of
photon counting. First among these is the very low spon-
taneous isomerization rate, roughly once per thousand
years. As we have seen, these photon–like events provide
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FIG. 16 Isomerization of retinal, the primary event at the
start of vision. The π–bonds among the carbons favor pla-
nar structures, but there are still alternative conformations.
The 11–cis conformation is the ground state of rhodopsin,
and after photon absorption the molecule converts to the all–
trans configuration. These different structures have different
absorption spectra, as well as other, more subtle differences.
Thus we can monitor the progress of the transition 11–cis →
all–trans essentially by watching the molecule change color,
albeit only slightly. [Show the spectra!]

the dominant noise source that limits our ability to see in
the dark, so there is a clear advantage to having the low-
est possible rate. When we look at the molecules them-
selves, purified from the retina, we can “see” the isomer-
ization reaction because the initial 11–cis state and the
final all–trans states (see Fig 16) have different absorp-
tion spectra [add this to the figure]. For rhodopsin itself,
the spontaneous isomerization rate is too slow to observe
in a bulk experiment. If we isolate the pigment retinal,
however, we find that it has a spontaneous isomerization
rate of ∼ 1/yr, so that a bottle of 11–cis retinal is quite
stable, but the decay to all–trans is observable.

How can we understand that rhodopsin has a spon-
taneous isomerization rate 1000× less than that of reti-
nal? The spontaneous isomerization is thermally acti-
vated, and has a large “activation energy” as estimated
from the temperature dependence of the dark noise.15

It seems reasonable that placing the retinal molecule
into the pocket formed by the protein opsin would raise
the activation energy, essentially because parts of the
protein need to be pushed out of the way in order
for the retinal to rotate and isomerize. Although this
sounds plausible, it’s probably wrong. If we write the

15 I am assuming here that the ideas of activation energy and Arrhe-
nius behavior of chemical reaction rates are familiar. For more
on this, see Section II.A.

dark isomerization rate as r = Ae−Eact/kBT , retinal and
rhodopsin have the same value of the activation energy
Eact = 21.9 ± 1.6 kcal/mole [this is from measurements
on rods; give the number in useful units! maybe foot-
note about difficulties of units] within experimental er-
ror, but different values of the prefactor A. If we look at
photoreceptor cells that are used for daytime vision—the
cones, which also provide us with sensitivity to colors, as
discussed below [check where this gets done!]—the dark
noise level is higher (presumably single photon counting
is unnecessary in bright light), but again this is a differ-
ence in the prefactor, not in the activation energy. As
we will see when we discuss the theory of reaction rates
in Section II.A, understanding prefactors is much harder
than understanding activation energies, and I think we
don’t really have a compelling theoretical picture that ex-
plains the difference between retinal and rhodopsin.[Fred
Rieke gave me some pointers I have to chase down before
deciding on that last sentence!]
The isolated retinal pigment isomerization at a rate

that is faster than rhodopsin. On the other hand, if
we excite the isolated retinal with a very short pulse of
light, and follow the resulting changes in absorption spec-
trum, these photo–induced dynamics are not especially
fast, with isomerization occurring at a rate ∼ 109 s−1.
Although this is fast compared to the reactions that we
can see directly, it is actually so slow that it is com-
parable to the rate at which the molecule will re–emit
the photon. We recall from quantum mechanics that the
spontaneous emission rates from electronic excited states
are constrained by sum rules if they are dipole–allowed.
This means that emission lifetimes for visible photons are
order 1 nanosecond for almost all of the simple cases. In
a big molecule, there can be some re–arrangement of the
molecular structure before the photon is emitted (see the
discussion below), and this results in the emitted or fluo-
rescent photon being of longer wavelength. Nonetheless,
the natural time scale is nanoseconds, and the isomeriza-
tion of retinal is not fast enough to prevent fluorescence
and truly capture the energy of the photon with high
probability.

Problem 21: Why nanoseconds? Explain why spontaneous
emission of visible photons typically occurs with a rate ∼ 109 s−1.
[Need to explain where to start!]

Now fluorescence is a disaster for visual pigment—not
only don’t you get to count the photon where it was ab-
sorbed, it might get counted somewhere else, blurring the
image. In fact rhodopsin does not fluoresce: The quan-
tum yield or branching ratio for fluorescence is ∼ 10−5.
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FIG. 17 [This needs to be redrawn; maybe two figures to
make different points? Convert all the units once and for all?]
Femtosecond dynamics of rhodopsin, from Wang et al (1994).
At left, schematic potential energy surfaces in the electronic
ground and excited states. At right, panel (A) shows tran-
sient absorption spectra following a 35 fs pulse of 500 nm light.
Panel (B) shows the magnitude of the Fourier transform of
the time dependent absorption at each of several wavelengths,
illustrating the oscillations expected if the vibrational dynam-
ics is coherent. You might like to convert the kcal/mol and
cm−1 into more conventional physical units!

If we imagine the molecule sitting in the excited state,
transitioning to the ground state via fluorescence at a
rate ∼ 109 s−1, then to have a branching ratio of 10−5 the
competing process must have a rate of ∼ 1014 s−1. Thus,
the rhodopsin molecule must leave the excited state by
some process on a time scale of ∼ 10 femtoseconds, which
is extraordinarily fast. Indeed, for many years, every
time people built faster pulsed lasers, they went back to
rhodopsin to look at the initial events, culminating in the
direct demonstration of femtosecond isomerization, mak-
ing this one of the fastest molecular events ever observed.

The 11–cis and all trans configurations of retinal have
different absorption spectra, and this is why we can ob-
serve the events following photon absorption as an evo-
lution of the spectrum. The basic design of such ex-
periments is to excite the molecules with a brief pulse
of light, elevating them into the excited state, and then
probe with another brief pulse after some delay. In the
simplest version, one repeats the experiment many times
with different choices of the delay and the energy or wave-
length of the probe pulse. An example of the results from
such an experiment are shown in Fig 17. The first thing
to notice is that the absorption at a wavelength of 550 nm,
characteristic of the all–trans structure, rises very quickly
after the pulse which excites the system, certainly within
tens of femtoseconds. In fact this experiment reveals all
sorts of interesting structure, to which we will return be-
low.

The combination of faster photon induced isomeriza-
tion and slower thermal isomerization means that the

protein opsin acts as an electronic state selective cata-
lyst: ground state reactions are inhibited, excited state
reactions accelerated, each by orders of magnitude. It is
fair to say that if these state dependent changes in re-
action rate did not occur—that is, if the properties of
rhodopsin were those of retinal—then we simply would
not be able to see in the dark of night.

Problem 22: What would vision be like if ... ? Imagine that
the spontaneous isomerization rate and quantum yield for photo–
isomerization in rhodopsin were equal to those in retinal. Estimate,
quantitatively, what this would mean for our ability to see at night.
[we should try to connect with real intensities at dusk etc.]

In order to make sense out of all of this, and get started
in understanding how rhodopsin achieves its function, we
need to understand something about electronic transi-
tions in large molecules, as opposed to the case of atoms
that we all learned about in our quantum mechanics
classes. The absorption of a photon by an atom involves
a transition between two electronic states, and this is also
true for a large molecule. But for the atom the absorp-
tion line is very narrow, while for big molecules it is very
broad. For rhodopsin, there is a nice of way of measur-
ing the absorption spectrum over a very large dynamic
range, and this is to use the rod cell as a sensor. In-
stead of asking how much light is absorbed, we can try
assuming16 that all absorbed photons have a constant
probability of generating a pulse of current at the rod’s
output, and so we can adjust the light intensity at each
wavelength to produce the same current. If the absorp-
tion is stronger, we need less light, and conversely more
light if the absorption is weaker. The results of such an
experiment are shown in Fig 18. It is beautiful that in
this way one can follow the long wavelength tail of the
spectrum down to cross–sections that are ∼ 10−5 of the
peak. More qualitatively, we see that the width of the
spectrum, say at half maximum, is roughly 20% of the
peak photon energy, which is enormous in contrast with
atomic absorption lines.
As an aside, the fact that one can follow the sensitivity

of the photoreceptor cell deep into the long wavelength
tail opens the possibility of asking a very different ques-
tion about the function of these cells (and all cells). We
recall that every cell in our bodies has the same genetic

16 This assumption can also be checked. It’s true, but I think there
have not been very careful measurements in the long wavelength
tail, where something interesting might happen.
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material, and hence the instructions for making all pos-
sible proteins. In particular, all photoreceptor cells have
the ability to make all visual pigments. But the different
classes of receptors—rods and the three kinds of cones—
make different pigments, corresponding to different pro-
teins surrounding more or less the same retinal molecule,
and the resulting differences in absorption spectra pro-
vide the basis for color vision. If a single cone couldn’t
reliably turn on the expression of one rhodopsin gene,
and turn off all of the others, then the retina wouldn’t
be able to generate a mix of spectral sensitivities, and we
wouldn’t see colors. But how “off” is “off”?

In a macaque monkey (not so different from us in these
matters), “red” cones have their peak sensitivity at a
wavelength ∼ 570 nm, but at this wavelength the “blue”
cones have sensitivities that are ∼ 105× reduced rela-
tive to their own peak. Since the peak absorption cross–
sections are comparable, this tells us that the relative
concentration of red pigments in the blue cones must be
less than 10−5. That is, the cell makes at least 105 times
as much of the correct protein as it does of the incorrect
proteins, which I always thought was pretty impressive.17

Returning to the absorption spectrum itself, we realize
that a full treatment would describe molecules by doing
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FIG. 18 Sensitivity of the rod photoreceptor as a function of
wavelength. This is measured, as explained in the text, by
adjusting the intensity of light to give a criterion output, so
that very low sensitivity corresponds to shining a bright light,
rather than measuring a small output. Redrawn from Baylor
et al (1979a).

17 Many thanks to Denis Baylor for reminding me of this argument.
Since there are ∼ 109 rhodopsins in one cell, errors of even one
part in 105 would mean that there are thousands of “wrong”
molecules floating around. I wonder if this is true, or if the true
errors are even smaller. [Apparently there is evidence that some
cones are less precise about what defines “off;” should check this!]

FIG. 19 Schematic of the electronic states in a large molecule,
highlighting their coupling to motion of the nuclei. The sketch
show two states, with photon absorption (in blue) driving
transitions between them. If we think in semi–classical terms,
as explained in the text, then these transitions are ‘too fast’
for the atoms to move, and hence are vertical on such plots
(the Franck–Condon approximation). Because the atomic co-
ordinates fluctuate, as indicated by the Boltzmann distribu-
tion, the energy of the photon required to drive the transition
also fluctuates, and this broadens the absorption spectrum.

the quantum mechanics of a combined system of elec-
trons and nuclei. But the nuclei are very much heavier
than the electrons, and hence move more slowly. More
rigorously, the large ratio of masses means that we can
think of solving the quantum mechanics of the electrons
with the nuclei in fixed position, and then for each such
atomic configuration the energy of the electrons con-
tributes to the potential energy; as the nuclei move in
this potential (whether classically or quantum mechan-
ically) the electrons follow adiabatically.18 This is the
Born–Oppenheimer approximation, which is at the heart
of all attempts to understand molecular dynamics.19

Figure 19 shows the energy of two different electronic
states, plotted schematically against (one of the) atomic
coordinates. In the ground state, we know that there is
some arrangement of the atoms that minimizes the en-

18 Because the electrons (mostly) follow the nuclei, I will use “nu-
clei” and “atoms” interchangeably in what follows.

19 I assume that most readers know something about the Born–
Oppenheimer approximation, since it is a pretty classical subject.
It is also one of the first adiabatic approximations in quantum
mechanics. It took many years to realize that some very in-
teresting things can happen in the adiabatic limit, notably the
appearance of non–trivial phase factors in the adiabatic evolu-
tion of wave functions. Some of these ‘complications’ (to use a
word from one of original papers) were actually discovered in the
context of the Born–Oppenheimer approximation itself, but now
we know that this circle of ideas is much bigger, extending out
to quantum optics and quite exotic field theories.
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ergy, and that in the neighborhood of this minimum the
potential surface must look roughly like that of a system
of Hookean springs. Once we lift the electrons into the
first excited state, there is again some configuration of
the atoms that minimizes the energy (unless absorbing
one photon is enough to break the molecule apart!), but
unless there is some symmetry this equilibrium configu-
ration will be different than in the ground state, and the
stiffness of the spring holding the molecule in this equi-
librium configuration also will be different. Hence in Fig
19, the energy surfaces for the ground and excited states
are shown displaced and with different curvatures.

It is important to realize that sketches such as that in
Fig 19 are approximations in many senses. Most impor-
tantly, this sketch involves only one coordinate. You may
be familiar with a similar idea in the context of chemical
reactions, where out of all the atoms that move during
the reaction we focus on one “reaction coordinate” that
forms a path from the reactants to products; for more
about this see Section II.A. One view is that this is
just a convenience—we can’t draw in many dimensions,
so we just draw one, and interpret the figure cautiously.
Another view is that the dynamics are effectively one di-
mensional, either because there is a separation of time
scales, or because we can change coordinates to isolate,
for example, a single coordinate that couples to the differ-
ence in energy between the ground and excited electronic
states. The cost of this reduction in dimensionality might
be a more complex dynamics along this one dimension,
for example with a “viscosity” that is strongly frequency
dependent, which again means that we need to be cau-
tious in interpreting the picture that we draw. In what
follows I’ll start by being relatively informal, and try to
become more precise as we go along.

In the limit that the atoms are infinitely heavy, they
don’t move appreciably during the time required for an
electronic transition. On the other hand, the positions
of the atoms still have to come out of the Boltzmann
distribution, since the molecule is in equilibrium with
its environment at temperature T . In this limit, we can
think of transitions between electronic states as occurring
without atomic motion, corresponding to vertical lines
on the schematic in Fig 19. If the photon happens to ar-
rive when the atomic configuration is a bit to the left of
the equilibrium point, then as drawn the photon energy
needs to be larger in order to drive the transition; if the
configuration is a bit to the right, then the photon en-

ergy is smaller. In this way, the Boltzmann distribution
of atomic positions is translated into a broadening of the
absorption line. In particular, the transition can occur
with a photon that has very little energy if we happen
to catch a molecule in the rightward tail of the Boltz-
mann distribution: the electronic transition can be made
up partly from the energy of the photon and partly from
energy that is “borrowed” from the thermal bath. As a
result, the absorption spectrum should have a tail at long
wavelengths, and this tail will be strongly temperature
dependent, and this is observed in rhodopsin and other
large molecules. Since our perception of color depends on
the relative absorption of light by rhodopsins with differ-
ent spectra, this means that there must be wavelengths
such that the apparent color of the light will depend on
temperature [need a pointer and refs for this .. maybe
tell the story of de Vries and the hot tub?]
Concretely, if we imagine that the potential surfaces

are perfect Hookean springs, but with displaced equilib-
rium positions, then we can relate the width of the spec-
trum directly to the magnitude of this displacement. In
the ground state we have the potential

Vg(q) =
1

2
κq2, (60)

and in the excited state we have

Ve(q) = ε+
1

2
κ(q −∆)2, (61)

where ε is the minimum energy difference between the
two electronic states and ∆ is the shift in the equilib-
rium position, as indicated in Fig 20. With q fixed, the
condition for absorbing a photon is that the energy !Ω
match the difference in electronic energies,

!Ω = Ve(q)− Vg(q) = ε+
1

2
κ∆2 − κ∆q. (62)

The probability distribution of q when molecules are in
the ground state is given by

P (q) =
1

Z
exp

[
−Vg(q)

kBT

]
=

1√
2πkBT/κ

exp

[
− κq2

2kBT

]
,

(63)
so we expect the cross–section for absorbing a photon of
frequency Ω to have the form

σ(Ω) ∝
∫

dq P (q)δ

[
!Ω−

(
ε+

1

2
κ∆2 − κ∆q

)]
(64)

∝
∫
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− κq2

2kBT

]
δ
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!Ω−
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ε+

1

2
κ∆2 − κ∆q

)]
(65)

∝ exp

[
− (!Ω− !Ωpeak)2

4λkBT

]
, (66)
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where the peak of the absorption is at

!Ωpeak = ε+ λ, (67)

and

λ =
1

2
κ∆2 (68)

is the energy required to distort the molecule into the
equilibrium configuration of the excited state if we stay
in the ground state.
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a broadening of the absorption line.
Concretely, if we imagine that the potential surfaces are perfect Hookean

springs, but with displaced equilibrium positions, then we can relate the
width of the spectrum directly to the magnitude of this displacement. In
the ground state we have the potential

V↓(q) =
1

2
κq2, (1.50)

and in the excited state we have

V↑(q) = ε+
1

2
κ(q −∆)2, (1.51)

where ε is the minimum energy difference between the two electronic states
and ∆ is the shift in the equilibrium position. With q fixed, the condition for
absorbing a photon is that the energy !Ω match the difference in electronic
energies,

!Ω = V↑(q)− V↓(q) = ε+
1

2
κ∆2 − κ∆q. (1.52)

The probability distribution of q when molecules are in the ground state is
given by

P (q) ∝ exp

[
−
V↓(q)

kBT

]
= exp

[
− κq2

2kBT

]
, (1.53)

so we expect the absorption cross–section to have the form

σ(Ω) ∼
∫

dq P (q)δ

[
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2
κ∆2 − κ∆q

)]
(1.54)
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κ∆2 − κ∆q

)]
(1.55)

∝ exp

[
−
(!Ω− !Ωpeak)2

4λkBT

]
, (1.56)

where the peak of the absorption is at

!Ωpeak = ε+ λ, (1.57)

and

λ =
1

2
κ∆2 (1.58)

is the energy required to distort the molecule into the equilibrium configu-
ration of the excited state if we stay in the ground state.
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The probability distribution of q when molecules are in the ground state is
given by

P (q) ∝ exp

[
−
V↓(q)

kBT

]
= exp

[
− κq2

2kBT

]
, (1.53)

so we expect the absorption cross–section to have the form

σ(Ω) ∼
∫

dq P (q)δ

[
!Ω−

(
ε+

1

2
κ∆2 − κ∆q

)]
(1.54)

∝
∫

dq exp

[
− κq2

2kBT

]
δ

[
!Ω−

(
ε+

1

2
κ∆2 − κ∆q

)]
(1.55)

∝ exp

[
−
(!Ω− !Ωpeak)2

4λkBT

]
, (1.56)

where the peak of the absorption is at

!Ωpeak = ε+ λ, (1.57)

and

λ =
1

2
κ∆2 (1.58)

is the energy required to distort the molecule into the equilibrium configu-
ration of the excited state if we stay in the ground state.
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The energy λ is known, in different contexts, as the reorganization energy
or the Stokes shift. If the molecule stays in the excited for a long time, we
expect that the distribution of coordinates will re–equilibrate to the Boltz-
mann distribution appropriate to V↑(q), so that the most likely coordinate
becomes q = ∆. At this coordinate, if the molecule returns to the ground
state by emitting a photon—fluorescence—the energy of this photon will be
!Ωfluor = ε−λ Thus the peak fluorescence is red shifted from the absorption
peak by 2λ. This connects the width of the absorption band to the red
shift that occurs in fluorescence, and for many molecules this prediction is
correct, quantitatively, giving us confidence in the basic picture.

finish this
It would be nice to do an honest calculation that reproduces the intuition

of Fig 1.12. We have a system with two electronic states, which we can
represent as a spin one–half; let spin down be the ground state and spin up
be the excited state. The Born–Oppenheimer approximation tells us thatprobably will mention

B–O above; be sure to
connect

we can think of the atoms in a molecule as moving in a potential determined
by the electronic state, which we denote by V↑(q) and V↓(q) in the excited
and ground states, respectively; q stands for all the atomic coordinates.
Since we are observing photon absorption, there must be a matrix element
that connects the two electronic states and couples to the electromagnetic
field; we’ll assume that, absent symmetries, this coupling is dominated by an
electric dipole term. In principle the dipole matrix element #d could depend
upon the atomic coordinates, but we’ll neglect this effect.4 Putting the piece
together, we have the Hamiltonian for the molecule

H = K+
1

2
(1 + σz)V↑(q) +

1

2
(1− σz)V↓(q) + #d· #E(σ+ + σ−), (1.59)

where K is the kinetic energy of the atoms. To this we should of course add
the usual Hamiltonian for the electromagnetic field.

We are interested in computing the rate at which photons of energy !Ω
are absorbed, and of course we will do this as a perturbation expansion in
the term ∼ #d. The result of such a calculation can be presented as the
‘Golden rule’ for transition rates, but this formulation hides the underlying
dynamics. So, at the risk of being pedantic, I’ll go through the steps that
usually lead to the Golden rule and take a detour that leads us to a formula
in which the dynamics of atomic motions are more explicit.5

4In practice, this is a small effect. You should think about why this is true.
5I am assuming something about the background of my students—that the Golden rule

is well known, but that the general tools which relate cross–sections and transition rates
to correlation functions are less well digested.
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is the energy required to distort the molecule into the equilibrium configu-
ration of the excited state if we stay in the ground state.

FIG. 20 The potential surfaces of Fig 19, redrawn in the
special case where they are parabolic. Then, as in Eqs (60)
through (68), there are just a few key parameters that de-
termine the shape of the absorption spectrum and also the
fluorscence emission. Redraw figure to show that !Ωpeak =
ε+ λ; ref to Eq (67).

The energy λ is known, in different contexts, as the
reorganization energy or the Stokes shift. If the molecule
stays in the excited state for a long time, the distri-
bution of coordinates will re–equilibrate to the Boltz-
mann distribution appropriate to Ve(q), so that the most
likely coordinate becomes q = ∆. At this coordinate, if
the molecule returns to the ground state by emitting a
photon—fluorescence—the energy of this photon will be
!Ωfluor = ε − λ. Thus the peak fluorescence is at lower
energies, or red shifted from the absorption peak by an
amount 2λ, as one can read off from Fig 20. This con-
nects the width of the absorption band to the red shift
that occurs in fluorescence, and for many molecules this
prediction is correct, quantitatively, giving us confidence
in the basic picture. [I wonder if all of this needs more
figures in order to be clear?]

In the case of rhodopsin, the peak absorption is at a
wavelength of 500 nm or an energy of !Ωpeak = 2.5 eV.
The width of the spectrum is described roughly by a
Gaussian with a standard deviation of ∼ 10% of the peak
energy, so that 2λkBT ∼ (0.25 eV)2, or λ ∼ 1.25 eV.
Surely we can’t take this seriously, since this reorganiza-
tion energy is enormous, and would distort the molecule
well beyond the point where we could describe the poten-
tial surfaces by Hookean springs. Amusingly, if we took

this result literally, the peak fluorescence would be at zero
energy (!). Probably the correct conclusion is that there
is a tremendously strong coupling between excitation of
the electrons and motion of the atoms, and presumably
this is related to the fact that photon absorption leads to
very rapid structural changes.
Before proceeding, it would be nice to do an honest

calculation that reproduces the intuition of Figs 19 and
20, and this is done in Section A.3. The results of the cal-
culation show, in more detail, how the coupling of elec-
tronic states to the vibrational motion of the molecule
can shape the absorption spectrum. If there is just one
lightly damped vibrational mode, then the single sharp
absorption line which we expect from atomic physics be-
comes a sequence of lines, corresponding to changing elec-
tronic state and exciting one, two, three, ... or more vi-
brational quanta. If there are many modes, and these
modes are damped by interaction with other degrees of
freedom, these “vibronic” lines merge into a smooth spec-
trum which we can calculate in a semi–classical approxi-
mation.
The coupling of electronic transitions to vibrational

motion generates the phenomenon of Raman scattering—
a photon is inelastically scattered, making a virtual tran-
sition to the electronically excited state and dropping
back down to the ground state, leaving behind a vibra-
tional quantum [add a figure illustrating Raman scatter-
ing]. The energy shifts of the scattered photons allow us
to read off, directly, the frequencies of the relevant vi-
brational modes. With a bit more sophistication, we can
connect the strength of the different lines to the coupling
constants (e.g., the displacements ∆i along each mode,
generalizing the discussion above) that characterize the
interactions between electronic and vibrational degrees
of freedom. If everything works, it should be possible
to reconstruct the absorption spectrum from these esti-
mates of frequencies and couplings. This whole program
has been carried through for Rhodospin. Importantly, in
order to get everything right, one has to include motions
which are effectively unstable in the excited state, pre-
sumably corresponding to the torsional motions that lead
to cis–trans isomerization. [This is all a little quick. On
the other hand, there is a huge amount of detail here that
might take us away from the goal. Advice is welcome!]

Problem 23: Raman scattering. Take the students through a
simple calculation of Raman scattering ...

If we try to synthesize all of these ideas into a single
schematic, we might get something like Fig 21. If we take
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FIG. 21 Schematic model of the energy surfaces in
Rhodopsin. The ground state has minima at both the 11–
cis and the all–trans structures. A single excited state sits
above this surface. At some intermediate structure, the sur-
faces come very close. At this point, the Born–Oppenheimer
approximation breaks down, and there will be some mixing
between the two states. A molecule lifted into the excited
state by absorbing a photon slides down the upper surface,
and can pass non–adiabatically into the potential well whose
minimum is at all–trans.

this picture seriously, then after exciting the molecule
with a pulse of light, we should see the disappearance
of the absorption band associated with the 11–cis struc-
ture, the gradual appearance of the absorption from the
all–trans state, and with a little luck, stimulated emis-
sion while the excited state is occupied. All of this is
seen. Looking closely (e.g., at Fig 17), however, one sees
that spectra are oscillating in time. Rather than slid-
ing irreversibly down the potential surfaces toward their
minima, the atomic structure oscillates. More remark-
ably, detailed analysis of the time evolution of the spectra
demonstrates that there is coherent quantum mechani-
cal mixing among the relevant electronic and vibrational
states.

Our usual picture of molecules and their transitions
comes from chemical kinetics: there are reaction rates,
which represent the probability per unit time for the
molecule to make transitions among states which are dis-
tinguishable by some large scale rearrangement; these
transitions are cleanly separated from the time scales for
molecules to come to equilibrium in each state. The ini-
tial isomerization event in rhodopsin is so fast that this
approximation certainly breaks down. More profoundly,
the time scale of the isomerization is so fast that it com-
petes with the processes that destroy quantum mechan-
ical coherence among the relevant electronic and vibra-
tional states. The whole notion of an irreversible tran-
sition from one state to another necessitates the loss of
coherence between these states (recall Schrödinger’s cat),

and so in this sense the isomerization is proceeding as
rapidly as possible.
At this point what we would like to do is an honest,

if simplified calculation that generates the schematic in
Fig 21 and explains how the dynamics on these surfaces
can be so fast. As far as I know, there is no clear answer
to this challenge, although there are many detailed sim-
ulations, in the quantum chemical style, that probably
capture elements of the truth.[it would be nice to be a
little more explicit here!] The central ingredient is the
special nature of the π bonds along the retinal. In the
ground state, electron hopping between neighboring pz
orbitals lowers the energy of the system, and this effect is
maximized in planar structures where the orbitals are all
in the same orientation. But this lowering of the energy
depends on the character of the electron wave functions—
in the simplest case of bonding between two atoms, the
symmetric state (the ‘bonding orbital’) has lower energy
in proportion to the hopping matrix element, while the
anti–symmetric state (‘anti–bonding orbital’) has higher
energy, again in proportion to the matrix element. Thus,
if we excite the electrons, it is plausible that the energy of
the excited state could be reduced by structural changes
that reduce the hopping between neighboring carbons,
which happens if the molecule rotates to become non–
planar. In this way we can understand why there is a
force for rotation in the excited state, and why there is
another local minimum in the ground state at the 11–cis
structure.

Problem 24: Energy levels in conjugated molecules. The
simplest model for a conjugated molecule is that the electrons which
form the π orbitals can sit on each carbon atom with some energy
that we can set to zero, and they can hop from one atom to its
neighbors. Note that there is one relevant electron per carbon
atom. If we write the Hamiltonian for the electrons as a matrix,
then for a ring of six carbons (benzene) we have

H6 =





0 −t 0 0 0 −t
−t 0 −t 0 0 0
0 −t 0 −t 0 0
0 0 −t 0 −t 0
0 0 0 −t 0 −t
−t 0 0 0 −t 0




, (69)

where the “hopping matrix element” −t is negative because the
electrons can lower their energy by being shared among neighboring
atoms—this is the essence of chemical bonding! Models like this
are called tight binding models in the condensed matter physics
literature and Hückel models in the chemical literature. Notice
that they leave out any direct interactions among the electrons.
This problem is about solving Schrödinger’s equation, Hψ = Eψ,
to find the energy eigenstates and the corresponding energy levels.
Notice that for the case of benzene if we write the wave function
ψ in terms of its six components (one for each carbon atom) then
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Schrödinger’s equation becomes

−t(ψ2 + ψ6) = Eψ1 (70)

−t(ψ1 + ψ3) = Eψ2 (71)

−t(ψ2 + ψ4) = Eψ3 (72)

−t(ψ3 + ψ5) = Eψ4 (73)

−t(ψ4 + ψ6) = Eψ5 (74)

−t(ψ5 + ψ1) = Eψ6. (75)

(a.) Considering first the case of benzene, show that solutions
to the Schrödinger equation are of the form ψn ∝ exp(ikn). What
are the allowed values of the “momentum” k? Generalize to an
arbitrary N–membered ring.

(b.) What are the energies corresponding to the states labeled by
k? Because of the Pauli principle, the ground state of the molecule

is constructed by putting the electrons two–by–two (spin up and
spin down) into the lowest energy states; thus the ground state of
benzene has two electrons in each of the lowest three states. What
is the ground state energy of benzene? What about for an arbitrary
N–membered ring (with N even)? Can you explain why benzene
is especially stable?

(c.) Suppose that the bonds between carbon atoms stretch and
compress a bit, so that they become alternating single and double
bonds rather than all being equivalent. To first order, if the bond
stretches by an amount u then the hopping matrix element should
go down (the electron has farther to hop), so we write t → t −
αu; conversely, if the bond compresses, so that u is negative, the
hopping matrix element gets larger. If we have alternating long
and short (single and double) bonds, then the Hamiltonian for an
six membered ring would be

H6(u) =





0 −t+ αu 0 0 0 −t− αu
−t+ αu 0 −t− αu 0 0 0

0 −t− αu 0 −t+ αu 0 0
0 0 −t+ αu 0 −t− αu 0
0 0 0 −t− αu 0 −t+ αu

−t− αu 0 0 0 −t+ αu 0




.

(76)

Find the ground state energy of the electrons as a function of u,
and generalize to the case of N–membered rings. Does the “dimer-
ization” of the system (u -= 0) raise or lower the energy of the
electrons? Note that if your analytic skills (or patience!) give out,
this is a relatively simple numerical problem; feel free to use the
computer, but be careful to explain what units you are using when
you plot your results.

(d.) In order to have bonds alternately stretched and compressed
by an amount u, we need an energy 1

2κu
2 in each bond, where κ

is the stiffness contributed by all the other electrons that we’re not
keeping track of explicitly. Consider parameter values t = 2.5 eV,

α = 4.1 eV/Å, and κ = 21 eV/Å
2
. Should benzene have alternating

single and double bonds (u -= 0) or should all bonds be equivalent
(u = 0)?

(e.) Peierls’ theorem about one–dimensional electron systems
predicts that, for N–carbon rings with N large, the minimum total
energy will be at some non–zero u∗. Verify that this is true in this
case, and estimate u∗. How large does N have to be before it’s
“large”? What do you expect for retinal?

I could try to do a full calculation here that puts flesh
on the outline in the previous paragraph, using the tools
from the problem above. But there still is a problem even
if this works ...

Suppose that we succeed, and have a semi–quantitative
theory of the excited state dynamics of rhodopsin,
enough to understand why the quantum yield of fluo-
rescence is so low, and what role is played by quantum
coherence. We would then have to check that the barrier
between the 11–cis and the all–trans structures in Fig 21
comes out to have the right height to explain the acti-
vation energy for spontaneous isomerization. But then
how do we account for the anomalously low prefactor in

this rate, which is where, as discussed above, the protein
acts to suppress dark noise? If there is something special
about the situation in the environment of the protein
which makes possible the ultrafast, coherent dynamics
in the excited state, why does this special environment
generate almost the same barrier as for isolated retinal?
It is clear that the ingredients for understanding the

dynamics of rhodopsin—and hence for understanding
why we can see into the darkest times of night—involve
quantum mechanical ideas more related to condensed
matter physics than to conventional biochemistry, a re-
markably long distance from the psychology experiments
on human subjects that we started with. While Lorentz
could imagine that people count single quanta, surely he
couldn’t have imagined that he first steps of this process
are coherent. While these are the ingredients, it is clear
that we don’t have them put together in quite the right
way yet.
If rhodopsin were the only example of this “almost co-

herent chemistry” that would be good enough, but in fact
the other large class of photon induced events in biologi-
cal systems—photosynthesis—also proceed so rapidly as
to compete with loss of coherence, and the crucial events
again seem to happen (if you’ll pardon the partisanship)
while everything is still in the domain of physics and not
conventional chemistry. Again there are beautiful exper-
iments that present a number of theoretical challenges.20

20 As usual, a guide is found in the references at the end of this
section.
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Why biology pushes to these extremes is a good question.
How it manages to do all this with big floppy molecules
in water at roughly room temperature also is a great
question.

To get some of the early history of work on the visual pigments,
one can do worse than to read Wald’s Nobel lecture (Wald 1972).
Wald himself (along with his wife and collaborator, Ruth Hubbard)
was quite an interesting fellow, much involved in politics; to con-
nect with the previous section, his PhD adviser was Selig Hecht.
[need more about dark noise and temperature dependence?] For a
measurement of dark noise in cones, see Sampath & Baylor (2002).
The remarkable result that the quantum yield of fluorescence in
rhodopsin is ∼ 10−5 is due to Doukas et al (1984); it’s worth not-
ing that measuring this small quantum yield was possible at a time
when one could not directly observe the ultrafast processes that
are responsible for making the branching ratio this small. Direct
measurements were finally made by Mathies et al (1988), Schoen-
lein et al (1991), and Wang et al (1994), the last paper making
clear that the initial events are quantum mechanically coherent. A
detailed analysis of the Raman spectra of Rhodopsin has been done
by Loppnow & Mathies (1988).

Doukas et al 1984: Fluorescence quantum yield of visual pig-
ments: Evidence for subpicosecond isomerization rates. AG
Doukas, MR Junnarkar, RR Alfano, RH Callender, T Kak-
itani & B Honig, Proc Nat Acad Sci (USA) 81, 4790–4794
(1984).

Loppnow & Mathies 1988: Excited-state structure and isomer-
ization dynamics of the retinal chromophore in rhodopsin
from resonance Raman intensities GR Loppnow & RAMath-
ies, Biophys J 54, 35–43 (1988).

Mathies et al 1988: Direct observation of the femtosecond
excited–state cis–trans isomerization in bacteriorhodopsin.
RA Mathies, CH Brito Cruz, WT Pollard & CV Shank,
Science 240, 777–779 (1988).

Sampath & Baylor 2002: Molecular mechanisms of sponta-
neous pigment activation in retinal cones. AP Sampath &
DA Baylor, Biophys J 83, 184–193 (2002).

Schoenlein et al 1991: The first step in vision: Femtosecond
isomerization of rhodopsin. RW Schoenlein, LA Peteanu,
RA Mathies & CV Shank, Science 254, 412–415 (1991).

Wald 1972: The molecular basis of visual excitation. G
Wald, in Nobel Lectures: Physiology or Medicine 1963–
1970 (Elsevier, Amsterdam, 1972). Also available at
http://nobelprize.org.

Wang et al 1994: Vibrationally coherent photochemistry in the
femtosecond primary event of vision. Q Wang, RW Schoen-
lein, LA Peteanu, RA Mathies & CV Shank, Science 266,
422–424 (1994).

The Born–Oppenheimer approximation is discussed in almost all
quantum mechanics textbooks. For a collection of the key papers,
with commentary, on the rich phenomena that can emerge in such
adiabatic approximations, see Shapere & Wilczek (1989). Models
for coupling of electron hopping to bond stretching (as in the last
problem) were explored by Su, Schrieffer and Heeger in relation
to polyacetylene. Importantly, these models predict that the exci-
tations (e.g., upon photon absorption) are not just electrons and
holes in the usual ladder of molecular orbitals, but that there are
localized, mobile objects with unusual quantum numbers. These
mobile objects can be generated by doping, which is the basis for
conductivity in these quasi–one dimensional materials. The origi-
nal work in Su et al (1980); a good review is Heeger et al (1988).
Many people must have realized that the dynamical models being
used by condensed matter physicists for (ideally) infinite chains

might also have something to say about finite chains. For ideas in
this direction, including some specifically relevant to Rhodopsin,
see Bialek et al (1987), Vos et al (1996), and Aalberts et al (2000).

Aalberts et al 2000: Quantum coherent dynamics of molecules:
A simple scenario for ultrafast photoisomerization. DP Aal-
berts, MSL du Croo de Jongh, BF Gerke & W van Saarloos,
Phys Rev A 61, 040701 (2000).

Heeger et al 1988: Solitons in conducting polymers. AJ Heeger,
S Kivelson, JR Schrieffer & W–P Su, Rev Mod Phys 60,
781–850 (1988).

Bialek et al 1987: Simple models for the dynamics of
biomolecules: How far can we go?. W Bialek, RF
Goldstein & S Kivelson, in Structure, Dynamics and
Function of Biomolecules: The First EBSA Workshop, A
Ehrenberg, R Rigler, A Graslund & LJ Nilsson, eds, pp
65–69 (Springer–Verlag, Berlin, 1987).

Shapere & Wilczek 1989: Geometric Phases in Physics A
Shapere and F Wilczek (World Scientific, Singapore, 1989)

Su et al 1980: Soliton excitations in polyacetylene. W–P Su, JR
Schrieffer & AJ Heeger, Phys Rev B 22, 2099–2111 (1980).

Vos et al 1996: Su–Schrieffer–Heeger model applied to chains of
finite length. FLJ Vos, DP Aalberts & W van Saarloos, Phys
Rev B 53, 14922–14928 (1996).

Going beyond the case of rhodopsin, you may want to explore the
role of quantum coherence in the initial events of photosynthe-
sis; for an introduction see Fleming & van Grondelle (1994). The
first experiments focused on photo–induced electron transfer, and
looked at systems that had been genetically modified so that the
electron, once excited, had no place to go (Vos et al 1991, Vos et al
1993); this made it possible to see the coherent vibrational motion
of the molecule more clearly in spectroscopic experiments. Sub-
sequent experiments used more intact systems, but looked first at
low temperatures (Vos et al 1994a) and finally at room tempera-
ture (Vos et al 1994b). Eventually it was even possible to show that
photo–triggering of electron transfer in other systems could reveal
coherent vibrational motions (Liebl et al 1999). More or less at the
same time as the original Vos et al experiments, my colleagues and
I made the argument that photo–induced electron transfer rates
in the initial events of photosynthesis would be maximized if the
system were poised on the threshold of revealing coherent effects;
maybe (although there were uncertainties about all the parameters)
one could even strengthen this argument to claim that the observed
rates were possible only in this regime (Skourtis et al 1992). Most
recently, it has been discovered that when energy is trapped in
the “antenna pigments” of photosynthetic systems, the migration
of energy toward the reaction center (where the electron transfer
occurs) is coherent, and it has been suggested that this allows for
a more efficient exploration of space, finding the target faster than
is possible in diffusive motion (Engel et al 2007). [Decide what to
say about the large follow up literature!]

Engel et al 2007: Evidence for wavelike energy transfer through
quantum coherence in photosynthetic systems. GS En-
gel, TR Calhoun, EL Read, T–K Ahn, T Mančal, Y–C
Chengm RE Blankenship & GR Fleming, Nature 446, 782–
786 (2007).

Fleming & van Grondelle 1994: The primary steps of photo-
synthesis. GR Fleming & R van Grondelle, Physics Today
pp 48–55, February 1994.

Liebl et al 1999: Coherent reaction dynamics in a bacterial cy-
tochrome c oxidase. U Liebl, G Lipowski, M Négrerie, JC
Lambry, JL Martin & MH Vos, Nature 401, 181–184 (1999).

Skourtis et al 1992: A new look at the primary charge separa-
tion in bacterial photosynthesis. SS Skourtis, AJR DaSilva,
W Bialek & JN Onuchic, J Phys Chem 96, 8034–8041
(1992).

Vos et al 1991: Direct observation of vibrational coherence in
bacterial reaction centers using femtosecond absorption
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spectroscopy. MH Vos, JC Lambry, SJ Robles, DC You-
van, J Breton & JL Martin, Proc Nat’l Acad Sci (USA) 88,
8885–8889 (1991).

Vos et al 1993: Visualization of coherent nuclear motion in a
membrane protein by femtosecond spectroscopy. MH Vos,
F Rappaport, JC Lambry, J Breton & JL Martin, Nature
363, 320–325 (1993).

Vos et al 1994a: Coherent dynamics during the primary electron
transfer reaction in membrane–bound reaction centers of
Rhodobacter sphaeroides. MH Vos, MR Jones, CN Hunter,
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C. Dynamics of biochemical networks

Section still needs editing, as of September 18, 2011.
The material here seems to have accreted during the
early versions of the course, and much time is spent on
things which we now know aren’t productive ... . On
the other hand, I would like to say more about, for ex-
ample, Sengupta et al (2000) on SNR in cascades and
gain–bandwidth, as well as returning to the problem of
transduction in invertebrates, e.g. theoretical work from
Shraiman, Ranganathan et al.. So, I’d like make a more
thorough overhaul here!

We have known for a long time that light is absorbed
by rhodopsin, and that light absorption leads to an elec-
trical response which is detectable as a modulation in the
current flowing across the photoreceptor cell membrane.
It is only relatively recently that we have come to under-
stand the mechanisms which link these two events. The
nature of the link is qualitatively different in different
classes of organisms. For vertebrates, including us, the
situation is as schematized in Fig 22. [it would be nice
to come back and talk about invertebrates too]

In outline, what happens is that the excited rhodopsin
changes its structure, arriving after several steps in a
state where it can act as a catalyst to change the struc-
ture of another protein called transducin (T). The acti-
vated transducin in turn activates a catalyst called phos-
phodiesterase (PDE), which breaks down cyclic guano-
sine monophospate (cGMP). Finally, cGMP binds to
channels in the cell membrane and opens the channels,
allowing current to flow (mostly carried by Na+ ions);
breaking down the cGMP thus decreases the number of
open channels and decreases the current. [This discus-
sion needs to refer to a schematic of the rod cell. Where
is this? Earlier? Here?]

In a photomultiplier, photon absorption results in the
ejection of a primary photoelectron, and then the large
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FIG. 22 The cascade leading from photon absorption to ionic
current flow in rod photoreceptors. Solid lines indicate ‘for-
ward’ steps that generate gain; dashed lines are the ‘back-
ward’ steps that shut off the process. T is the transducin
molecule, a member of the broad class of G–proteins that
couple receptors to enzymes. PDE is the enzyme phospho-
diesterase, named for the particular bond that it cuts when
it degrades cyclic guanosine monophosphate (cGMP) into
GMP. GC is the guanylate cyclase that synthesizes cGMP
from guanosine triphosphate, GTP.

electric field accelerates this electron so that when it hits
the next metal plate it ejects many electrons, and the
process repeats until at the output the number of elec-
trons is sufficiently large that it constitutes a macroscopic
current. Thus the photomultiplier really is an electron
multiplier. In the same way, the photoreceptor acts as
a molecule multiplier, so that for one excited rhodopsin
molecule there are many cGMP molecules degraded at
the output of the “enzymatic cascade.”
There are lots of interesting questions about how the

molecule multiplication actually works in rod photore-
ceptors. These questions are made more interesting by
the fact that this general scheme is ubiquitous in biologi-
cal systems. [need a schematic about G–protein coupled
receptors!] Rhodopsin is a member of a family of proteins
which share common structural features (seven alpha he-
lices that span the membrane in which the protein is
embedded) and act as receptors, usually activated by the
binding of small molecules such as hormones or odorants
rather than light. Proteins in this family interact with
proteins from another family, the G proteins, of which
transducin is an example, and the result of such interac-
tions typically is the activation of yet another enzyme, of-
ten one which synthesizes or degrades a cyclic nucleotide.
Cyclic nucleotides in turn are common intracellular mes-
sengers, not just opening ion channels but also activating
or inhibiting a variety of enzymes. This universality of
components means that understanding the mechanisms
of photon counting in rod cells is not just a curiosity for
physicists, but a place where we can provide a model for
understanding an enormous range of biological processes.
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In order to get started, we need to know a little bit
about ion channels, which form the output of the system.
We will see that even the simplest, order–of–magnitude
properties of channels raise a question about the observed
behavior of the rod cells.
Recall that the brain contains no metallic or semicon-

ductor components. Signals can still be carried by elec-
trical currents and voltages, but now currents consist of
ions, such as potassium or sodium, flowing through water
or through specialized conducting pores. These pores, or
channels, are large molecules (proteins) embedded in the
cell membrane, and can thus respond to the electric field
or voltage across the membrane as well as to the binding
of small molecules. The coupled dynamics of channels
and voltage turns each cell into a potentially complex
nonlinear dynamical system.
Imagine a spherical molecule or ion of radius a; a typi-

cal value for this radius is 0.3 nm. From Stokes’ formula
we know that if this ion moves through the water at ve-
locity v it will experience a drag force F = γv, with the
drag coefficient γ = 6πηa, where η is the viscosity; for
water η = 0.01 poise, the cgs unit poise = gm/(cm · s).
The inverse of the drag coefficient is called the mobil-
ity, µ = 1/γ, and the diffusion constant of a particle
is related to the mobility and the absolute tempera-
ture by the Einstein relation or fluctuation dissipation
theorem, D = kBTµ, with kB being Boltzmann’s con-
stant and T the absolute temperature. Since life oper-
ates in a narrow range of absolute temperatures, it is
useful to remember that at room temperature (25◦C),
kBT ∼ 4 × 10−21 J ∼ 1/40 eV. So let’s write the diffu-
sion constant in terms of the other quantities, and then
evaluate the order of magnitude:

D = kBTµ = kBT · 1
γ
=

kBT

6πηa
(77)

=
[4× 10−21 J]

6π · [0.01 gm/(cm · s)] · [0.3× 10−9 m]
(78)

∼ 2× 10−9m2/ s = 2µm2/ms. (79)

Ions and small molecules diffuse freely through water,
but cells are surrounded by a membrane that functions
as a barrier to diffusion. In particular, these membranes
are composed of lipids, which are nonpolar, and there-
fore cannot screen the charge of an ion that tries to pass
through the membrane. The water, of course, is polar
and does screen the charge, so pulling an ion out of the
water and pushing it through the membrane would re-
quire surmounting a large electrostatic energy barrier.
This barrier means that the membrane provides an enor-
mous resistance to current flow between the inside and
the outside of the cell. If this were the whole story there
would be no electrical signaling in biology. In fact, cells
construct specific pores or channels through which ions
can pass, and by regulating the state of these channels
the cell can control the flow of electric current across the
membrane. [need a sketch that goes with this discussion]

Ion channels are themselves molecules, but very large
ones—they are proteins composed of several thousand
atoms in very complex arrangements. Let’s try, however,
to ask a simple question: If we open a pore in the cell
membrane, how quickly can ions pass through? More
precisely, since the ions carry current and will move in
response to a voltage difference across the membrane,
how large is the current in response to a given voltage?
Imagine that one ion channel serves, in effect, as a hole

in the membrane. Let us pretend that ion flow through
this hole is essentially the same as through water. The
electrical current that flows through the channel is

J = qion · [ionic flux] · [channel area], (80)

where qion is the charge on one ion, and we recall that
‘flux’ measures the rate at which particles cross a unit
area, so that

ionic flux =
ions

cm2s
=

ions

cm3
· cm

s
(81)

= [ionic concentration] · [velocity of one ion]

= cv. (82)

Major current carriers such as sodium and potassium
are at concentrations of c ∼ 100 mM, or c ∼ 6 ×
1019 ions/cm3.
The next problem is to compute the typical velocity of

one ion. We are interested in a current, so this is not the
velocity of random Brownian motion but rather the aver-
age of that component of the velocity directed along the
electric field. In a viscous medium, the average velocity
is related to the applied force through the mobility, or
the inverse of the drag coefficient as above. The force on
an ion is in turn equal to the electric field times the ionic
charge, and the electric field is (roughly) the voltage dif-
ference V across the membrane divided by the thickness
& of the membrane:

v = µF = µqionE ∼ µqion
V

&
=

D

kBT
qion

V

&
. (83)

Putting the various factors together we find the current

J = qion · [ionic flux] · [channel area]
= qion · [cv] · [πd2/4] (84)

= qion ·
[
c · D

&
· qionV
kBT

]
· πd

2

4
(85)

=
π

4
qion · cd

2D

&
· qionV
kBT

, (86)

where the channel has a diameter d. If we assume that
the ion carries one electronic charge, as does sodium,
potassium, or chloride, then qion = 1.6 × 10−19 C and
qionV /(kBT ) = V/(25 mV). Typical values for the chan-
nel diameter should be comparable to the diameter of a
single ion, d ∼ 0.3 nm, and the thickness of the mem-
brane is & ∼ 5 nm. Thus
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J =
π

4
qion · cd

2D

&
· qionV
kBT

=
π

4
(1.6× 10−19 C) · (6× 1019 cm−3)(3× 10−8 cm)2(10−5 cm2/s)

50× 10−8 cm
· V

25 mV
(87)

∼ 2× 10−14 · V

mV
C/s ∼ 2× 10−11 V

Volts
Amperes, (88)

or

J = gV (89)

g ∼ 2× 10−11 Amperes/Volt = 20 picoSiemens.(90)

So our order of magnitude argument leads us to pre-
dict that the conductance of an open channel is roughly
20 pS.21 With a voltage difference across the membrane
of ∼ 50mV, we thus expect that opening a single channel
will cause ∼ 1 picoAmp of current to flow. Although in-
credibly oversimplified, this is basically the right answer,
as verified in experiments where one actually measures
the currents flowing through single channel molecules.

The first problem in understanding the enzymatic cas-
cade in rods is accessible just from these back of the en-
velope arguments. When we look at the total change
in current that results from a single photon arrival, it
is also ∼ 1 pA. But if this were just the effect of (clos-
ing) one channel, we’d see “square edges” in the current
trace as the single channels opened or closed. It would
also be a little weird to have sophisticated (and expen-
sive!) mechanisms for generating macroscopic changes
in cGMP concentration only to have this act once again
on a single molecule—if we have a single molecule input
and a single molecule output, it really isn’t clear why we
would need an amplifier. What’s going on?

The answer turns out to be that these channels flicker
very rapidly between their open and closed states, so that
on the relatively slow time scale of the rod response one
sees essentially a graded current proportional to the prob-
ability of the channel being open. Thus the population
of channels in the rod cell membrane produces a cur-
rent that depends continuously on the concentration of
cGMP. Alternatively, the noise variance that is associ-
ated with the random binary variable open/closed has
been spread over a very broad bandwidth, so that in the
frequency range of interest (recall that the single photon
response is on a time scale of ∼ 1 s) the noise is much
reduced. This idea is made precise in the following prob-
lem, which you can think of as an introduction to the

21 Siemens are the units of conductance, which are inverse to units
of resistance, ohms. In the old days, this inverse of resistance had
the rather cute unit ‘mho’ (pronounced ‘moe,’ like the Stooge).

analysis of noise in “chemical” systems where molecules
fluctuate among multiple states.

Problem 25: Flickering channels. Imagine a channel that
has two states, open and closed. There is a rate kopen at which the
molecule makes transitions from the closed state to the open state,
and conversely there is a rate kclose at which the open channels
transition into the closed state. If we write the number of open
channels as nopen, and similarly for the number of closed channels,
this means that the deterministic kinetic equations are

dnopen

dt
= kopennclosed − kclosenopen (91)

dnclose

dt
= kclosenopen − kopennclose, (92)

or, since nopen + nclosed = N , the total number of channels,

dnopen

dt
= kopen(N − nopen)− kclosenopen (93)

= −(kopen + kclose)nopen + kopenN. (94)

For a single channel molecule, these kinetic equations should be
interpreted as saying that an open channel has a probability kclosedt
of making a transition to the closed state within a small time dt,
and conversely a closed channel has a probability kopendt of making
a transition to the open state. We will give a fuller account of noise
in chemical systems in the next Chapter, but for now you should
explore this simplest of examples.

(a.) If we have a finite number of channels, then really the
number of channels which make the transition from the closed state
to the open state in a small window dt is a random number. What
is the mean number of these closed → open transitions? What is
the mean number of open → closed transitions? Use your results
to show that macroscopic kinetic equations such as Eqs (91) and
(92) should be understood as equations for the mean numbers of
open and closed channels,

d〈nopen〉
dt

= kopen〈nclosed〉 − kclose〈nopen〉 (95)

d〈nclose〉
dt

= kclose〈nopen〉 − kopen〈nclose〉. (96)

(b.) Assuming that all the channels make their transitions in-
dependently, what is the variance in the number of closed → open
transitions in the small window dt? In the number of open → closed
transitions? Are these fluctuations in the number of transitions in-
dependent of one another?

(c.) Show that your results in [b] can be summarized by saying
that the change in the number of open channels during the time dt
obeys an equation

nopen(t+dt)−nopen(t) = dt[kopennclosed−kclosenopen]+η(t), (97)

where η(t) is a random number that has zero mean and a variance

〈η2(t)〉 = dt[kopennclosed + kclosenopen]. (98)
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Explain why the values of η(t) and η(t′) are independent if t -= t′.
(d.) This discussion should remind you of the description of

Brownian motion by a Langevin equation, in which the determin-
istic dynamics are supplemented by a random force that describes
molecular collisions. In this spirit, show that, in the limit dt → 0,
you can rewrite your results in [c] to give a Langevin equation for
the number of open channels,

dnopen

dt
= −(kopen + kclose)nopen + kopenN + ζ(t), (99)

where

〈ζ(t)ζ(t′)〉 = δ(t− t′)[kopennclosed + kclosenopen]. (100)

In particular, if the noise is small, show that nopen = 〈nopen〉 +
δnopen, where

dδnopen

dt
= −(kopen + kclose)δnopen + ζs(t), (101)

〈ζs(t)ζs(t′)〉 = 2kopen〈nclosed〉. (102)

(e.) Solve Eq (101) to show that

〈δn2
open〉 = Npopen(1− popen) (103)

〈δnopen(t)δnopen(t
′)〉 = 〈δn2

open〉 exp
[
−
|t− t′|

τc

]
, (104)

where the probability of a channel being open is popen =
kopen/(kopen + kclose), and the correlation time τc = 1/(kopen +
kclose). Explain how the result for the variance 〈δn2

open〉 could be
derived more directly.

(f.) Give a critical discussion of the approximations involved in
writing down these Langevin equations. In particular, in the case
of Brownian motion of a particle subject to ordinary viscous drag,
the Langevin force has a Gaussian distribution. Is that true here?

Problem 26: Averaging out the noise. Consider a random
variable such as nopen in the previous problem, for which the noise
has exponentially decaying correlations, as in Eq (104). Imagine
that we average over a window of duration τavg, to form a new
variable

z(t) =
1

τavg

∫ τavg

0
dτ δnopen(t− τ). (105)

Show that, for τavg " τc, the variance of z is smaller than the
variance of δnopen by a factor of τavg/τc. Give some intuition for
why this is true (e.g., how many statistically independent samples
of nopen will you see during the averaging time?). What happens
if your averaging time is shorter?

I think this is a fascinating example, because evolution
has selected for very fast channels to be present in a cell
that signals very slowly! Our genome (as well as those of
many other animals) codes for hundreds if not thousands
of different types of channels once one includes the pos-
sibility of alternative splicing. These different channels
differ, among other things, in their kinetics. In the fly
retina, for example, the dynamics of visual inputs look-
ing straight ahead are very different from those looking to
the side, and in fact the receptor cells that look in these
different directions have different kinds of channels—the
faster channels to respond to the more rapidly varying
signals. [I am not sure that the last statement is correct,
and need to check the references; what certainly is true
is that insects with different lifestyles (e.g., acrobats vs.
slow fliers) use different potassium channels ... ] In the

FIG. 23 Current through the rod cell membrane as a function
of the cyclic GMP concentration. The fit is to Eq (106), with
n = 2.9 ± 0.1 and G1/2 = 45 ± 4µM. From Rieke & Baylor
(1996).

vertebrate rod, signals are very slow but the channels are
fast, and this makes sense only if the goal is to suppress
the noise.
Having understood a bit about the channels, let’s take

one step back and see how these channels respond to
cyclic GMP. Experimentally, with the rod outer segment
sucked into the pipette for measuring current, one can
break off the bottom of the cell and make contact with
its interior, so that concentrations of small molecules in-
side the cell will equilibrate with concentrations in the
surrounding solution. Since the cell makes cGMP from
GTP, if we remove GTP from the solution then there is
no source other than the one that we provide, and now we
can map current vs concentration. The results of such an
experiment are shown in Fig 23. We see that the current
I depends on the cGMP concentration G as

I = Imax
Gn

Gn +Gn
1/2

, (106)

with n ≈ 3. This suggests strongly that the channel
opens when three molecules of cGMP bind to it. This
is an example of “cooperativity” or “allostery,” which
is a very important theme in biochemical signaling and
regulation. It’s a little off to the side of our discussion
here, however, so see Appendix A.4.
Let’s try to write a more explicit model for the dynam-

ics of amplification in the rod cell, working back from the
channels. We have Eq (106), which tells us how the cur-
rent I depends on G, the concentration of cyclic GMP.
The dynamics of G has two terms, synthesis and degra-
dation:

dG

dt
= γ − PDE∗G, (107)

where γ denotes the rate of synthesis by the guanylate
cyclase (GC, cf Fig 22), and PDE∗ measures the activity
of the active phosphodiesterase. It turns out that there



42

is a feedback mechanism in the rod, where calcium enters
through the open channels (as part of the current), and
then calcium binding inhibits the activity of the guany-
late cyclase. We can summarize these effects, measured
in several experiments, by writing

γ =
γmax

1 + (Ca/Kgc)2
≈ αCa−2, (108)

where the last approximation is valid so long at the typ-
ical calcium concentration Ca is much larger than the
binding constant Kgc ∼ 100 nM, which seems to be true;
the fact that the dependence is on the square of the cal-
cium concentration presumably means that two Ca++

ions bind to inhibit the cyclase (see again the discussion
of cooperativity in Appendix A.4). Since calcium enters
the cell as a fraction of the current flowing through the
open channels, and presumably is pumped back out by
other mechanisms, we can write

dCa

dt
= fI(G)− βCa, (109)

where f is the fraction of the current carried by calcium
and 1/β is the lifetime of of calcium before it is pumped
out. These equations tell how the cyclic GMP concen-
tration, and hence the current, will respond to changes
in the activity of the phosphodiesterase, thus describing
the last steps of the amplification cascade.

It is convenient to express the response of G to PDE∗

in the limit that the response is linear, which we expect
is right when only small numbers of photons are being
counted. This linearization gives us

δĠ =
∂γ

∂Ca
δCa− PDE∗

0δG−G0δPDE∗ (110)

δĊa = fI ′(G0)δG− βδCa, (111)

where the subscript 0 denotes the values in the dark. We
can solve these equations by passing to Fourier space,
where

δG̃(ω) =

∫
dt e+iωtδG(t), (112)

and similarly for the other variables. As usual, this re-
duces the linear differential equations to linear algebraic
equations, and when the dust settles we find

δG̃(ω)

δ ˜PDE
∗
(ω)

=
−G0(−iω + β)

(−iω + PDE∗
0 )(−iω + β) +A

, (113)

A = 2γ0fI
′(G0)/Ca0. (114)

Already this looks like lots of parameters, so we should
see how we can simplify, or else measure some of the
parameters directly.

First, one find experimentally that the cyclic GMP
concentration is in the regime where I ∝ G3, that is

G , G1/2. This means that we can express the response
more compactly as a fractional change in current

δĨ(ω) = 3I0
−iω + β

(−iω + PDE∗
0 )(−iω + β) +A

· δ ˜PDE
∗
(ω),

(115)
where A = 6βPDE∗

0 .

Problem 27: Dynamics of cGMP. Fill in all the steps leading
to Eq (115).

In the same experiment where one measures the re-
sponse of the channels to cGMP, one can suddenly bring
the cGMP concentration of the outside solution to zero,
and then the internal cGMP concentration (which we can
read off from the current, after the first experiment) will
fall due both to diffusion out of the cell and to any PDE
which is active in the dark; one can also poison the PDE
with a drug (IBMX), separating the two components. In
this way one can measure PDE∗

0 = 0.1 ± 0.02 s−1. To
measure β, you need to know that the dominant mecha-
nism for pumping calcium out of the cell actually gener-
ates an electrical current across the membrane.22 With
this knowledge, if we turn on a bright light and close all
the cGMP–sensitive channels, there is no path for cal-
cium to enter the rod outer segment, but we still see a
small current as it is pumped out. This current decays
with at a rate β ∼ 2 s−1. Thus, although this model—
even for part of the process!—looks complicated, there
are many independent experiments one can do to mea-
sure the relevant parameters.
In fact, the analysis of the dynamics of cGMP and cal-

cium leads us to the point where we can more or less
invert these dynamics, turning the dynamics of the cur-
rent back into the dynamics of the PDE∗. An interesting
application of this idea is to try and understand the con-
tinuous background noise that occurs in the dark. As we
saw, there is a big source of noise in the dark that comes
from spontaneous isomerization of rhodopsin. But there
is also a smaller, continuous rumbling, with an amplitude
δIrms ∼ 0.1 pA. This isn’t the intrinsically random open-
ing and closing of the channels, since we have seen that
this happens very fast and thus contributes very little to
the noise at reasonable frequencies. It must thus reflect

22 This needn’t be true. First, there are mechanisms which ex-
change ions on different sides of the membrane, maintaining elec-
trical neutrality. Second, it could be be that the dominant pump
sends calcium into storage spaces inside the cell, so no ions cross
the cell membrane.
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responses of the channels to fluctuations in the concentra-
tion of cGMP. Since this concentration is determined by
a balance between synthesis and degradation, one should
check whether one of these processes is dominating the
noise.

The rate at which cGMP is synthesized is modulated
by calcium, but we can prevent the calcium concentration
from changing by using buffers, either injected into the
cell or in the surrounding solution when the cell is broken
open. If the calcium concentration were itself fluctuat-
ing, and these fluctuations generated noise in the synthe-
sis of cGMP, buffering the calcium concentration should
lower the continuous background noise; instead the noise
goes up. On the other hand, if we poison the phosphodi-
esterase with IBMX, and allow synthesis to compete with
diffusion out of a broken cell, the noise drops dramati-
cally. [At this point things get a little vague .. go back
and do better!] These, and other experiments as wel, in-
dicate that the dominant source of the continuous dark
noise is fluctuations in the number of active phosphodi-
esterase molecules. Alternatively, one can say that the
noise arises from ‘spontaneous’ activation of the PDE,
absent any input from activated rhodopsin.

[Need to be sure we have control over the math here ..
maybe connect back to problem about ion channels? Also
connect to Appendix A.2. Review before giving results.
Get all the number right, too!] If the activation of PDE
in the dark is rare, then we expect that the variance in
the number of active molecules will be equal to the mean,
and the fluctuations in activity should have a correlation
time equal to the lifetime of the activated state. If a is
the activity of a single enzyme—that is, the factor the
converts the number of active enzymes into the rate at
which cGMP is degraded—then we have

〈δPDE∗(t)δPDE∗(t′)〉 = aPDE∗
0e

−|t−t′|/τc , (116)

where τc is the lifetime of the active state. Putting this
together with Eq (115), we can generate a prediction for
the power spectrum of fluctuations in the current. Im-
portantly, the only unknown parameters are a, which sets
the over scale of the fluctuations, and τc, which shapes
the spectrum. Fitting to the observed spectra, one finds
a = 1.6× 10−5 s−1 and τc = 0.56 s. Thus, a single active
phosphodiesterase causes the cGMP concentration to de-
crease at a rate aG0 ∼ 2× 10−4 µM/s, and this lasts for
roughly half a second; with a volume of ∼ 10−12 l, this
means that one PDE∗ destroys ∼ 60 molecules of cGMP.

Knowing how changes in concentration change the cur-
rent, and how much one PDE∗ can reduce the cGMP
concentration, we can calculate that a single photon must
activate at least 2000 phosphodiesterase molecules. More
concretely, a single activated rhodopsin must trigger the
activation of at least 2000 PDE∗. In orer for this to
happen, the activated rhodopsin has to diffuse in the
disk membrane [did we actually discuss the geometry of
the disk etc? check!] during its lifetime; certainly the

number of molecules that it can activate is limited by
the number of molecules that it can encounter via diffu-
sion. With measured diffusion constants and a lifetime of
roughly one second (after this, the whole response starts
to shut off), this seems possible, but not with much to
spare. Thus, it seems likely that the gain in the first part
of the amplifier is limited by the density of molecules
and the physics of diffusion. [Need estimates of diffusion
constant here .. either explain, or give problem, about
diffusion limit to this reaction.]
[I think that before going on to discuss reproducibil-

ity we want to say a bit more about gain .. look at
Detwiler et al (2000) regarding the design of G protein
elements, since this would also give an excuse to discuss
some more about these ... Then check segue.] So, given
this dissection of the amplifier, what is it that we really
want to know? Understanding gain—how you get many
molecules out for only one molecule at the input—isn’t
so hard, basically because catalysis rates are high, close
to the diffusion limit. One might want to understand the
system’s choice of other parameters, but is there really a
conceptual problem here?
Perhaps the most surprising aspect of the single pho-

ton response in rods is its reproducibility. If we look
at the responses to dim light flashes and isolate those
responses that correspond to a single photon (you have
already done a problem to assess how easy or hard this
is!), one finds that the amplitude of the response fluc-
tuates by only ∼ 15 − 20%; see, for example, Fig. 24.
To understand why this is surprising we have to think
about chemistry at the level of single molecules, specifi-
cally the chemical reactions catalyzed by the single acti-
vated molecule of rhodopsin.
[This discussion need to point back to the problem

about ion channels.] When we write that there is a
rate k for a chemical reaction, what we mean is that for
one molecule there is a probability per unit time k that
the reaction will occur—this should be familiar from the
case of radioactive decay. Thus when one molecule of
rhodopsin is activated at time t = 0, if we imagine that
de–activation is a simple chemical reaction then the prob-
ability that the molecule is still active at time t obeys the
usual kinetic equation

dp(t)

dt
= −kp(t); (117)

of course if there are N total molecules then Np(t) = n(t)
is the expected number of molecules still in the active
state. Thus, p(t) = exp(−kt). The probability density
P (t) that the molecule is active for exactly a time t is the
probability that the molecule is still active at t times the
probability per unit time of de–activation, so

P (t) = kp(t) = k exp(−kt). (118)

This may seem pedantic, but it’s important to be clear—
and we’ll see that far from being obvious there must be
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FIG. 24 Reproducibility of the single photon response, from
Field & Rieke (2002b). (A) Examples of single photon re-
sponses and failures from single mammalian rods. (B) Vari-
ances of the responses in (A). (C) Variance and square of mean
response to one photon; variance in the response is defined
as the difference in variance between responses and failures.
Finally (D) shows the mean of results as in (C) from eight pri-
mate rods and nine guinea pig rods; scales are normalized for
each cell by the peak mean response and the time to peak. We
see that at the peak response the relative variance is ∼ 0.025,
so the root–mean–square fluctuations are ∼ 0.15.

something wrong with this simple picture.
Given the probability density P (t), we can calculate

the mean and variance of the time spent in the active
state:

〈t〉 ≡
∫ ∞

0
dt P (t) t (119)

= k

∫ ∞

0
exp(−kt)t = 1/k; (120)

〈(δt)2〉 ≡
∫ ∞

0
dt P (t) t2 − 〈t〉 (121)

= k

∫ ∞

0
dt exp(−kt)t2 − 1/k2 (122)

= 2/k2 − 1/k2 = 1/k2. (123)

Thus we find that

δtrms ≡
√
〈(δt)2〉 = 1/k = 〈t〉, (124)

so that the root–mean–square fluctuations in the lifetime
are equal to the mean.
How does this relate to the reproducibility of the sin-

gle photon response? The photoreceptor works by having
the active rhodopsin molecule act as a catalyst, activat-
ing transducin molecules. If the catalysis proceeds at
some constant rate (presumably set by the time required
for rhodopsin and transducin to find each by diffusion
in the membrane), then the number of activated trans-
ducins is proportional to the time that rhodopsin spends
in the active state—and hence we would expect that the
number of active transducin molecules has root–mean–
square fluctuations equal to the mean number. If the
subsequent events in the enzymatic cascade again have
outputs proportional to their input number of molecules,
this variability will not be reduced, and the final out-
put (the change in cGMP concentration) will again have
relative fluctuations of order one, much larger than the
observed 15 − 20%. This is a factor of 25 or 40 error in
variance; we can’t even claim to have an order of mag-
nitude understanding of the reproducibility. I’d like to
give an idea of the different possible solutions that peo-
ple have considered, focusing on very simple versions of
these ideas that we can explore analytically. At the end,
we’ll look at the state of the relevant experiments.
One possibility is that although the lifetime of acti-

vated rhodopsin might fluctuate, the number of molecules
at the output of the cascade fluctuates less because of sat-
uration [point to sketch of discs]. For example, if each
rhodopsin has access only to a limited pool of transducin
molecules, a reasonable fraction of rhodopsins might re-
main active long enough to hit all the molecules in the
pool. The simplest version of this idea is as follows. Let
the total number of transducins in the pool be Npool, and
let the number of activated transducins be nT . When the
rhodopsin is active, it catalyzes the conversion of inactive
transducins (of which there are Npool − nT ) into the ac-
tive form at a rate r, so that (neglecting the discreteness
of the molecules)

dnT

dt
= r(Npool − nT ). (125)

If the rhodopsin molecule is active for a time t then this
catalysis runs for a time t and the number of activated
transducins will be

nT (t) = Npool[1− exp(−rt)]. (126)

For small t the variations in t are converted into pro-
portionately large variations in nT , but for large t the
saturation essentially cuts off this variation.
To be more precise, recall that we can find the distri-

bution of nT by using the identity

P (nT )dnT = P (t)dt, (127)

which applies whenever we have two variables that are re-
lated by a deterministic, invertible transformation. From
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Eq (126) we have

t = −1

r
ln(1− nT /Npool), (128)

and so, going through the steps explicitly:

P (nT ) = P (t)

∣∣∣∣∣
dnT

dt

∣∣∣∣∣

−1

(129)

= k exp(−kt)
1

r(Npool − nT )
(130)

=
k

r
exp

[(
k

r

)
ln(1− nT /Npool)

]
1

(Npool − nT )

(131)

=
k

rNpool

(
1− nT

Npool

)k/r−1

. (132)

[Maybe a plot to show this?] When the activation rate
r is small, nT always stays much less that Npool and
the power law can be approximated as an exponential.
When r is large, however, the probability distribution
grows a power law singularity at Npool; for r finite this
singularity is integrable but as r → ∞ it approaches a log
divergence, which means that essentially all of the weight
will concentrated at Npool. In particular, the relative
variance of nT vanishes as r becomes large, as promised.

This discussion has assumed that the limited number
of target molecules is set, perhaps by some fixed struc-
tural domain. Depending on details, it is possible for
such a limit to arise dynamically, as a competition be-
tween diffusion and chemical reactions. In invertebrate
photoreceptors, such as the flies we have met in our dis-
cussion above, there is actually a positive feedback loop
in the amplifier which serves to ensure that each struc-
tural domain (which are more obvious in the fly receptor
cells) ‘fires’ a saturated, stereotyped pulse in response to
each photon.

[Make a sketch of the different models—either one big
figure, or separate ones for each model.]

The next class of models are those that use feedback.
The idea, again, is simple: If the output of the cascade is
variable because the rhodopsin molecule doesn’t “know”
when to de–activate, why not link the de–activation to
the output of the cascade? Roughly speaking, count the
molecules at the output and shut the rhodopsin molecule
off when we reach some fixed count. Again let’s try the
simplest version of this. When rhodopsin is active it cat-
alyzes the formation of some molecule (which might not
actually be the transducin molecule itself) at rate r, and
let the number of these output molecules by x so that we
simply have

dx

dt
= r, (133)

or x = rt. Let’s have the rate of deactivation of rhodopsin
depend on x, so that instead of Eq (117) we have

dp(t)

dt
= k[x(t)]p(t). (134)

For example, if deactivation is triggered by the cooper-
ative binding of m x molecules (as in the discussion of
cGMP–gated channels), we expect that

k[x] = kmax
xm

xm
0 + xm

. (135)

We can solve Eq (134) and then recover the probability
density for rhodospin lifetime as before,

p(t) = exp

(
−
∫ t

0
dτ k[x(τ)]

)
(136)

P (t) = k[x(t)] exp

(
−
∫ t

0
dτ k[x(τ)]

)
. (137)

Again we can push through the steps:

P (t) = k[x(t)] exp

(
−
∫ t

0
dτ k[x(τ)]

)
= kmax

xm(t)

xm
0 + xm(t)

exp

(
−kmax

∫ t

0
dτ

xm(t)

xm
0 + xm(t)

)
(138)

≈ kmax

(
t

t0

)m

exp

[
−kmaxt0

m+ 1

(
t

t0

)m+1
]
, (139)

where in the last step we identify t0 = x0/r and assume that t , t0.

To get a better feel for the probability distribution in Eq (139) it is useful to rewrite it as

P (t) ≈ kmax exp [−G(t)] (140)

G(t) = −m ln

(
t

t0

)
+

kmaxt0
m+ 1

(
t

t0

)m+1

(141)
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We can find the most likely value of the lifetime, t̄, by
minimizing G, which of course means that the derivative
must be set to zero:

G′(t) = −m

t
+ kmaxt0 ·

1

t

(
t

t0

)m+1

(142)

G′(t = t̄) = 0 ⇒ kmaxt0 ·
1

t̄

(
t̄

t0

)m+1

=
m

t̄
(143)

t̄

t0
=

(
m

kmaxt0

)1/m

(144)

In particular we see that for sufficiently large kmax we will
have t̄ , t0, consistent with the approximation above.
What we really want to know is how sharp the distribu-
tion is in the neighborhood of t̄, so we will try a series
expansion of G(t):

P (t) ≈ kmax exp

[
−G(t̄)− 1

2
G′′(t̄)(t− t̄)2 − · · ·

]
(145)

G′′(t) =
m

t2
+ (kmaxt0)m · 1

t2

(
t

t0

)m+1

≈ m

t̄2
, (146)

where again in the last step we assume t̄ << t0. Thus
we see that the distribution of lifetimes is, at least near
its peak,

P (t) ≈ P (t̄) exp
[
− m

2t̄2
(t− t̄)2 − · · ·

]
. (147)

This of course is a Gaussian with variance

〈(δt)2〉 = 1

m
· t̄2, (148)

so the relative variance is 1/m as opposed to 1 in the
original exponential distribution.

A concrete realization of the feedback ideacan be
built around the fact that the current flowing into the
rod includes calcium ions, and the resulting changes
in calcium concentration can regulate protein kinases—
proteins which in turn catalyze the attachment of phos-
phate groups to other proteins—and rhodopsin shut off is
known to be associated with phosphorylation at multiple
sites. Calcium activation of kinases typically is cooper-
ative, so m ∼ 4 in the model above is plausible. Notice
that in the saturation model the distribution of lifetimes
remains broad and the response to these variations is
truncated; in the feedback model the distribution of life-
times itself is sharpened.
A third possible model involves multiple steps in

rhodopsin de–activation. Let us imagine that rhodopsin
starts in one state and makes a transition to state 2, then
from state 2 to state three, and so on for K states, and
then it is the transition from state K to K + 1 that ac-
tually corresponds to de–activation. Thus there are K
active states and if the time spent in each state is ti then
the total time spent in activated states is

t =
K∑

i=1

ti. (149)

Clearly the mean value of t is just the sum of the means of
each ti, and if the transitions are independent (again, this
is what you mean when you write the chemical kinetics
with the arrows and rate constants) then the variance of
t will also be the sum of the variances of the individual
ti,

〈t〉 =
K∑

i=1

〈ti〉 (150)

〈(δt)2〉 =
K∑

i=1

〈(δti)2〉. (151)

We recall from above that for each single step, 〈(δti)2〉 =
〈ti〉2. If the multiple steps occur at approximately equal
rates, we can write

〈t〉 =
K∑

i=1

〈ti〉 ≈ K〈t1〉 (152)

〈(δt)2〉 =
K∑

i=1

〈(δti)2〉 =
K∑

i=1

〈ti〉2 ≈ K〈t1〉2 (153)

〈(δt)2〉
〈t〉2 ≈ K〈t1〉2

(K〈t1〉)2
=

1

K
. (154)

Thus the relative variance declines as one over the num-
ber of steps, and the relative standard deviation declines
as one over the square root of the number of steps. This
is an example of how averaging K independent events
causes a 1/

√
K reduction in the noise level.

The good news is that allowing de–activation to pro-
ceed via multiple steps can reduce the variance in the
lifetime of activated rhodopsin. Again our attention is
drawn to the fact that rhodopsin shut off involves phos-
phorylation of the protein at multiple sites. The bad
news is that to have a relative standard deviation of
∼ 20% would require 25 steps.
It should be clear that a multistep scenario works only

if the steps are irreversible. If there are significant “back-
ward” rates then progress through the multiple states be-
comes more like a random walk, with an accompanying
increase in variance. Thus each of the (many) steps in-
volved in rhodopsin shut off must involve dissipation of
a few kBT of energy to drive the whole process forward.

Problem 28: Getting the most out of multiple steps.
Consider the possibility that Rhodopsin leaves its active state
through a two step process. To fix the notation, let’s say that
the first step occurs with a rate k1 and the second occurs with rate
k2:

Rh∗
k1→ Rh∗∗

k2→ inactive. (155)

Assume that we are looking at one molecule, and at time t = 0 this
molecule is in state Rh∗.

(a) Write out and solve the differential equations for the time
dependent probability of being in each of the three states.
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(b) Use your results in [a] to calculate the probability distribu-
tion for the time at which the molecule enters the inactive state.
This is the distribution of “lifetimes” for the two active states.
Compute the mean and variance of this lifetime as a function of
the parameters k1 and k2.

(c) Is there a simple, intuitive argument that allows you to write
down the mean and variance of the lifetime, without solving any
differential equations? Can you generalize this to a scheme in which
inactivation involves N steps rather than two?

(d) Given some desired mean lifetime, is there a way of adjusting
the parameters k1 and k2 (or, more generally, k1, k2 · · · , kN ) to
minimize the variance?

(e) Suppose that there is a back reaction Rh∗∗ k−1→ Rh∗. Discuss
what this does to the distribution of lifetimes. In particular, what
happens if the rate k−1 is very fast? Note that “discuss” is delib-
erately ambiguous; you could try to solve the relevant differential
equations, or to intuit the answer, or even do a small simulation
[connect this problem to recent work by Escola & Paniniski].

The need for energy dissipation and the apparently
very large number of steps suggests a different physical
picture. If there really are something like 25 steps, then
if we plot the free energy of the rhodopsin molecule as a
function of its atomic coordinates, there is a path from
initial to final state that passes over 25 hills and valleys.
Each valley must be a few kBT lower than the last, and
the hills must be many kBT high to keep the rates in the
right range. This means that the energy surface is quite
rough [this needs a sketch]. Now when we take one solid
and slide it over another, the energy surface is rough on
the scale of atoms because in certain positions the atoms
on each surface “fit” into the interatomic spaces on the
other surface, and then as we move by an Ångstrom or
so we encounter a very high barrier. If we step back and
blur our vision a little bit, all of this detailed roughness
just becomes friction between the two surfaces. Formally,
if we think about Brownian motion on a rough energy
landscape and we average over details on short length
and time scales, what we will find is that the mobility or
friction coefficient is renormalized and then the systems
behaves on long time scales as if it were moving with this
higher friction on a smooth surface.

So if the de–activation of rhodopsin is like motion on
a rough energy surface, maybe we can think about the
renormalized picture of motion on a smooth surface with
high drag or low mobility. Suppose that the active and
inactive states are separated by a distance & along some
direction in the space of molecular structures, and that
motion in this direction occurs with an effective mobility
µ. If there is an energy drop ∆E between the active
and de–activated states, then the velocity of motion is
v ∼ µ∆E/& and the mean time to make the de–activation
transition is

〈t〉 ∼ &

v
∼ &2

µ∆E
. (156)

On the other hand, diffusion over this time causes a
spread in positions

〈(δ&)2〉 ∼ 2D〈t〉 = 2µkBT 〈t〉, (157)

where we make use of the Einstein relation D = µkBT .
Now (roughly speaking) since the molecule is moving in
configuration space with typical velocity v, this spread in
positions is equivalent to a variance in the time required
to complete the transition to the de–activated state,

〈(δt)2〉 ∼ 〈(δ&)2〉
v2

∼ 2µkBT

(µ∆E/&)2
· &2

µ∆E
. (158)

If we express this as a fractional variance we find

〈(δt)2〉
〈t〉2 ∼ 2µkBT

(µ∆E/&)2
· &2

µ∆E
·
(
µ∆E

&2

)2

∼ 2kBT

∆E
. (159)

Thus when we look at the variability of the lifetime in this
model, the effective mobility µ and the magntiude & of the
structural change in the molecule drop out, and the re-
producibility is just determined by the amount of energy
that is dissipated in the de–activation transition. Indeed,
comparing with the argument about multiple steps, our
result here is the same as expected if the number of ir-
reversible steps were K ∼ ∆E/(2kBT ), consistent with
the idea that each step must dissipate more than kBT in
order to be effectively irreversible. To achieve a relative
variance of 1/25 or 1/40 requires dropping ∼ 0.6− 1 eV
(recall that kBT is 1/40 eV at room temperature), which
is OK since the absorbed photon is roughly 2.5 eV.

Problem 29: Is there a theorem here? The above argu-
ment hints at something more general. Imagine that we have a
molecule in some state, and we ask how long it takes to arrive at
some other state. Assuming that the molecular dynamics is that
of overdamped motion plus diffusion on some energy surface, can
you show that the fractional variance in the time required for the
motion is limited by the free energy difference between the two
states?

How do we go about testing these different ideas? If
saturation is important, one could try either by chemical
manipulations or by genetic engineering to prolong the
lifetime of rhodospin and see if in fact the amplitude
of the single photon response is buffered against these
changes. If feedback is important, one could make a list
of candidate feedback molecules and to manipulate the
concentrations of these molecules. Finally, if there are
multiple steps one could try to identify the molecular
events associated with each step and perturb these events
again either with chemical or genetic methods. All these
are good ideas, and have been pursued by several groups.
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FIG. 25 Variability in the single photon response with genet-
ically engineered rhodopsins. (A) Wild type responses from
mouse rods. Schematic shows the six phosphorylation sites,
which are serine or threonine residues. In the remaining pan-
els, we see responses when the number of phosphorylation
sites has been reduced by mutating alanine, leaving five sites
(B & C), two sites (D), one site (E), or none (F). From Doan
et al (2007).

An interesting hint about the possibility of multiple
steps in the rhodopsin shutoff is the presence of multi-
ple phosphorylation sites on the opsin proteins. In mice,
there are six phosphorylation sites, and one can genet-
ically engineer organisms in which some or all of these
sites are removed. At a qualitative level it’s quite striking
that even knocking out one of these sites produces a no-
ticeable increase in the variability of the single photon re-
sponses, along with a slight prolongation of the mean re-
sponse (Figs 25B & C). When all but one or two sites are
removed, the responses last a very long time, and start
to look like on/off switches with a highly variable time in
the ‘on’ state (Figs 25D & E). When there are no phos-
phorylation sites, rhodopsin can still turn off, presumably
as a result of binding another molecule (arrestin). But
now the time to shutoff is broadly distributed, as one
might expect if there were a single step controlling the
transition.

FIG. 26 Standard deviation in the integral of the single pho-
ton response, normalize by the mean. Results are shown as a
function of the number of phosphorylation sites, from experi-
ments as in Fig 25; error bars are standard errors of the mean.
Solid line is CV = 1/

√
Np + 1, where Np is the number of

phosophorylation sites. From Doan et al (2006).

Remarkably, if we examine the responses quantita-
tively, the variance of the single photon response seems
to be inversely proportional the number of these sites,
exactly as in the model where deactivation involved mul-
tiple steps, now identified with the multiple phosphoryla-
tions (Fig 26). This really is beautiful. One of the things
that I think is interesting here is that, absent the discus-
sion of precision and reproducibility, the multiple phos-
phorylation steps might just look like complexity for its
own sake, the kind of thing that biologists point to when
they want to tease physicists about our propensity to ig-
nore details. In this case, however, the complexity seems
to be the solution to a very specific physics problem.
Probably this section should end with some caveats.

Do we really think the problem of reproducibility is
solved?

A general review of the cGMP cascade in rods is given by Burns
& Baylor (2001). Rieke & Baylor (1996) set out to understand the
origins of the continuous noise in rods, but along the way provide a
beautifully quantitative dissection of the enzymatic cascade; much
of the discussion above follows theirs. For an explanation of how
similarity to Rhodopsin (and other G–protein coupled receptors)
drove the discovery of the olfactory receptors, see Buck (2004). For
some general background on ion channels, you can try Aidley (see
notes to Section 1.1), Johnston & Wu (1995), or Hille (2001). A
starting point for learning about how different choices of channels
shape the dynamics of responses in insect photoreceptors is the
review by Weckström & Laughlin (1995). [There is much more to
say here, and probably even some things left to do.]
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Nobel: Nobel Prizes 2004, T Frängsmyr, ed (Nobel Founda-
tion, Stockholm, 2004).

Burns & Baylor 2001: Activation, deactivation and adaptation
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Hille (Sinuaer, Sunderland MA, 2001).
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gated ion channels in insect photoreceptors. M Weckström
& SB Laughlin, Trends Neurosci 18, 17–21 (1995).

Rieke & Baylor (1998a) provide a review of photon counting rods
with many interesting observations, including an early outline of
the problem of reproducibility. An early effort to analyze the sig-
nals and noise in enzymatic cascades is by Detwiler et al (2000).
The idea that restricted, saturable domains can arise dynamically
and tame the fluctuations in the output of the cascade is described
by the same authors (Ramanathan et al 2005). For invertebrate
photoreceptors, it seems that reproducibility of the response to
single photons can be traced to positive feedback mechanisms that
generate a stereotyped pulse of concentration changes, localized to
substructures analogous to the disks in vertebrate rods (Pumir et
al 2008).

Detwiler et al 2000: Engineering aspects of enzymatic signal
transduction: Photoreceptors in the retina. PB Detwiler,
S Ramanathan, A Sengupta & BI Shraiman, Biophys J 79,
2801–2817 (2000).
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Shraiman, Systems analysis of the single photon response
in invertebrate photoreceptors. Proc Nat’l Acad Sci (USA)
105, 10354–10359 (2008).

Ramanathan et al 2005: G–protein–coupled enzyme cascades
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fidelity. S Ramanathan, PB Detwiler, AM Sengupta & BI
Shraiman, Biophys J 88, 3063–3071 (2005).

Rieke & Baylor 1998a: Single–photon detection by rod cells of
the retina. F Rieke & DA Baylor, Revs Mod Phys 70, 1027–
1036 (1998).

One of the early, systematic efforts to test different models of re-
producibility was by Rieke & Baylor (1998b). Many of the same
ideas were revisited in mammalian rods by Field & Rieke (2002b),
setting the stage for the experiments on genetic engineering of the
phosphorylation sites by Doan et al (2006). More recent work from
the same group explores the competition between the kinase and
the arrestin molecule, which binds to the phosphorylated rhodopsin
to terminate its activity, showing this competition influences both
the mean and the variability of the single photon response (Doan
et al 2009).

Doan et al 2007: Multiple phosphorylation sites confer repro-
ducibility of the rod’s single–photon responses. T Doan,
A Mendez, PB Detwiler, J Chen & F Rieke, Science 313,
530–533 (2006).

Doan et al 2009: Arrestin competition influences the kinetics
and variability of the single–photon responses of mammalian
rod photoreceptors. T Doan, AW Azevedo, JB Hurley & F
Rieke, J Neurosci 29, 11867–11879 (2009).

Field & Rieke 2002: Mechanisms regulating variability of the
single photons responses of mammalian rod photoreceptors.
GD Field & F Rieke, Neuron 35, 733–747 (2002b).

Rieke & Baylor 1998a: Origing of reproducibility in the re-
sponses of retinal rods to single photons. F Rieke & DA
Baylor, Biophys J 75, 1836–1857 (1998).

D. The first synapse, and beyond

This is a good moment to remember a key feature of
the Hecht, Shlaer and Pirenne experiment, as described
in Section I.A. In that experiment, observers saw flashes
of light that delivered just a handful of photons spread
over an area that includes many hundreds of photore-
ceptor cells. One consequence is that a single receptor
cell has a very low probability of counting more than one
photon, and this is how we know that these cells must
respond to single photons. But, it must also be possible
for the retina to add up the responses of these many cells
so that the observer can reach a decision. Importantly,
there is no way to know in advance which cells will get hit
by photons, so if we (sliding ourselves into the positions
of the observer’s brain ... ) want to integrate the multiple
photon counts we have to integrate over all the receptors
in the area covered by the flash. This integration might
be the simplest computation we can imagine for a ner-
vous system, just adding up a set of elementary signals,
all given the same weight. In many retinas, a large part

rod 

photoreceptors

bipolar cells

ganglion cells

axon in the 

optic nerve

horizontal 

cells

FIG. 27 A schematic of the circuitry in the retina. Fill in
caption.

of the integration is achieved in the very first step of pro-
cessing, as many rod cells converge and form synapses
onto onto a single bipolar cell, as shown schematically in
Fig 27 [maybe also need a real retina?]
If each cell generates an output ni that counts the num-

ber of photons that have arrived, then it’s trivial that
the total photon count is ntotal =

∑
i ni. The problem

is that the cells don’t generate integers corresponding to
the number of photons counted, they generate currents
which have continuous variations. In particular, we have
seen that the mean current in response to a single pho-
ton has a peak of I1 ∼ 1 pA, but this rests on continuous
background noise with an amplitude δIrms ∼ 0.1 pA. In
a single cell, this means that the response to one pho-
ton stands well above the background, but if we try to
sum the signals from many cells, we have a problem, as
illustrated in Fig 28.
To make the problem precise, let’s use xi to denote the

peak current generated by cell i. We have

xi = I1ni + ηi, (160)

where ni is the number of photons that are counted in
cell i, and ηi is the background current noise; from what
we have seen in the data, each ηi is chosen independently
from a Gaussian distribution with a standard deviation
δIrms. If we sum the signals generated by all the cells,
we obtain

xtotal ≡
Ncells∑

i=1

xi = I1

Ncells∑

i=1

ni +
Ncells∑

i=1

ηi (161)

= I1ntotal + ηeff , (162)

where the effective noise is the sum of Ncells independent
samples of the ηi, and hence has a standard deviation

ηrms
eff ≡

√
〈η2eff〉 =

√
NcellsδIrms. (163)
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FIG. 28 Simulation of the peak currents generated by N =
500 rod cells in response to a dim flash of light. At left,
five of the cells actually detect a photon, each resulting in a
current I1 ∼ 1 pA, while at right we see the response to a
blank. All cells have an additive background noise, chosen
from a Gaussian distribution with zero mean and standard
deviation δIrms ∼ 0.1 pA. Although the single photon re-
sponses stand clearly above the background noise, if we sim-
ply add up the signals generated by all the cells, then at left
we find a total current Itotal = 1.85 pA, while at right we find
Itotal = 3.23 pA—the summed background noise completely
overwhelms the signal.

The problem is that with δIrms ∼ 0.1 pA and Ncells =
500, we have ηrms

eff ∼ 2.24 pA, which means that there
is a sizable chance of confusing three or even five pho-
tons with a blank; in some species, the number of cells
over which the system integrates is even larger, and the
problem becomes even more serious. Indeed, in primates
like us, a single ganglion cell (one stage after the bipolar
cells; cf Fig 27) receives input from ∼ 4000 rods, while
on a very dark night we can see when just one in a thou-
sand rods is captures a photon [should have refs for all
this]. Simply put, summing the signals from many cells
buries the clear single photon response under the noise
generated by those cells which did not see anything. This
can’t be the right way to do things!

Before we start trying to do something formal, let’s
establish some intuition. Since the single photon signals
are clearly detectable in individual rod cells, we could
solve our problem by making a ‘decision’ for each cell—
is there a photon present or not?—and then adding up
the tokens that represent the outcome of our decision.
Roughly speaking, this means passing each rod’s sig-
nal through some fairly strong nonlinearity, perhaps so
strong that it has as an output only a 1 or a 0, and then
pooling these nonlinearly transformed signals. In con-
trast, a fairly standard schematic of what neurons are
doing throughout the brain is adding up their inputs and
then passing this sum through a nonlinearity (Fig 29).

So perhaps the problems of noise in photon counting are
leading us to predict that this very first step of neural
computation in the retina has to be different from this
standard schematic. Let’s try to do an honest calculation
that makes this precise. [Is “nonlinearity” clear enough
here?]
Formally, the problem faced by the system is as follows.

We start with the set of currents generated by all the rod
cells, {xi}. We can’t really be interested in the currents
themselves. Ideally we want to know about what is hap-
pening in the outside world, but a first step would be to
estimate the total number of photons that arrived, ntotal.
What is the best estimate we can make? To answer this,
we need to say what we mean by “best.”
One simple idea, which is widely used, is that we want

to make estimates which are as close as possible to the
right answer, where closeness is measured by the mean
square error. That is, we want to map the data {xi} into
an estimate of ntotal through some function nest ({xi})
such that

E ≡
〈
[ntotal − nest ({xi})]2

〉
(164)

is as small as possible. To find the optimal choice of the
function nest ({xi}) seems like a hard problem—maybe
we have to choose some parameterization of this function,
and then vary the parameters? In fact, we can solve this
problem once and for all, which is part of the reason that
this definition of ‘best’ is popular.

When we compute our average error, we are averaging
over the joint distribution of the data {xi} and the actual

!

!

rod photoreceptors

bipolar cell voltage? bipolar cell voltage?

FIG. 29 Schematic of summation and nonlinearity in the ini-
tial processing of rod cell signals. At left, a conventional
model in which many rods feed into one bipolar cell; the bipo-
lar cell sums its inputs and passes the results through a satu-
rating nonlinearity. At right, an alternative model, suggested
by the problems of noise, in which nonlinearities precede sum-
mation.
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photon count ntotal. That is,

E ≡
〈
[n− nest ({xi})]2

〉

=

∫ [
Ncells∏

i=1

dxi

]
∑

ntotal

P (n, {xi}) [n− nest ({xi})]2 ,(165)

where, to simplify the notation, we drop the subscript
total. Now to minimize the error we take the variation
with respect to the function nest ({xi}) and set the result
equal to zero. We have

δE
δnest ({xi})

= −
∑

n

P (n, {xi})2 [n− nest ({xi})] ,

(166)
so setting this to zero gives (going through the steps care-
fully):

∑

n

P (n, {xi})nest ({xi}) =
∑

n

P (n, {xi})n (167)

nest ({xi})
∑

n

P (n, {xi}) =
∑

n

P (n, {xi})n (168)

nest ({xi})P ({xi})
∑

n

P (n, {xi})n (169)

nest ({xi}) =
∑

n

P (n, {xi})
P ({xi})

n, (170)

and, finally,

nest ({xi}) =
∑

n

P (n|{xi})n. (171)

Thus the optimal estimator is the mean value in the con-
ditional distribution, P (n|{xi}). Since we didn’t use any
special properties of the distributions, this must be true
in general, as long as ‘best’ means to minimize mean
square error. We’ll use this result many times, and come
back to the question of whether the choice of mean square
error is a significant restriction.

Notice that the relevant conditional distribution is the
distribution of photon counts given the rod cell currents.
From a mechanistic point of view, we understand the
opposite problem, that is, given the photon counts, we
know how the currents are being generated. More pre-
cisely, we know that, given the number of photons in
each cell, the currents will be drawn out of a probability
distribution, since this is (implicitly) what we are saying
when we write Eq (160). To make this explicit, we have

P ({xi}|{ni}) ∝ exp

[
−1

2

Ncells∑

i=1

(
xi − I1ni

δIrms

)2
]
. (172)

Again, this is a model that tells us how the photons gen-
erate currents. But the problem of the organism is to
use the currents to draw inferences about the photons.

We expect that since the signals are noisy, this infer-
ence will be probabilistic, so really we would like to know
P ({ni}|{xi}).

Problem 30: Just checking. Be sure that you understand
the connection between Eq (172) and Eq (160). In particular, what
assumptions are crucial in making the connection?

The problem of going from P ({xi}|{ni}) to
P ({ni}|{xi}) is typical of the problems faced by
organisms: given knowledge of how our sensory data
is generated, how do we reach conclusions about what
really is going on in the outside world? In a sense
this is the same problem that we face in doing physics
experiments. One could argue that what we have posed
here is a very easy version of the real problem. In fact,
we probably don’t really care about the photon arrivals,
but about the underlying light intensity, or more deeply
about the identity and movements of the objects from
which the light is being reflected. Still, this is a good
start.
The key to solving these inference problems, both for

organisms and for experimental physicists, is Bayes’ rule.
Imagine that we have two events A and B; to be concrete,
we could think of A as some data we observe, and B as a
variable in the world that we really want to know. There
is some probability P (A,B) that both of these are true
simultaneously, i.e. that we observe A and the world is
in state B. In the usual view, the states of the world
cause the data to be generated in our instruments, so we
can say that the state of the world is chosen out of some
distribution P (B), and then given this state the data are
generated, with some noise, and hence drawn out of the
conditional distribution P (A|B). By the usual rules of
probability, we have

P (A,B) = P (A|B)P (B). (173)

We could also imagine that we have just seen the data
A, drawn out of some distribution P (A), and then there
must be some distribution of things happening in the
world that are consistent with our observation. Formally,

P (A,B) = P (B|A)P (A). (174)

But these are just two different ways of decomposing the
joint distribution P (A,B), and so they must be equal:

P (A,B) = P (B|A)P (A) = P (A|B)P (B) (175)

P (B|A) =
P (A|B)P (B)

P (A)
. (176)
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This last equation is called Bayes’ rule, and tells us what
we need to know. It is useful to rewrite this, taking
seriously the case where A refers to measurable data and
B refers to the state of the world:

P (world|data) = P (data|world)P (world)

P (data)
. (177)

Equation (177) is telling us that the probability of the
world being in a certain state is proportional to the prob-
ability that this state could generate the data we have
seen, but this is multiplied by the overall probability that
the world can be in this state. This term often is re-
ferred to as the ‘prior’ probability, since it summarizes
our knowledge prior to the observation of the data. Put
another way, our inference about the world should be
both consistent with the data we have observed in this
one experiment and with any prior knowledge we might
have from previous data.23

Applied to our current problem, Bayes’ rule tells us
how to construct the probability distribution of photon
counts given the rod currents:

P ({ni}|{xi}) =
P ({xi}|{ni})P ({ni})

P ({xi})
. (178)

To make progress (and see how to use these ideas), let’s
start with the simple case of just one rod cell, so we can
drop the indices:

P (n|x) = P (x|n)P (n)

P (x)
. (179)

To keep things really simple, let’s just think about the
case where the lights are very dim, so either there are
zero photons or there is one photon, so that

P (1|x) = P (x|1)P (1)

P (x)
, (180)

and similarly for P (0|x). In the denominator we have
P (x), which is the probability that we will see the current
x, without any conditions on what is going on in the
world. We get this by summing over all the possibilities,

P (x) =
∑

n

P (x|n)P (n) (181)

= P (x|1)P (1) + P (x|0)P (0), (182)

where in the last step we use the approximation that the
lights are very dim. Putting the terms together, we have

P (1|x) = P (x|1)P (1)

P (x|1)P (1) + P (x|0)P (0)
. (183)

Now we can substitute for P (x|n) from Eq (172),

P (x|n) = 1√
2π(δIrms)2

exp

[
− (x− I1n)2

2(δIrms)2

]
. (184)

Going through the steps, we have

P (1|x) = P (x|1)P (1)

P (x|1)P (1) + P (x|0)P (0)
=

1

1 + P (x|0)P (0)/P (x|1)P (1)
(185)

=
1

1 + [P (0)/P (1)] exp
[
− (x)2

2(δIrms)2
+ (x−I1)2

2(δIrms)2

] =
1

1 + exp (θ − βx)
, (186)

where

θ = ln

[
P (0)

P (1)

]
+

I21
2(δIrms)2

(187)

β =
I1

(δIrms)2
. (188)

The result in Eq (186) has a familiar form—it is as if
the two possibilities (0 and 1 photon) are two states of
a physical system, and their probabilities are determined
by a Boltzmann distribution; the energy difference be-
tween the two states shifts in proportion to the data x,
and the temperature is related to the noise level in the
system. In the present example, this analogy doesn’t add
much, essentially because the original problem is so sim-
ple, but we’ll see richer cases later on in the course.

Equation (186) tells us that, if we observe a very small
current x, the probability that there really was a photon
present is small, ∼ e−θ. As the observed current becomes
larger, the probability that a photon was present goes up,
and, gradually, as x becomes large, we become certain
[P (1|x) → 1]. To build the best estimator of n from
this one cell, our general result tells us that we should
compute the conditional mean:

nest(x) =
∑

n

P (n|x)n (189)

= P (0|x) · (0) + P (1|x) · (1) (190)

= P (1|x). (191)

Thus, the Boltzmann–like result [Eq (186)] for the prob-
ability of a photon being counted is, in fact, our best
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estimator of the photon count in this limit where pho-
tons are very rare. Further, in this limit one can show
that the optimal estimator for the total photon count,
which after all is the sum of the individual ni, is just the
sum of the individual estimators.

Problem 31: Summing after the nonlinearity. Show that
the optimal estimator for the total number of photons is the sum of
estimators for the photon counts in individual rods, provided that
the lights are very dim and hence photons are rare. The phrasing
here is deliberately vague—you should explore the formulation of
the problem, and see exactly what approximations are needed to
make things come out right.

The end result of our calculations is that the optimal
estimator of photon counts really is in the form shown
at the right in Fig 29: nonlinearities serve to separate
signal from noise in each rod cell, and these ‘cleaned’ sig-
nals are summed. How does this prediction compare with
experiment? Careful measurements in the mouse retina
show that the bipolar cells respond nonlinearly even to
very dim flashes of light, in the range where the rods see
single photons and respond linearly, with two photons
producing twice the response to one photon. The form
of the nonlinearity is what we expect from the theory,
a roughly sigmoidal function that suppresses noise and
passes signals only above an amplitude threshold. Im-
portantly, this nonlinearity is observed in one class of
bipolar cells but not others, and this is the class that,
on other grounds, one would expect is most relevant for
processing of rod outputs at low light levels.

Looking more quantitatively at the experiments [show
some of the data, perhaps replotted in different forms ...
go back and look at the original papers and clean up this
paragraph!], we can see discrete, single photon events in
the bipolar cells. Although the details vary across organ-
isms, in this retina, one bipolar cell collects input from
∼ 20 rod cells, but the variance of the background noise
is larger than in the lower vertebrates that we first saw
in Fig 4. As a result, if we sum the rod inputs and pass
them through the observed nonlinearity—as in the model
at left in Fig 29—we would not be able to resolve the sin-
gle photon events. Field and Rieke considered a family of
models in which the nonlinearity has the observed shape
but the midpoint (analogous to the threshold θ above)
is allowed to vary, and computed the signal to noise ra-
tio at the bipolar cell output for the detection of flashes
corresponding to a mean count of ∼ 10−4 photons/rod
cell, which is, approximately, the point at which we can
barely see something on a moonless night. Changing the
threshold by a factor of two changes the signal to noise
ratio by factors of several hundred. The measured value

of the threshold is within 8% of the predicted optimal
setting, certainly close enough to make us think that we
are on the right track.
The discussion thus far has emphasized separating sig-

nals from noise by their amplitudes.24 We also can see,
by looking closely at the traces of current vs time, that
signal and noise have different frequency content. This
suggests that we could also improve the signal to noise ra-
tio by filtering. It’s useful to think about a more general
problem, in which we observe a time dependent signal
y(t) that is driven by some underlying variable x(t); let’s
assume that the response of y to x is linear, but noisy, so
that

y(t) =

∫ ∞

−∞
dτ g(τ)x(t− τ) + η(t), (192)

where g(τ) describes the response function and η(t) is the
noise. What we would like to do is to use our observations
on y(t) to estimate x(t).

Problem 32: Harmonic oscillator revisited. Just to be sure
you understand what is going in Eq (192), think again about the
Brownian motion of a damped harmonic oscillator, as in Problem
[**], but now with an external force F (t),

m
d2x(t)

dt2
+ γ

dx(t)

dt
+ κx(t) = F (t) + δF (t). (193)

Show that

x(t) =

∫ ∞

−∞
dτ g(τ)F (t− τ) + η(t). (194)

Derive an explicit expression for the Fourier transform of g(τ), and
find g(τ) itself in the limit of either small or large damping γ.

Since the y is linearly related to x, we might guess
that we can make estimates using some sort of linear op-
eration. As we have seen already in the case of the rod
currents, this might not be right, but let’s try anyway—
we’ll need somewhat more powerful mathematical tools
to sort out, in general, when linear vs nonlinear compu-
tations are the most useful. We don’t have any reason to
prefer one moment of time over another, so we should do
something that is both linear and invariant under time
translations, which means that our estimate must be of
the form

xest(t) =

∫ ∞

−∞
dt′ f(t− t′)y(t′), (195)

24 Need to be a little careful here, since the analysis from Fred’ lab
actually involves applying the nonlinearity to voltages that have
already been filtered. Presumably this will be clearer when I am
pointing to the real data .. come back and fix this!
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where f(t) is the ‘filter’ that we hope will separate signal
and noise. Following the spirit of the discussion above,
we’ll ask that our estimate be as close as possible to the
right answer in the sense of mean–square error. Thus,
our task is to find the filter f(t) that minimizes

E =

〈[
x(t)−

∫ ∞

−∞
dt′ f(t− t′)y(t′)

]2 〉
. (196)

In taking the expectation value of the mean–square
error, we average over possible realizations of the noise
and the variations in the input signal x(t). In practice
this averaging can also be thought of as including an
average over time.25 Thus we can also write

E =

〈∫ ∞

−∞
dt

[
x(t)−

∫ ∞

−∞
dt′ f(t− t′)y(t′)

]2 〉
. (197)

This is useful because we can then pass to the Fourier
domain. We recall that for any function z(t),

∫ ∞

−∞
dt z2(t) =

∫ ∞

−∞

dω

2π

∣∣z̃(ω)
∣∣2, (198)

and that the Fourier transform of a convolution is the
product of transforms,

∫ ∞

−∞
dt e+iωt

∫ ∞

−∞
dt′ f(t− t′)y(t′) = f̃(ω)ỹ(ω). (199)

Putting things together, we can rewrite the mean–square
error as

E =

〈∫ ∞

−∞

dω

2π

∣∣∣∣x̃(ω)− f̃(ω)ỹ(ω)

∣∣∣∣
2〉

. (200)

Now each frequency component of our filter f̃(ω) ap-
pears independently of all the others, so minimizing E
is straightforward. The result is that

f̃(ω) =
〈ỹ∗(ω)x̃(ω)〉
〈|ỹ(ω)|2〉 . (201)

Problem 33: Details of the optimal filter. Fill in the steps
leading to Eq (201). Be careful about the fact that f(t) is real, and
so the transform f̃(ω) is not arbitrary. Hint: think about positive
and negative frequency components.

25 More formally, if all the relevant random variations are ergodic,
then averaging over the distributions and averaging over time
will be the same.

To finish our calculation, we go back to Eq (192), which
in the frequency domain can be written as

ỹ(ω) = g̃(ω)x̃(ω) + η̃(ω). (202)

Thus

〈ỹ∗(ω)x̃(ω)〉 = g̃∗(ω)〈|x̃(ω)|2〉 (203)

〈|ỹ(ω)|2〉 = |g̃(ω)|2〈|x̃(ω)|2〉+ 〈|η̃(ω)|2〉. (204)

If all of these variables have zero mean (which we can
have be true just by choosing the origin correctly), then
quantities such as 〈|x̃(ω)|2〉 are the variances of Fourier
components, which we know (see Appendix B) are pro-
portional to power spectra. Finally, then, we can substi-
tute into our expression for the optimal filter to find

f̃(ω) =
g̃∗(ω)Sx(ω)

|g̃(ω)|2Sx(ω) + Sη(ω)
, (205)

where, as before, Sx and Sη are the power spectra of x
and η, respectively.
In the case that noise is small, we can let Sη → 0 and

we find

f̃(ω) → 1

g̃(ω)
. (206)

This means that, when noise can be neglected, the best
way to estimate the underlying signal is just to invert
the response function of our sensor, which makes sense.
Notice that since g̃ generally serves to smooth the time
dependence of y(t) relative to that of x(t), the filter
f̃(ω) ∼ 1/g̃(ω) undoes this smoothing. This is impor-
tant because it reminds us that smoothing in and of it-
self does not set a limit to time resolution—it is only the
combination of smoothing with noise that obscures rapid
variations in the signal.
Guided by the limit of high signal to noise ratio, we

can rewrite the optimal filter as

f̃(ω) =
1

g̃(ω)
· |g̃(ω)|2Sx(ω)

|g̃(ω)|2Sx(ω) + Sη(ω)
(207)

=
1

g̃(ω)
· SNR(ω)

1 + SNR(ω)
, (208)

where we identify the signal to noise ratio at each fre-
quency, SNR(ω) = |g̃(ω)|2Sx(ω)/Sη(ω). Clearly, as the
signal to noise ratio declines, so does the optimal filter—
in the limit, if SNR(ω) = 0, everything we find at fre-
quency ω must be noise, and so it should zeroed out if we
want to minimize its corrupting effects on our estimates.
In the case of the retina, x is the light intensity, and

y are the currents generated by the rod cells. When it’s
very dark outside, the signal to noise ratio is low, so that

f̃(ω) → g̃∗(ω)

Sη(ω)
· Sx(ω). (209)
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The filter in this case has two pieces, one of which de-
pends only on the properties of the rod cell,

f̃1(ω) =
g̃∗(ω)

Sη(ω)
, (210)

and another piece that depends on the power spectrum
of the time dependent light intensity, Sx(ω). With a bit
more formalism we can show that this first filter, f̃1(ω),
has a universal meaning, so that if instead of estimating
the light intensity itself, we try to estimate something
else—e.g., the velocity of motion of an object across the
visual field—then the first step in the estimation process
is still to apply this filter. So, it is a natural hypothesis
that this filter will be implemented near the first stages
of visual processing, in the transfer of signals from the
rods to the bipolar cells.

FIG. 30 Voltage responses of rod and bipolar cells in the sala-
mander retina, compared with theory, from Rieke et al (1991).
The theory is that the transmission from rod currents to bipo-
lar cell voltage implements the optimal filter as in Eq (210).
Measured responses are averages over many presentations of
a flash at t = 0 that results in an average of five photons be-
ing counted. The predicted filter is computed from measured
signal and noise properties of the rod cell, with no adjustable
parameters.

Problem 34: Filtering the real rod currents. The
raw data that were used to generate Fig 4 are available at
http://www.princeton.edu/∼wbialek/PHY562/data.html, in the
file rodcurrents.mat. The data consist of 395 samples of the rod
current in response to dim flashes of light. The data are sampled
in 10ms bins, and the flash is delivered in the 100th bin. If these
ideas about filtering are sensible, we should be able to do a better
job of discriminating between zero, one and two photons by using
the right filter. Notice that filtering of a response that is locked
to a particular moment in time is equivalent to taking a weighted
linear combination of the currents at different times relative to the
flash. Thus you can think of the current in response to one flash
as a vector, and filtering amounts to taking the dot product of this
vector with some template. As a first step, you should reproduce
the results of Fig 4, which are based just on averaging points in
the neighborhood of the peak. Under some conditions, the best

template would just be the average single photon response. How
well does this work? What conditions would make this work best?
Can you do better? These data are from experiments by FM Rieke
and collaborators at the University of Washington, and thanks to
Fred for making them available.

The idea that the rod/bipolar synapse implements an
optimal filter is interesting not least because this leads us
to a prediction for the dynamics of this synapse, Eq (210),
which is written entirely in terms of the signal and noise
characteristics of the rod cell itself. All of these proper-
ties are measurable, so there are no free parameters in
this prediction.26 To get some feeling for how these pre-
dictions work, remember that the noise in the rod cell
has two components—the spontaneous isomerizations of
rhodopsin, which have the same frequency content as the
real signal, and the continuous background noise, which
extends to higher frequency. If we have only the sponta-
neous isomerizations, then Sη ∼ |g̃|2, and we are again
in the situation where the best estimate is obtained by
‘unsmoothing’ the response, essentially recovering sharp
pulses at the precise moments when photons are ab-
sorbed. This unsmoothing, or high–pass filtering, is cut
off by the presence of the continuous background noise,
and the different effects combine to make f̃1 a band–pass
filter. By the time the theory was worked out, it was
already known that something like band–pass filtering
was happening at this synapse; among other things this
speeds up the otherwise rather slow response of the rod.
In Fig 30 we see a more detailed comparison of theory
and experiment.

Problem 35: Optimal filters, more rigorously. Several
things were left out of the optimal filter analysis above; let’s try to
put them back here.

(a.) Assume that there is a signal s(t), and we observe, in the
simplest case, a noisy version of this signal, y(t) = s(t) + η(t).
Let the power spectrum of s(t) be given by S(ω), and the power
spectrum of the noise η(t) be given by N(ω). Further, assume
that both signal and noise have Gaussian statistics. Show that the
distribution of signals given our observations is

P [s(t)|y(t)] =
1

Z
exp

[
−
1

2

∫
dω

2π

|s̃(ω)− ỹ(ω)|2

N(ω)
−

1

2

∫
dω

2π

|s̃(ω)|2

S(ω)

]
.

(211)

26 We should be a bit careful here. The filter, as written, is not
causal. Thus, to make a real prediction, we need to shift the filter
so that it doesn’t have any support at negative times. To make a
well defined prediction, we adopt the minimal delay that makes
this work. One could perhaps do better, studying the optimal
filtering problem with explicitly causal filters, and considering
the tradeoff between errors and acceptable delays.
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(b.) Show that the most likely function s̃(ω) given the data on
y is also the best estimate in the least squares sense, and is given
by

s̃
(nc)
est (ω) =

S(ω)

S(ω) +N(ω)
ỹ(ω); (212)

the superscript (nc) reminds us that this estimate does not respect
causality. Show that this is consistent with Eq (205). Notice that
you didn’t assume the optimal estimator was linear, so you have
shown that it is (!). Which of the assumptions here are essential in
obtaining this result?

(c.) The non–causal estimator is Eq (212) is constructed by
assuming that we have access to the entire function y(t), with
−∞ < t < ∞, as we try to estimate, for example s(t = 0). If
we want our estimator to be something that we can build, then we
must impose causality: the estimate of s(t) can be based only on
the history y− ≡ y(t′ < t). Another way of saying this is that we
don’t really know y+ ≡ y(t′ > t), so we should average over this
part of the trajectory. But the average should be computed in the
distribution P [y+|y−]. To construct this, start by showing that

P [y+, y−] ≡ P [y(t)] =
1

Z0
exp

[
−
1

2

∫
dω

2π

|ỹ(ω)|2

S(ω) +N(ω)

]
. (213)

(d.) Recall that when we discuss causality, it is useful to think
about the frequency ω as a complex variable. Explain why we can
write

1

S(ω) +N(ω)
= |ψ̃(ω)|2, (214)

where ψ̃(ω) has no poles in the upper half of the complex ω plane.
Verify that, with this decomposition,

ψ(t) =

∫
dω

2π
e−iωtψ̃(ω) (215)

is causal, that is ψ(t < 0) = 0. Consider the case where the signal
has a correlation time τc, so that S(ω) = 2σ2τc/[1 + (ωτc)2], and
the noise is white N(ω) = N0; construct ψ̃(ω) explicitly in this
case.

(e.) Putting Eq (213) together with Eq (214), we can write

P [y+, y−] =
1

Z0
exp

[
−
1

2

∫
dω

2π

∣∣∣∣ỹ(ω)ψ̃(ω)
∣∣∣∣
2
]
. (216)

Show that

P [y+, y−] =
1

Z0
exp



−
1

2

∫ 0

−∞
dt

∣∣∣∣∣

∫
dω

2π
e−iωtỹ−(ω)ψ̃(ω)

∣∣∣∣∣

2

−
1

2

∫ ∞

0
dt

∣∣∣∣∣

∫
dω

2π
e−iωt(ỹ−(ω) + ỹ+(ω))ψ̃(ω)

∣∣∣∣∣

2


 , (217)

and that

P [y+|y−] ∝ exp



−
1

2

∫ ∞

0
dt

∣∣∣∣∣

∫
dω

2π
e−iωt(ỹ−(ω) + ỹ+(ω))ψ̃(ω)

∣∣∣∣∣

2


 .

(218)
Explain why averaging over the distribution P [y+|y−] is equivalent
to imposing the “equation of motion”

∫
dω

2π
e−iωt(ỹ−(ω) + ỹ+(ω))ψ̃(ω) = 0 (219)

at times t > 0.
(f.) Write the non–causal estimate Eq (212) in the time domain

as

s
(nc)
est (t) =

∫
dω

2π
e−iωtψ̃∗(ω)ψ̃(ω)ỹ(ω). (220)

But the combination ψ̃(ω)ỹ(ω) is the Fourier transform of z(t),
which is the convolution of ψ(t) with y(t). Show that Eq (219)
implies that the average of z(t) is the distribution P [y+|y−] van-
ishes for t > 0, and hence the averaging over y+ is equivalent to
replacing

ψ̃(ω)ỹ(ω) →
∫ 0

−∞
dτeiωτ

∫
dω′

2π
ψ̃(ω′)ỹ(ω′)e−iω′τ (221)

in Eq (212). Put all the pieces together to show that there is a
causal estimate of s(t) which can be written as

sest(t) =

∫
dω

2π
e−iωtk̃(ω)ỹ(ω), (222)

where

k̃(ω) = ψ̃(ω)

∫ ∞

0
dτeiωτ

∫
dω′

2π
e−iω′τS(ω′)ψ̃∗(ω′). (223)

Verify that this filter is causal.

It is worth noting that we have given two very different
analyses. In one, signals and noise are separated by linear

filtering. In the other, the same separation is achieved
by a static nonlinearity, applied in practice to a linearly
filtered signal. Presumably there is some more general
nonlinear dynamic transformation that really does the
best job. We expect that the proper mix depends on the
detailed spectral structure of the signals and noise, and
on the relative amplitudes of the signal and noise, which
might be why the different effects are clearest in retinas
from very different species. Indeed, there is yet another
approach which emphasizes that the dynamic range of
neural outputs is limited, and that this constrains how
much information the second order neuron can provide
about visual inputs; filters and nonlinearities can be cho-
sen to optimize this information transmission across a
wide range of background light intensities, rather than
focusing only on the detectability of the dimmest lights.
This approach has received the most attention in inverte-
brate retinas, such as the fly that we met near the end of
Section I.A, and we will return to these ideas in Chapter
4. It would be nice to see this all put together correctly,
and this is an open problem, surely with room for some
surprises.
So far we have followed the single photon signal from

the single rhodopsin molecule to the biochemical network
that amplifies this molecular event into a macroscopic
current, and then traced the processing of this electrical
signal as it crosses the first synapse. To claim that we
have said anything about vision, we have to at least fol-
low the signal out of the retina and on its way to the
brain. [By now we should have said more about retinal
anatomy—optic nerve, made up of the axons from ‘reti-
nal ganglion cells,’ and the stereotyped action potentials
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that propagate along these axons. Should also discuss
techniques for picking up the signals, up to current work
with electrode arrays. Show a modern figure, e.g. from
Berry’s lab.]

The classic experiments on single photon responses in
retinal ganglion cells were done well before it was possible
to measure the responses of single rods. The spikes from
single ganglion cells are relatively easy to record, and
one can try to do something like the Hecht, Shlaer and
Pirenne experiment, but instead of “seeing” (as in Fig
2), you just ask if you can detect the spikes. There were
a number of hints in the data that a single absorbed
photon generated more than one spike, so some care is
required. As shown in Fig 31, there are neurons that
seem to count by threes—if you wait for three spikes,
the probability of seeing is what you expect for setting
a threshold of K = 1 photon, if you wait for six spikes
it is as if K = 2, and so on. This simple linear relation
between photons and spikes also makes it easy to estimate
the rate of spontaneous photon–like events in the dark.
Note that if photons arrive as a Poisson process, and
each photon generates multiple spikes, then the spikes
are not a Poisson process; this idea of Poisson events
driving a second point process to generate non–Poisson
variability has received renewed attention in the context
of gene expression, where the a single messenger RNA
molecule (perhaps generated from a Poisson process) can
be translated to yield multiple protein molecules.

FIG. 31 A frequency of seeing experiment with spikes, from
Barlow et al (1971). Recording from a single retinal ganglion
cell, you can say you “saw” a flash when you detect 3, 6, 9, ...
or more spikes within a small window of time (here, 200 ms).
The probability of reaching this criterion is plotted vs the
log of the flash intensity, as in the original Hecht, Shlaer and
Pirenne experiments (Fig 2), but here the intensity is adjusted
to include a background rate of photon–like events (“dark
light”). Curves are from Eq (2), with the indicated values of
the threshold K. Notice that three spikes corresponds to one
photon.

Problem 36: Poisson–driven bursts. A characteristic fea-
ture of events drawn out of a Poisson process is that if we count
the number of events, the variance of this number is equal to the
mean. Suppose that each photon triggers exactly b spikes. What
is the ratio of variance to mean (sometimes called the Fano factor)
for spike counts in response to light flashes of fixed intensity? Sup-
pose the the burst of spikes itself is a Poisson process, with mean
b. Now what happens to the variance/mean ratio?

Before tracing the connections between individual
spikes and photons, it was possible to do a different ex-
periment, just counting spikes in response to flashes of
different intensities, and asking what is the smallest value
of the difference ∆I such that intensities I and I + ∆I
can be distinguished reliably. The answer, of course, de-
pends on the background intensity I [show figure from
Barlow (1965)?]. For sufficiently small I, the just no-
ticeable different ∆I is constant. For large I, one finds
∆I ∝ I, so the just noticeable fractional change in in-
tensity is constant; this is common to many perceptual
modalities, and is called Weber’s law. At intermediate in-
tensities one can see ∆I ∝

√
I. This last result, predicted

by Rose and de Vries (cf Section 1.1), is what you expect
if detecting a change in intensity just requires discrimi-
nating against the Poisson fluctuations in the arrival of
photons. At high intensities, we are counting many pho-
tons, and probably the system just can’t keep up; then
fluctuations in the gain of the response dominate, and
this can result in Weber’s law. At the lowest intensities,
the photons delivered by the flash are few in compari-
son with the thermal isomerizations of Rhodopsin, and
this constant noise source sets the threshold for discrim-
ination. Happily, the rate of spontaneous isomerizations
estimated from these sorts of experiments agrees with
other estimates, including the (much later) direct mea-
surements on rod cells discussed previously. This work
on discrimination with neurons also is important because
it represents one of the first efforts to connect the per-
ceptual abilities of whole organisms with the response of
individual neurons.
If retinal ganglion cells generate three spikes for every

photon, lights wouldn’t need to be very bright before the
cells should be generating thousands of spikes per second,
and this is impossible—the spikes themselves are roughly
one millisecond in duration, and all neurons have a ‘re-
fractory period’ that defines a minimum time (like a hard
core repulsion) between successive action potentials. The
answer is something we have seen already in the voltage
responses of fly photoreceptors (Fig 13): as the back-
ground light intensity increases, the retina adapts and
turns down the gain, in this case generating fewer spikes
per photon. Of course this takes some time, so if we
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suddenly expose the retina to a bright light there is very
rapid spiking, which then adapts away to a much slower
rate. [Need a figure about light/dark adaptation.] If we
imagine that our perceptions are driven fairly directly by
the spikes, then our impression of the brightness of the
light should similarly fade away. This is true not just for
light (as you experience whenever you walk outside on a
bright sunny day); almost all constant sensory inputs get
adapted away—think about the fact that you don’t feel
the pressure generated by your shoes a few minutes after
you tie them. But there are more subtle issues as well,
involving the possibility that the coding strategy used
by the retina adapts to the whole distribution of inputs
rather than just the mean; this is observed, and many
subsequent experiments are aimed at understanding the
molecular and cellular mechanisms of these effects. The
possibility that adaptation serves to optimize the effi-
ciency of coding continuous signals into discrete spikes is
something we will return to in Chapter 4.

The problem of photon counting—or any simple de-
tection task—also hides a deeper question: how does the
brain “know” what it needs to do in any given task? Even
in our simple example of setting a threshold to maximize
the probability of a correct answer, the optimal observer
must at least implicitly acquire knowledge of the rele-
vant probability distributions. Along these lines, there
is more to the ‘toad cooling’ experiment than a test of
photon counting and dark noise. The retina has adap-
tive mechanisms that allow the response to speed up at
higher levels of background light, in effect integrating for
shorter times when we can be sure that the signal to
noise ratio will be high. The flip side of this mechanism
is that the retinal response slows down dramatically in
the dark [connect back to photoreceptor responses; a fig-
ure here would be good, including τ vs I relevant to Aho
et al]. In moderate darkness (dusk or bright moonlight)
the slowing of the retinal response is reflected directly in
a slowing of the animal’s behavior. It is as if the toad
experiences an illusion because images of its target are
delayed, and it strikes at the delayed image. It is worth
emphasizing that we see a closely related illusion.

Problem 37: Knowing where to look. Give a problem to
illustrate the role of uncertainty in reducing performance.

Imagine watching a pendulum swinging while wearing
glasses that have a neutral density filter over one eye,
so the mean light intensity in the two eyes is different.
The dimmer light results in a slower retina, so the signals
from the two eyes are not synchronous, and recall that
differences in the images between our right and left eyes

are cues to the depth of an object. As we try to inter-
pret these signals in terms of motion, we find that even
if the pendulum is swinging in a plane parallel to the
line between our eyes, what we see is motion in 3D. The
magnitude of the apparent depth of oscillation is related
to the neutral density and hence to the slowing of signals
in the ‘darker’ retina. This is called the Pulfrich effect.
If the pattern of delay vs light intensity continued down

to the light levels in the darkest night, it would be a
disaster, since the delay would mean that the toad in-
evitably strikes behind the target! In fact, the toad does
not strike at all in the first few trials of the experiment
in dim light, and then strikes well within the target. It
is hard to escape the conclusion that the animal is learn-
ing about the typical velocity of the target and then us-
ing this knowledge to extrapolate and thereby correct for
retinal delays.27 Thus, performance in the limit where
we count photons involves not only efficient processing
of these small signals but also learning as much as pos-
sible about the world so that these small signals become
interpretable.

If you’d like a general overview of the retina, a good source is
Dowling (1987). For the experiments on nonlinear summation at
the rod–bipolar synapse, along with a discussion of the theoretical
issues of noise and reliability, see Field & Rieke (2002a). The anal-
ysis of optimal filtering is presented in Bialek & Owen (1990) and
Rieke et al (1991). For a discussion how our experience of a dark
night translates into photons per rod per second, see Walraven et
al (1990).

Bialek & Owen 1990: Temporal filtering in retinal bipolar cells:
Elements of an optimal computation? W Bialek & WG
Owen, Biophys J 58, 1227–1233 (1990).

Dowling 1987: The Retina: An Approachable Part of the Brain
JE Dowling (Harvard University Press, Cambridge, 1987).

Field & Rieke 2002a: Nonlinear signal transfer from mouse rods
to bipolar cells and implications for visual sensitivity. GD
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Rieke et al 1991: Optimal filtering in the salamander retina. F
Rieke, WG Owen & W Bialek, in Advances in Neural Infor-
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eds, pp 377–383 (Morgan Kaufmann, San Mateo CA, 1991).
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by Kolmogorov (1939, 1941) and Wiener (1949). The long problem
about optimal filtering is based on Potters & Bialek (1994).
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208, 2043–2045 (1939).

27 As far as I know there are no further experiments that probe
this learning more directly, e.g. by having the target move at
variable velocities.
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Kolmogorov 1941: Interpolation and extrapolation of stationary
random sequences (in Russian). AN Kolmogorov, Izv Akad
Nauk USSR Ser Mat 5, 3–14 (1941). English translation in
Selected Works of AN Kolmogorov, Vol II, AN Shiryagev,
ed, pp 272–280 (Kluwer Academic, Dordrecht, 1992).

Potters & Bialek 1994: Statistical mechanics and visual signal
processing. M Potters & W Bialek, J Phys I France 4, 1755–
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Wiener 1949: Extrapolation, Interpolation and Smoothing of
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The idea of maximizing information transmission across the first
visual synapse is something we will discuss at greater length in
Chapter 4. Still, you might like to look ahead, so here are some
references to how these ideas developed in the context of fly vision.

Hateren 1992: Real and optimal neural images in early vision.
JH van Hateren, Nature 360, 68–70 (1992).

Laughlin 1981: A simple coding procedure enhances a neuron’s
information capacity. SB Laughlin, Z Naturforsch 36c, 910–
912 (1981).

Srinivasan et al 1982: Predictive coding: A fresh view of inhi-
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Proc R Soc Lond Ser B 216, 427–459 (1982).

The classic paper about single photon responses in retinal gan-
glion cells is Barlow et al (1971); it has quite a lot of detail, and
still makes great reading. [Mastronade 1983?; might also need
pointers to more modern recordings]The idea that single molecular
events can drive bursts, generating non–Poisson statistics, reap-
pears thirty years later in the context of gene expression; see for
example Ozbudak et al (2002). The early papers on intensity dis-
crimination using spikes from single neurons are Barlow (1965)
and Barlow & Levick (1969); see also the even earlier work from
FitzHugh (1957, 1958).

Barlow 1965: Optic nerve impules and Weber’s law. HB Barlow,
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Barlow & Levick 1969: Three factors limiting the reliable de-
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R FitzHugh, J Gen Physiol 41, 675–692 (1958).

Ozbudak et al 2002: Regulation of noise in the expression of a
single gene. E Ozbudak, M Thattai, I Kurtser, AD Gross-
man & A van Oudenaarden, Nature Gen 31, 69–73 (2002).

The observation that neurons gradually diminish their response to
constant stimuli goes back to Adrian’s first experiments recording
the spikes from single cells; he immediately saw the connection to
the fading of our perceptions when inputs are constant, and this
sort of direct mapping from neural responses to human experience
is now the common language we use in thinking about the brain
and mind. An early paper about adaptation to the distribution of
inputs is Smirnakis et al (1997). Since then a number of papers
have explored more complex versions of this adaptation, as well as
trying to tease apart the underlying mechanisms; some examples
are Rieke (2001), Kim & Rieke (2001, 2003), and Baccus & Meister
(2002).
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(2002).

Kim & Rieke 2001: Temporal contrast adaptation in the input
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Smirnakis et al 1997: Adaptation of retinal processing to image
contrast and spatial scale. S Smirnakis, MJ Berry II, DK
Warland, W Bialek & M Meister, Nature 386, 69–73 (1997).

There is a decent demonstration of the Pulfrich effect available on
the web (Newbold 1999). The experiments on reaction times in
toads and the connection to retinal delays are from the work of
Aho et al (1993).

Aho et al 1993: Visual performance of the toad (Bufo bufo) at
low light levels: Retinal ganglion cell responses and prey–
catching accuracy. A–C Aho, K Donner, S Helenius, LO
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E. Perspectives

What have we learned from all of this? I think the first
thing to notice is that we have at least one example of a
real biological system that is susceptible to the sorts of
reproducible, quantitative experiments that we are used
to in the rest of physics. This is not obvious, and runs
counter to some fairly widespread prejudices. Although
things can get complicated,28 it does seem that, with
care, we can speak precisely about the properties of cells
in the retina, not just on average over many cells but
cell by cell, in enough detail that even the noise in the
cellular response itself is reproducible from cell to cell,
organism to organism. It’s important that all of this is
not guaranteed—removing cells from their natural milieu
can be traumatic, and every trauma is different. If you
dig into the original papers, you’ll see glimpses of the
many things which experimentalists need to get right in
order to achieve the level of precision that we have em-
phasized in our discussion—the things one needs to do
in order to turn the exploration of living systems into a
physics experiment.
The second point is that the performance of these bi-

ological systems—something which results from mecha-
nisms of incredible complexity—really is determined by
the physics of the “problem” that the system has been
selected to solve. If you plan on going out in the dark
of night, there is an obvious benefit to being able to de-
tect dimmer sources of light, and to making reliable dis-
criminations among subtly different intensities and, ulti-
mately, different spatiotemporal patterns. You can’t do

28 We have not explored, for example, the fact that there are many
kinds of ganglion cells.
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better than to count every photon, and the reliability of
photon counting by the system as a whole can’t be bet-
ter than the limits set by noise in the detector elements.
The fact that real visual systems reach these limits is
extraordinary.

The last point concerns the nature of the explanations
that we are looking for. We have discussed the currents
generated in response to single photons, the filter charac-
teristics and nonlinearities of synapses, and the spiking
outputs of ganglion cells, and in each case we can ask why
these properties of the system are as we observe them to
be. Importantly, we can ask analogous questions about
a wide variety of systems, from individual molecules to
the regulation of gene expression in single cells to the dy-
namics of neural networks in our brains. What are we
doing when we look for an “explanation” of the data?

When we ask “why” in relation to a biological sys-
tem, we can imagine (at least) two very different kinds
of answers.29 First, we could plunge into the microscopic
mechanisms. As we have seen in looking at the dynam-
ics of biochemical amplification in the rod cell, what we
observe as functional behavior of the system as a whole
depends on a large number of parameters: the rates of
various chemical reactions, the concentrations of various
proteins, the density of ion channels in the membrane,
the binding energies of cGMP to the channel, and so
on. To emphasize the obvious, these are not fundamen-
tal constants. In a very real sense, almost all of these

29 My colleague Rob de Ruyter van Steveninck has an excellent way
of talking about closely related issues. He once began a lecture by
contrasting two different questions: Why is the sky blue? Why
are trees green?. The answer to the first question is a standard
part of a good, high level course on electromagnetism: when light
scatters from a small particle—and molecules in the atmosphere
are much smaller than the wavelength of light—the scattering
is stronger at shorter wavelengths; this is called Rayleigh scat-
tering. Thus, red light (long wavelengths) moves along a more
nearly straight path than does blue light (short wavelength).
The light that we see, which has been scattered, therefore has
been enriched in the blue part of the spectrum, and this effect
is stronger if we look further away from the sun. So, the sky is
blue because of the way in which light scatters from molecules.
We can answer the question about the color of trees in much the
same way that we answered the question about the color of the
sky: leaves contain a molecule called chlorophyll, which is quite a
large molecule compared with the oxygen and nitrogen in the air,
and this molecule actually absorbs visible light; the absorption
is strongest for red and blue light, so what is reflected back to
us is the (intermediate wavelength) green light. Unlike the color
of the sky, the color of trees could have a different explanation.
Imagine trees of other colors—blue, red, perhaps even striped.
Microscopically, this could happen because their leaves contain
molecules other than chlorophyll, or even molecules related to
chlorophyll but with slightly different structures. But trees of
different colors will compete for resources, and some will grow
faster than others. The forces of natural selection plausibly will
cause one color of tree to win out over the others. In this sense,
we can say that trees are green because green trees are more
successful, or more fit in their environment.

parameters are under the organism’s control.
Our genome encodes hundreds of different ion chan-

nels, and the parameters of the rod cell would change if
it chose to read out the instructions for making one chan-
nel rather than another. Further, the cell can make more
or less of these proteins, again adjusting the parameters
of the system essentially by changing the concentrations
of relevant molecules. A similar line of argument applies
to other components of the system (and many other sys-
tems), since many key molecules are members of families
with slightly different properties, and cells choose which
member of the family will be expressed. More subtly,
many of these molecules can be modified, e.g. by co-
valent attachment of phosphate groups as with the shut-
off of rhodopsin, and these modifications provide another
pathway for adjusting parameters. Thus, saying that (for
example) the response properties of the rod cell are de-
termined by the parameters of a biochemical network is
very different from saying that the absorption spectrum
of hydrogen is determined by the charge and mass of the
electron—we would have to go into some alternative uni-
verse to change the properties of the electron, but most
of the parameters of the biochemical network are under
the control of the cell, and these parameters can and do
change in response to other signals.
An explanation of functional behavior in microscopic

terms, then, may be correct but somehow unsatisfying.
Further, there may be more microscopic parameters than
phenomenological parameters, and this may be critical in
allowing the system to achieve nearly identical functional
behaviors via several different mechanisms. But all of
this casts doubt on the idea that we are ‘explaining’ the
functional behavior in molecular terms.
A second, very different kind of explanation is sug-

gested by our discussion of the first synapse in vision,
between the rod and bipolar cells. In that discussion
(Section I.D), we promoted the evidence of near optimal
performance at the problem of photon counting into a
principle from which the functional properties of the sys-
tem could be derived. In this view, the system is the
way it is because evolution has selected the best solution
to a problem that is essential in the life of the organ-
ism. This principle doesn’t tell us how the optimum is
reached, but it can predict the observable behavior of the
system. Evidently there are many objections to this ap-
proach, but of course it is familiar, since many different
ideas in theoretical physics can be formulated as varia-
tional principles, from least action in classical mechanics
to the minimization of free energy in equilibrium ther-
modynamics, among others.
Organizing our thinking about biological systems

around optimization principles tends to evoke philosophi-
cal discussions, in the pejorative sense that scientists use
this term. I would like to avoid discussions of this fla-
vor. If we are going to suggest that “biological systems
maximize X” is a principle, then rather than having ev-
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eryone express their opinion about whether this is a good
idea, we should discipline ourselves and insist on criteria
that allow such claims to be meaningful and predictive.
First, we have to understand why X can’t be arbitrarily
large—we need to have a theory which defines the phys-
ical limits to performance. Second, we should actually
be able to measure X, and compare its value with this
theoretical maximum. Finally, maximizing X should gen-
erate some definite predictions about the structure and
dynamics of the system, predictions that can be tested
in independent, quantitative experiments. In what fol-
lows, we’ll look at three different broad ideas about what
X might be, and hopefully we’ll be able to maintain the
discipline that I have outlined here. Perhaps the most
important lesson from the example of photon counting
is that we can carry through this program and maintain
contact with real data. The challenge is to choose prin-
ciples (candidate Xs) that are more generally applicable
than the very specific idea that the retina maximizes the
reliability of seeing on a dark night.
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