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Abstract

Recent work has shown that deep convolutional neural
networks (DCNNs) do not generalize well under partial oc-
clusion. Inspired by the success of compositional models at
classifying partially occluded objects, we propose to inte-
grate compositional models and DCNNs into a unified deep
model with innate robustness to partial occlusion. We term
this architecture Compositional Convolutional Neural Net-
work. In particular, we propose to replace the fully con-
nected classification head of a DCNN with a differentiable
compositional model. The generative nature of the compo-
sitional model enables it to localize occluders and subse-
quently focus on the non-occluded parts of the object. We
conduct classification experiments on artificially occluded
images as well as real images of partially occluded objects
from the MS-COCO dataset. The results show that DC-
NNs do not classify occluded objects robustly, even when
trained with data that is strongly augmented with partial
occlusions. Our proposed model outperforms standard DC-
NNs by a large margin at classifying partially occluded ob-
jects, even when it has not been exposed to occluded ob-
jects during training. Additional experiments demonstrate
that CompositionalNets can also localize the occluders ac-
curately, despite being trained with class labels only.

1. Introduction
Advances in the architecture design of deep convolu-

tional neural networks (DCNNs) [14, 18, 8] increased the
performance of computer vision systems at image classifi-
cation enormously. However, recent findings [31, 11] have
shown that such deep models are significantly less robust
at classifying artificially occluded objects compared to Hu-
mans. Furthermore, our experiments show that DCNNs
do not classify real images of partially occluded objects
robustly. Thus, our findings and those of related works
[31, 11] point out a fundamental limitation of DCNNs in
terms of generalization under partial occlusion which needs
to be addressed.

Figure 1: Partially occluded cars from the MS-COCO
dataset [17] that are misclassified by a standard DCNN
but correctly classified by the proposed CompositionalNet.
Intuitively, a CompositionalNet can localize the occluders
(occlusion scores on the right) and subsequently focus on
the non-occluded parts of the object to classify the image.

One approach to overcome this limitation is to use data
augmentation in terms of partial occlusion [4, 28]. How-
ever, our experimental results show that after training with
augmented data the performance of DCNNs at classifying
partially occluded objects still remains substantially worse
compared to the classification of non-occluded objects.

A number of works showed that compositional mod-
els can robustly classify partially occluded 2D patterns
[7, 10, 23, 30]. Kortylewski et al. [11] proposed dictionary-
based compositional models, a generative model of neural
feature activations that can classify images of partially oc-
cluded 3D objects more robustly than DCNNs. However,
their results also showed that their model is significantly
less discriminative at classifying non-occluded objects com-
pared to DCNNs.

In this work, we propose to integrate compositional
models and DCNNs into a unified deep model with innate
robustness to partial occlusion. In particular, we propose to
replace the fully-connected classification head of a DCNN
with a compositional layer that is regularized to be fully
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generative in terms of the neural feature activations of the
last convolutional layer. The generative property of the
compositional layer enables the network to localize occlud-
ers in an image and subsequently focus on the non-occluded
parts of the object in order to classify the image robustly.
We term this novel deep architecture Compositional Con-
volutional Neural Network (CompositionalNet). Figure 1
illustrates the robustness of CompositionalNets at classify-
ing partially occluded objects, while also being able to lo-
calize occluders in an image. In particular, it shows several
images of cars that are occluded by other objects. Next to
these images, we show occlusion scores that illustrate the
position of occluders as estimated by the Compositional-
Net. Note how the occluders are accurately localized in the
occlusion maps despite having highly complex shapes and
appearances.

Our extensive experiments demonstrate that the pro-
posed CompositionalNet outperforms related approaches
by a large margin at classifying partially occluded objects,
even when it has not been exposed to occluded objects dur-
ing training. When trained with data augmentation in terms
of partial occlusion the performance increases further. In
addition, we perform qualitative and quantitative experi-
ments that demonstrate the ability of CompositionalNets
to localize occluders accurately, despite being trained with
class labels only. We make several important contributions
in this paper:

1. We propose a differentiable compositional model
that is generative in terms of the feature activations of
a DCNN . This enables us to integrate compositional
models and deep networks into compositional convo-
lutional neural networks, a unified deep model with
innate robustness to partial occlusion.

2. While previous works [30, 11, 27, 31] evaluate ro-
bustness to partial occlusion on artificially occluded
images only, we also evaluate on real images
of partially occluded objects from the MS-COCO
dataset. We demonstrate that CompositionalNets
achieve state-of-the-art results at classifying par-
tially occluded objects under artificial and real occlu-
sion.

3. To the best of our knowledge we are the first to study
the task of localizing occluders in an image and show
that CompositionalNets outperform dictionary-based
compositional models [11] substantially.

2. Related Work
Classification under partial occlusion. Recent work

[31, 11] has shown that current deep architectures are signif-
icantly less robust to partial occlusion compared to Humans.
Fawzi and Frossard [5] showed that DCNNs are vulnerable

to partial occlusion simulated by masking small patches of
the input image. Related works [4, 28], have proposed to
augment the training data with partial occlusion by mask-
ing out patches from the image during training. However,
our experimental results in Section 4 show that such data
augmentation approaches only have limited effects on the
robustness of a DCNN to partial occlusion. A possible ex-
planation is the difficulty of simulating occlusion due to the
large variability of occluders in terms of appearance and
shape. Xiao et al. [27] proposed TDAPNet a deep net-
work with an attention mechanism that masks out occluded
features in lower layers to increase the robustness of the
classification against occlusion. Our results show that this
model does not perform well on images with real occlu-
sion. In contrast to deep learning approaches, generative
compositional models [9, 32, 6, 2, 13] have been shown to
be inherently robust to partial occlusion when augmented
with a robust occlusion model [10]. Such models have been
successfully applied for detecting partially occluded object
parts [23, 30] and for recognizing 2D patterns under partial
occlusion [7, 12].

Combining compositional models and DCNNs. Liao
et al. [16] proposed to integrate compositionality into DC-
NNs by regularizing the feature representations of DCNNs
to cluster during learning. Their qualitative results show
that the resulting feature clusters resemble part-like detec-
tors. Zhang et al. [29] demonstrated that part detectors
emerge in DCNNs by restricting the activations in feature
maps to have a localized distribution. However, these ap-
proaches have not been shown to enhance the robustness of
deep models to partial occlusion. Related works proposed
to regularize the convolution kernels to be sparse [20], or
to force feature activations to be disentangled for differ-
ent objects [19]. As the compositional model is not ex-
plicit but rather implicitly encoded within the parameters
of the DCNNs, the resulting models remain black-box DC-
NNs that are not robust to partial occlusion. A number of
works [15, 21, 22] use differentiable graphical models to
integrate part-whole compositions into DCNNs. However,
these models are purely discriminative and thus also are
deep networks with no internal mechanism to account for
partial occlusion. Kortylewski et al. [11] proposed learn a
generative dictionary-based compositional models from the
features of a DCNN. They use their compositional model as
“backup” to an independently trained DCNN, if the DCNNs
classification score falls below a certain threshold.

In this work, we propose to integrate generative com-
positional models and DCNNs into a unified model that is
inherently robust to partial occlusion. In particular, we pro-
pose to replace the fully connected classification head with a
differentiable compositional model. We train the model pa-
rameters with backpropagation, while regularizing the com-
positional model to be generative in terms of the neural fea-
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ture activations of the last convolution layer. Our proposed
model significantly outperforms related approaches at clas-
sifying partially occluded objects while also being able to
localize occluders accurately.

3. Compositional Convolutional Neural Nets
In Section 3.1, we introduce a fully generative compo-

sitional model and discuss how it can be integrated with
DCNNs in an end-to-end system in Section 3.2.

3.1. Fully Generative Compositional Models

We denote a feature map F l ∈ RH×W×D as the output
of a layer l in a DCNN, with D being the number of chan-
nels. A feature vector f lp ∈ RD is the vector of features in
F l at position p on the 2D lattice P of the feature map. In
the remainder of this section we omit the superscript l for
notational clarity because this is fixed a-priori.

We propose a differentiable generative compositional
model of the feature activations p(F |y) for an object class y.
This is different from dictionary-based compositional mod-
els [11] which learn a model p(B|y), where B is a non-
differentiable binary approximation of F . In contrast, we
model the real-valued feature activations p(F |y) as a mix-
ture of von-Mises-Fisher (vMF) distributions:

p(F |θy) =
∏
p

p(fp|Ap,y,Λ) (1)

p(fp|Ap,y,Λ) =
∑
k

αp,k,yp(fp|λk), (2)

where θy = {Ay,Λ} are the model parameters and Ay =
{Ap,y} are the parameters of the mixture models at every
position p ∈ P on the 2D lattice of the feature map F . In
particular, Ap,y = {αp,0,y, . . . , αp,K,y|

∑K
k=0 αp,k,y = 1}

are the mixture coefficients, K is the number of mixture
components and Λ = {λk = {σk, µk}|k = 1, . . . ,K} are
the parameters of the vMF distribution:

p(fp|λk) =
eσkµ

T
k fp

Z(σk)
, ‖fp‖ = 1, ‖µk‖ = 1, (3)

where Z(σk) is the normalization constant. The parame-
ters of the vMF distribution Λ can be learned by iterating
between vMF clustering of the feature vectors of all train-
ing images and maximum likelihood parameter estimation
[1] until convergence. After training, the vMF cluster cen-
ters {µk} will resemble feature activation patterns that fre-
quently occur in the training data. Interestingly, feature vec-
tors that are similar to one of the vMF cluster centers, are
often induced by image patches that are similar in appear-
ance and often even share semantic meanings (see Supple-
mentary A). This property was also observed in a number
of related works that used clustering in the neural feature
space [24, 16, 23].

The mixture coefficients αp,k,y can also be learned with
maximum likelihood estimation from the training images.
They describe the expected activation of a cluster center µk
at a position p in a feature map F for a class y. Note that the
spatial information from the image is preserved in the fea-
ture maps. Hence, our proposed vMF model (Equation 1)
intuitively describes the expected spatial activation pattern
of parts in an image for a given class y - e.g. where the tires
of a car are expected to be located in an image. In Section
3.2, we discuss how the maximum likelihood estimation of
the parameters θy can be integrated into a loss function and
optimized with backpropagation.

Mixture of compositional models. The model in Equa-
tion 1 assumes that the 3D pose of an object is approxi-
mately constant in images. This is a common assumption
of generative models that represent objects in image space.
We can represent 3D objects with a generalized model using
mixtures of compositional models as proposed in [11]:

p(F |Θy) =
∑
m

νmp(F |θmy ), (4)

with V={νm ∈ {0, 1},
∑
m ν

m=1} and Θy = {θmy ,m =
1, . . . ,M}. Here M is the number of mixtures of compo-
sitional models and νm is a binary assignment variable that
indicates which mixture component is active. Intuitively,
each mixture component m will represent a different view-
point of an object (see Supplementary B). The parameters
of the mixture components {Amy } need to be learned in an
EM-type manner by iterating between estimating the as-
signment variables V and maximum likelihood estimation
of {Amy }. We discuss how this process can be performed in
a neural network in Section 3.2.

Occlusion modeling. Following the approach presented
in [10], compositional models can be augmented with an
occlusion model. The intuition behind an occlusion model
is that at each position p in the image either the object model
p(fp|Amp,y,Λ) or an occluder model p(fp|β,Λ) is active:

p(F |θmy , β)=
∏
p

p(fp, z
m
p =0)1−zmp p(fp, z

m
p =1)z

m
p , (5)

p(fp, z
m
p =1) = p(fp|β,Λ) p(zmp =1), (6)

p(fp, z
m
p =0) = p(fp|Amp,y,Λ) (1-p(zmp =1)). (7)

The binary variables Zm = {zmp ∈ {0, 1}|p ∈ P} indicate
if the object is occluded at position p for mixture component
m. The occlusion prior p(zmp =1) is fixed a-priori. Related
works [10, 11] use a single occluder model. We instead use
a mixture of several occluder models that are learned in an
unsupervised manner:

p(fp|β,Λ) =
∏
n

p(fp|βn,Λ)τn (8)

=
∏
n

(∑
k

βn,kp(fp|σk, µk)
)τn

, (9)
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Figure 2: Feed-forward inference with a CompositionalNet. A DCNN backbone is used to extract the feature map F ,
followed by a convolution with the vMF kernels {µk} and a non-linear vMF activation function N (·). The resulting vMF
likelihood L is used to compute the occlusion likelihood O using the occluder kernels {βn}. Furthermore, L is used to
compute the mixture likelihoods {Emy } using the mixture models {Amy }. O and {Emy } compete in explaining L (red box)
and are combined to compute an occlusion robust score {smy }. The binary occlusion maps {Zmy } indicate which positions in
L are occluded. The final class score sy is computed as sy=maxm s

m
y and the occlusion map Zy is selected accordingly.

where {τn ∈ {0, 1},
∑
n τn = 1} indicates which occluder

model explains the data best. The parameters of the oc-
cluder models βn are learned from clustered features of ran-
dom natural images that do not contain any object of inter-
est (see Supplementary C). Note that the model parameters
β are independent of the position p in the feature map and
thus the model has no spatial structure. Hence, the mixture
coefficients βn,k intuitively describe the expected activation
of µk anywhere in natural images.

Inference as feed-forward neural network. The com-
putational graph of our proposed fully generative compo-
sitional model is a directed acyclic graph. Hence, we can
perform inference in a single forward pass as illustrated in
Figure 2.

We use a standard DCNN backbone to extract a feature
representation F = ψ(I, ω) ∈ RH×W×D from the input
image I , where ω are the parameters of the feature extrac-
tor. The vMF likelihood function p(fp|λk) (Equation 3) is
composed of two operations: An inner product ip,k = µTk fp
and a non-linear transformation N = exp(σkip,k)/Z(σk).
Since µk is independent of the position p, computing ip,k is
equivalent to a 1× 1 convolution of F with µk. Hence, the
vMF likelihood can be computed by:

L = {N (F ∗ µk)|k = 1, . . . ,K} ∈ RH×W×K (10)

(Figure 2 yellow tensor). The mixture likelihoods
p(fp|Amp,y,Λ) (Equation 2) are computed for every position
p as a dot-product between the mixture coefficients Amp,y
and the corresponding vector lp ∈ RK from the likelihood

tensor:

Emy = {lTpAmp,y|∀p ∈ P} ∈ RH×W , (11)

(Figure 2 blue planes). Similarly, the occlusion likelihood
can be computed as O = {maxn l

T
p βn|∀p ∈ P} ∈ RH×W

(Figure 2 red plane). Together, the occlusion likelihood
O and the mixture likelihoods {Emy } are used to estimate
the overall likelihood of the individual mixtures as smy =
p(F |θmy , β) =

∑
p max(Emp,y, Op). The final model likeli-

hood is computed as sy = p(F |Θy) = maxm s
m
y and the

final occlusion map is selected accordingly as Zy = Zm̄y ∈
RH×W where m̄ = argmaxm s

m
y .

3.2. End-to-end Training of CompositionalNets

We integrate our compositional model with DCNNs into
Compositional Convolutional Neural Networks (Composi-
tionalNets) by replacing the classical fully connected clas-
sification head with a compositional model head as illus-
trated in Figure 2. The model is fully differentiable and can
be trained end-to-end using backpropagation. The trainable
parameters of a CompositionalNet are T = {ω,Λ,Ay}. We
optimize those parameters jointly using stochastic gradient
descent. The loss function is composed of four terms:

L(y, y′, F, T ) =Lclass(y, y′) + γ1Lweight(ω)+ (12)
γ2Lvmf (F,Λ) + γ3Lmix(F,Ay). (13)

Lclass(y, y′) is the cross-entropy loss between the network
output y′ and the true class label y. Lweight = ‖ω‖22 is
a weight regularization on the DCNN parameters. Lvmf
and Lmix regularize the parameters of the compositional

4
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model to have maximal likelihood for the features in F .
{γ1, γ2, γ3} control the trade-off between the loss terms.

The vMF cluster centers µk are learned by maximizing
the vMF-likelihoods (Equation 3) for the feature vectors fp
in the training images. We keep the vMF variance σk con-
stant, which also reduces the normalization term Z(σk) to a
constant. We assume a hard assignment of the feature vec-
tors fp to the vMF clusters during training. Hence, the free
energy to be minimized for maximizing the vMF likelihood
[25] is:

Lvmf (F,Λ) = −
∑
p

max
k

log p(fp|µk) (14)

= C
∑
p

min
k
µTk fp, (15)

where C is a constant. Intuitively, this loss encourages the
cluster centers µk to be similar to the feature vectors fp.

In order to learn the mixture coefficients Amy we need to
maximize the model likelihood (Equation 4). We can avoid
an iterative EM-type learning procedure by making use of
the fact that the the mixture assignment νm and the occlu-
sion variables zp have been inferred in the forward inference
process. Furthermore, the parameters of the occluder model
are learned a-priori and then fixed. Hence the energy to be
minimized for learning the mixture coefficients is:

Lmix(F,Ay) =-
∑
p

(1-z↑p) log
[∑
k

αm
↑

p,k,yp(fp|λk)
]

(16)

Here, z↑p and m↑ denote the variables that were inferred in
the forward process (Figure 2).

4. Experiments
We perform experiments at the tasks of classifying par-

tially occluded objects and at occluder localization.
Datasets. For evaluation we use the Occluded-Vehicles

dataset as proposed in [24] and extended in [11]. The
dataset consists of images and corresponding segmentations
of vehicles from the PASCAL3D+ dataset [26] that were
synthetically occluded with four different types of occlud-
ers: segmented objects as well as patches with constant
white color, random noise and textures (see Figure 5 for
examples). The amount of partial occlusion of the object
varies in four different levels: 0% (L0), 20-40% (L1), 40-
60% (L2), 60-80% (L3).

While it is reasonable to evaluate occlusion robustness
by testing on artificially generated occlusions, it is neces-
sary to study the performance of algorithms under realistic
occlusion as well. Therefore, we introduce a dataset with
images of real occlusions which we term Occluded-COCO-
Vehicles. It consists of the same classes as the Occluded-
Vehicle dataset. The images were generated by cropping

Figure 3: Images from the Occluded-COCO-Vehicles
dataset. Each row shows samples of one object class with
increasing amount of partial occlusion: 20-40% (Level-1),
40-60% (Level-2), 60-80% (Level-3).

out objects from the MS-COCO [17] dataset based on their
bounding box. The objects are categorized into the four
occlusion levels defined by the Occluded-Vehicles dataset
based on the amount of the object that is visible in the image
(using the segmentation masks available in both datasets).
The number of test images per occlusion level are: 2036
(L0), 768 (L1), 306 (L2), 73 (L3). For training purpose,
we define a separate training dataset of 2036 images from
level L0. Figure 3 illustrates some example images from
this dataset.

Training setup. CompositionalNets are trained from the
feature activations of a VGG-16 [18] model that is pre-
trained on ImageNet[3]. We initialize the compositional
model parameters {µk}, {Ay} using clustering as described
in Section 3.1 and set the vMF variance to σk = 30,∀k ∈
{1, . . . ,K}. We train the three sets of model parameters
{ω, {µk}, {Ay}} using backpropagation. In order to reduce
the memory consumption during training, we perform coor-
dinate gradient descent and hence learn one set of variables
for one epoch while keeping the other two fixed. We learn
the parameters of n = 5 occluder models {β1, . . . , βn} in
an unsupervised manner as described in Section 3.1 and
keep them fixed throughout the experiments. We set the
number of mixture components to M = 4. The mixing
weights of the loss are chosen to be: γ1 = 0.1, γ2 = 5,
γ3 = 1. We train for 60 epochs using stochastic gradi-
ent descent with momentum r = 0.9 and a learning rate of
lr = 0.01. The code, models and data used for out experi-
ments are publicly available1.

4.1. Classification under Partial Occlusion

PASCAL3D+. In Table 1 we compare our Composi-
tionalNets to a VGG-16 network that was pre-trained on
ImageNet and fine-tuned with the respective training data.

1Website will be written here.
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PASCAL3D+ Vehicles Classification under Occlusion
Occ. Area L0: 0% L1: 20-40% L2: 40-60% L3: 60-80% Mean
Occ. Type - w n t o w n t o w n t o
VGG 99.2 96.9 97.0 96.5 93.8 92.0 90.3 89.9 79.6 67.9 62.1 59.5 62.2 83.6
CoD[11] 92.1 92.7 92.3 91.7 92.3 87.4 89.5 88.7 90.6 70.2 80.3 76.9 87.1 87.1
VGG+CoD [11] 98.3 96.8 95.9 96.2 94.4 91.2 91.8 91.3 91.4 71.6 80.7 77.3 87.2 89.5
TDAPNet [27] 99.3 98.4 98.9 98.5 97.4 96.1 97.5 96.6 91.6 82.1 88.1 82.7 79.8 92.8
CompNet-p4 97.4 96.7 96.0 95.9 95.5 95.8 94.3 93.8 92.5 86.3 84.4 82.1 88.1 92.2
CompNet-p5 99.3 98.4 98.6 98.4 96.9 98.2 98.3 97.3 88.1 90.1 89.1 83.0 72.8 93.0
CompNet-Multi 99.3 98.6 98.6 98.8 97.9 98.4 98.4 97.8 94.6 91.7 90.7 86.7 88.4 95.4

Table 1: Classification results for vehicles of PASCAL3D+ with different levels of artificial occlusion (0%,20-40%,40-
60%,60-80% of the object are occluded) and different types of occlusion (w=white boxes, n=noise boxes, t=textured boxes,
o=natural objects). CompositionalNets outperform related approaches significantly.

MS-COCO Vehicles Classification under Occlusion
Train Data PASCAL3D+ MS-COCO MS-COCO + CutOut MS-COCO + CutPaste
Occ. Area L0 L1 L2 L3 Avg L0 L1 L2 L3 Avg L0 L1 L2 L3 Avg L0 L1 L2 L3 Avg
VGG 97.8 86.8 79.1 60.3 81.0 99.1 88.7 78.8 63.0 82.4 99.3 90.9 87.5 75.3 88.3 99.3 92.3 89.9 80.8 90.6
CoD 91.8 82.7 83.3 76.7 83.6 - - - - - - - - - - - - - - -
VGG+CoD 98.0 88.7 80.7 69.9 84.3 - - - - - - - - - - - - - - -
TDAPNet 98.0 88.5 85.0 74.0 86.4 99.4 88.8 87.9 69.9 86.5 99.3 90.1 88.9 71.2 87.4 98.1 89.2 90.5 79.5 89.3
CompNet-p4 96.6 91.8 85.6 76.7 87.7 97.7 92.2 86.6 82.2 89.7 97.8 91.9 87.6 79.5 89.2 98.3 93.8 88.6 84.9 91.4
CompNet-p5 98.2 89.1 84.3 78.1 87.5 99.1 92.5 87.3 82.2 90.3 99.3 93.2 87.6 84.9 91.3 99.4 93.9 90.6 90.4 93.5
CompNet-Mul 98.5 93.8 87.6 79.5 89.9 99.4 95.3 90.9 86.3 93.0 99.4 95.2 90.5 86.3 92.9 99.4 95.8 91.8 90.4 94.4

Table 2: Classification results for vehicles of MS-COCO with different levels of real occlusion (L0: 0%,L1: 20-40%,L2 40-
60%, L3:60-80% of the object are occluded). The training data consists of images from: PASCAL3D+, MS-COCO as well
as data from MS-COCO that was augmented with CutOut and CutPaste. CompositionalNets outperform related approaches
in all test cases.

Furthermore, we compare to a dictionary-based compo-
sitional model (CoD) and a combination of both models
(VGG+CoD) as reported in [11]. We also list the results
of TDAPNet as reported in [27]. We report results of
CompositionalNets learned from the pool4 and pool5
layer of the VGG-16 network respectively (CompNet-p4 &
CompNet-p5), as well as as a multi-layer CompositionalNet
(CompNet-Multi) that is trained by combining the output of
CompNet-p4 and CompNet-p5. In this setup, all models are
trained with non-occluded images (L0), while at test time
the models are exposed to images with different amount of
partial occlusion (L0-L3).

We observe that CompNet-p4 and CompNet-p5 outper-
form VGG-16, CoD as well as the combination of both sig-
nificantly. Note how the CompositionalNets are much more
discriminative at level L0 compared to dictionary-based
compositional models. While CompNet-p4 and CompNet-
p5 perform on par with the TDAPNet, CompNet-Multi out-
performs TDAPNet significantly. We also observe that
CompNet-p5 outperforms CompNet-p4 for low occlusions
(L0 & L1) and for stronger occlusions if the occluders
are rectangular masks. However, CompNet-p4 outperforms
CompNet-p5 at strong occlusion (L2 & L3) when the oc-

cluders are objects. As argued by Xiao et al. [27] this
could be attributed to the fact that occluders with more fine-
grained shapes disturb the features in higher layers more
severely.

MS-COCO. Table 2 shows classification results under
a realistic occlusion scenario by testing on the Occluded-
COCO-Vehicles dataset. The models in the first part of
the Table are trained on non-occluded images of the PAS-
CAL3D+ data and evaluated on the MS-COCO data. While
the performance drops for all models in this transfer learn-
ing setting, CompositionalNets still outperform the other
approaches significantly. Note that the combination of
the DCNN with the dictionary-based compositional model
(VGG+CoD) has a high performance at low occlusion
L0&L1 but lower performance for L2&L3 compared to
CoD only.

The second part of the table (MS-COCO) shows the
classification performance after fine-tuning on the L0 train-
ing set of the Occluded-COCO-Vehicles dataset. VGG-16
achieves a similar performance as for the artificial object oc-
cluders in Table 1. After fine-tuning, TDAPNet improves at
level L0 and decreases on average for the levels L1 − 3.
Overall it does not significantly benefit from fine-tuning

6



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CVPR
#1120

CVPR
#1120

CVPR 2020 Submission #1120. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

with non-occluded images. The performance of the Com-
positionalNet increases substantially (p4: 3%, p5: 2.8%,
multi: 3.1%) after fine-tuning.

The third and fourth parts of Table 2 (MS-COCO-CutOut
& MS-COCO-CutPaste) show classification results after
training with strong data augmentation in terms of partial
occlusion. In particular, we use CutOut [4] regulariza-
tion by masking out random square patches of size 70 pix-
els. Furthermore, we propose a stronger data augmenta-
tion method CutPaste which artificially occludes the train-
ing images in the Occluded-COCO-Vehicles dataset with
all four types of artificial occluders used in the Occluded-
Vehicles dataset. While data augmentation increases the
performance of the VGG network, the model still suf-
fers from strong occlusions and falls below the CompNet-
Multi model that was only trained on non-occluded im-
ages. TDAPNet does not benefit from data augmentation
as much as the VGG network. For CompositionalNets the
performance increases further when trained with augmented
data. Overall, CutOut augmentation does not have a large
effect on the generalization performance of Compositional-
Nets, while the proposed CutPaste augmentation proves to
be stronger. In particular, the CompNet-p5 architecture ben-
efits strongly, possibly because the network learns to extract
more reliable higher level features under occlusion.

In summary, the classification experiments clearly high-
light the robustness of CompositionalNets at classifying
partially occluded objects, while also being highly discrim-
inative when objects are not occluded. Overall Composi-
tionalNets significantly outperform dictionary-based com-
positional models and other neural network architectures at
image classification under artificial as well as real occlu-
sion in all three tested setups - at transfer learning between
datasets, when trained with non-occluded images and when
trained with strongly augmented data.

4.2. Occlusion Localization

While it is important to classify partially occluded ro-
bustly, models should also be able to localize occluders
in images accurately. This improves the explainability
of the classification process and enables future research
e.g. for parsing scenes with mutually occluding objects.
Therefore, we propose to test the ability of Composition-
alNets and dictionary-based compositional models at oc-
cluder localization. We compute the occlusion score as the
log-likelihood ratio between the occluder model and the
object model: log p(fp|zmp =1)/p(fp|zmp =0), where m =
argmaxm p(F |θmy ) is the model that fits the data the best.

Quantitative results. We study occluder localization
quantitatively on the Occluded-Vehicle dataset using the
ground truth segmentation masks of the occluders and the
objects. Figure 4 shows the ROC curves of Compositional-
Nets (solid lines) and dictionary-based compositional mod-

Figure 4: ROC curves for occlusion localization with
dictionary-based compositional models and the proposed
CompositionalNets averaged over all levels of partial occlu-
sion (L1-L3). CompositionalNets significantly outperform
dictionary-based compositional models.

els (dashed lines) when using the occlusion score for clas-
sifying each pixel as occluder or object at all occlusion lev-
els L1 − L3. The ROC curves show that for both mod-
els it is more difficult to localize textured occluders com-
pared to white and noisy occluders. Furthermore, it is more
difficult to localize natural object occluders compared to
textured boxes, likely because of their fine-grained irreg-
ular shape. Overall, CompositionalNets significantly out-
perform dictionary-based compositional models. At a false
acceptance rate of 0.2, the performance gain of Composi-
tionalNets is: 12% (white), 19% (noise), 6% (texture) and
8% (objects).

Qualitative results. Figure 5 qualitatively compares the
occluder localization abilities of dictionary-based compo-
sitional models and CompositionalNets. In particular, it
shows images of real and artificial occlusions and the corre-
sponding occlusion scores for all positions p of the feature
map F . Both models are learned from the pool4 feature
maps of a VGG-16 network. We show more example im-
ages in Supplementary D. Note that we visualize the posi-
tive values of the occlusion score after median filtering for
illustration purposes (see Supplementary E for unfiltered
results). We observe that CompositionalNets can localize
occluders significantly better compared to the dictionary-
based compositional model for real as well as artificial oc-
cluders. In particular, it seems that dictionary-based compo-
sitional models often detect false positive occlusions. Note
how the artificial occluders with white and noise texture are
better localized by both models compared to the other oc-
cluder types.

In summary, our qualitative and quantitative occluder
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Figure 5: Visualization of occlusion localization results. Each result consists of three images: The input image, the occlusion
scores of a dictionary-based compositional model [11] and the occlusion scores of our proposed CompositionalNet. Note
how our model can localize occluders with higher accuracy across different objects and occluder types for real as well as for
artificial occlusion.

localization experiments clearly show that Compositional-
Nets can localize occluders more accurately compared to
dictionary-based compositional models. Furthermore, we
observe that localizing occluders with variable texture and
shape is highly difficult, which could be addressed by de-
veloping advanced occlusion models.

5. Conclusion
In this work, we studied the problem of classifying par-

tially occluded objects and localizing occluders in images.
We found that a standard DCNN does not classify real im-
ages of partially occluded objects robustly, even when it has
been exposed to severe occlusion during training. We pro-
posed to resolve this problem by integrating compositional
models and DCNNs into a unified model. In this context,

we made the following contributions:

Compositional Convolutional Neural Networks. We
introduce CompositionalNets, a novel deep architecture
with innate robustness to partial occlusion. In particular we
propose to replace the fully connected classification head of
a DCNN backbone with a differentiable generative compo-
sitional models.

Robustness to partial occlusion. We demonstrate that
CompositionalNets can classify partially occluded objects
more robustly compared to a standard DCNN and other re-
lated approaches, while retaining high discriminative per-
formance for non-occluded images. Furthermore, we show
that CompositionalNets can also localize occluders in im-
ages accurately, despite being trained with class labels only.
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