Image Parsing

!'- Segmentation, Detection, and Recognition.

Alan Yuille (UCLA/JHU).




i Introduction: Image Parsing

= Task: take an input image and parse it
into its constituent components.

= Components are objec

s (faces) and

generic regions (shading, texture).

s Analogous to parsing a sentence "The
cat sat on the mat” into nouns, verbs,

elc.



‘L Introduction: Example

Input Image

Letters/Digits

WORLD PLAYER 2002

a. An example image

b. Generic regions

WORLD PLAYER 2002

voee

c. lext

d. Faces

Generic
Regions

Faces



:L Bayesian Inference: Expected Loss

= Parsing must estimate a representation
W* (objects...) from the image I.

s What is the best rule (algorithm) al(.) to
give solution W* = g(l)?

= Pick rule d(.) to minimize expected loss
R(d) = sum P(W,I) L(W,d(I))

= L(W,d(I)) is penalty for wrong answer.

s Depends on visual environment P(WI).




i Bayesian Inference: cenerative Models.
= Best rule is select W* that maximizes P(W,I)/P(I).
= Can express P(W,I)/P(I) as (Bayes Rule):

PIWLyP(I) = PIJW) P(W)/P(D),

where:
(i) P(I|W) is the probability of generating the image from W.
(ii) P(W) is the prior on W.



i Bayesian Inference: Sinha’s Figure
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i Bayesian Inference: Key Issues

(i) Modeling. How to model P(I|W) and
P(W) for real images and scenes?

P(I/W) is like computer graphics. But
need mathematical models.

(ii) Inference. How to compute W*?



i Modeling: P(I|W) & Generation.

» Probabilistic Context Free Grammar (CFG).

Tree structure. Single node at top represents
the entire image region.

Probability of splitting a region into two.

Probability of labeling a region — face, text,
generic.

Probability of generating intensity values in
each regions.

(Prob. CFG's used for speech & language).



i Modeling: Probabilistic CFG.

Full image Region

Probability of Split: / \
Bounaary of Spiit.

Region1 Region 2
Probability of Region Label:
/ \ Face, Text, Shading, etc.
Region 3 Region 4 Probability of Region
Parameters given label,

Region Label Probability of Image of
| Region given label and
Image of Region Parameters.,




Modeling: Prob. Images & Labels.

= Generic Regions: (i) constant, (ii) clutter,
(i) texture, (iv) shadina.

(@) (B) (c) ()

= Require models:
P( I(x,y) | label, parameters) (Tu & Zhu 02).

e.g. Gaussian for intensity in constant
regions. parameters mean, variance.

(Zhu & Yuille 1996)



i Modeling: Synthesis from models

Input: region bounaaries,
Region labels,
Region parameters.

input segmentation synthesig

segnentation synthesis




i Modeling: Synthesis of Objects

= Faces (front-on) and Text.
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i Modeling: P(I|W) and P(W).

Image decomposed {R;:i=1,..,N} s.t. U ‘1 R; =R,
Into regions. RNR;=0Vi#&j I, =0R;

Probability of image

/s proaduct of prob. p(I|W) = H 1P(IR 10;,1;)
of each region image.

Region labels |,
Region parameters ¢,

Also prior probabilities P(W) for shapes of regions, parameters
of face and text models.




inference: Estimate W* from I

= [raditional models of vision are feedforward
via intermediate level representations.

Image > 2-1/2D Sketch > Objects. (Marr).

= Problem: often very hard to construct
these intermediate representations (on
real images)

= Claim: /intermediate level vision is ill-posed
and ambiguous (hard to detect edges),

but Aigh level vision is well-posed (easy to
detect faces).



Inference: Rapid Detection Faces/Text.

= There exist learning algorithms (e.q.

Adaboost) that can be trained to detect
faces and text in unconstralned images.

a. the first twio face features

b. an example of face detection
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Error rate still too high.

Object | False Positive | False Negative | Images | Subwindows
Face 65 26 162 | 355,960,040
Face 918 14 162 | 355,960,040
Face 7542 1 162 | 355,960,040
Text 118 27 35 20,183,316
Text 1879 5 35 20,183,316

But much better than

Table 1

: Performance of AdaBoost at different thresholds.

error rate for edges!




ilnference: Feedforward/Feedback.

= Claim: low-level visual cues are
ambiguous but fast. (Feedforward).

= High-level models are reliable but

slow (Feedback).

s High-level models needs to search over
all parameters of models.

m Except — low-level cues for faces/text
can be fast (AdaBoost).



i Inference: Generative Feedback

= Searching through high-level models can be
done in a Bayesian spirit by "analysis through
synthesis” Grenander/Mumford.

s Sample from the generative model P(I/W)
until you find the W* that best generates the
image. Too slow!

= Mumford advocated this as a model for the
brain — feedback connections.



i Inference: DDMCMC

= Data Driven Markov Chain Monte Carlo
(DDMCMC). Tu & Zhu.

= A fast way to do Analysis by Synthesis.

s Feedforward: low-level cues to propose high-
level models (and model parameters).

s Feedback. high-level models generate the
image and get validated.

s Attraction: Can prove that the DDMCMC will
converge to best W*. But how fast?



i Inference: DDMCMC

= Search for W* by making moves in the solution space
(split region, change label, etc. etc).

= Propose move with prob: g(W = W'|I)
s Accept move with probability

p(WII)y qg(W' — W I})
p(WII) W — W/ I)"

a(W — W) = min(1,

= The g’s are low-level cues (heuristics) which getermine the
speed of the algorithm but dont affect the final answer.



Inference: propose/accept.
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= "Man proposes, God disposes”.
Sir Edwin H. Landseer R.A.



‘Llnference: DDMCMC & Segmentation.

input, segmicutation by Al
DDMCMC segtnentation
A

i

DDMCMC using generic
region models only is
most effective way to

segment images (Tu/Zhu) —
Evaluated on the %
Berkeley dataset.
Ground truth from

Berkeley students.

o i - e o :

Errors often due to lack of knowledge of objects.



i Inference: Image Parsing

= Use DDMCMC algorithm (feedforward
and feedback).

= Generative models of generic regions
and objects (faces, text).

= Proposals for faces and text from
AdaBoost learning algorithm.

= Proposals for generic regions as for
segmentation (edges, clustering, etc.)



Inference: Moves in Solution Space.




‘L Feedforward/Feedback in Brain.

"High-level tells Low-Level to shut up”?

Or "High-level tells Low-Level to stop gossiping’.
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*Results: AdaBoost.

Boxes show faces & text
detected by AdaBoost at
fixed threshold.

Impossible to pick a

threshold that gives no F_\-‘ e

false positives/negatives WESTW“GD &

on these two images. 1k
] . PARKING "ﬂ’ ¥

Boxes show high probability , g i

proposals for faces & text.




‘-LReSUItS: cooperation/explain away

The different region models

can cooperate to explain the ®
Image.

Generic “shaded region”
processes detect the dark

doesn't need to "explain” | Al L1/ AL
that part of the data. c. Synthesis 1 d. Synthesis 2

Advanced object models
could allow for glasses.



‘L Results: Scales, Cooperation.

Stop Sign.
Multiple scales.

Soccer Image. Ii I i

Parking Image.

WOR LD PLAYER 200:

Glasses/Shaded. =S4
9 detected as a &

generic region.
(cooperative).

b. Region

layer

¢. Dbject layer

d. Synthesis image

Efile
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‘L Results. Reject and Explain away.

Street: Face mode/ ancigl §
is used to reject fake g %% '

Cooperativity — shadows_f - s
on text explained as =g

shaded regions.

Westwood: shaded o P

region models needed
to explain away glasses.



i Summary: (I)

s Image Parsing.: combines segmentation,
detection, and recognition in a Bayesian
framework.

= Feedforward proposals and feedback
acceptance/rejection.

s Non-traditional — no intermediate-leve/
representation (no data thrown away).

s Does this relate to the feedforward and
feedback loops in the brain?



i Summary II: Technical.

= 1. Generative Models P(I|W) (generic
regions, faces, text...) and priors.

Modeling the visual environment.

n 2. Probabilistic Context Free
Grammars.

= 3. DDMCMC.

s 4. Proposals — AdaBoost — smart
heuristics.



i Summary III

= Are there limits to this approach?

= Can we add more objec
etc, and build a general

machine?

'S, proposals,
purpose vision

» Need to study the visual environment
and model it mathematically.

» Need to determine rapid search
proposals (also environment driven).
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