Stat 161/261

Introduction to Machine Learning:
 
Tues/Thurs: 11:00-12:15 am Spring 2013, Dodd 146.
 
www.stat.ucla.edu/~yuille/Courses/
 

Course Description

This course gives an accessible introduction to pattern analysis and machine intelligence aimed at advanced undergraduates and graduate students.

Reading Material

Grading Plan: 4 homework assignments (60% ), 1 final exam (40%).
Homework 1: homework1 Due 30/April
Homework 2: homework 2 Due 14/May
Homework 3: homework 3 Due 30/May
Homework 4: homework 4 Due 6/June

Tentative Schedule.

Lecture

Date

Topics

Reading Materials

Handouts

1

April-2

Introduction to the Machine Learning:
 

Alpaydin: Chp 1.

    2013lecture1.pdf

2

April-4

Bayes Decision Theory
Generalization and VC dimension
 

Alpaydin: Chp 2.

2.1, 2.2,2.3, Chp 3.

   2013lecture2.pdf   LatexNotes2

3

April-9

ROC and Precision/Recall Curves
Curse of Dimensionality
Bias and Variance
 
             Same Chps.
          Also Chp 4.3,4.4, 4.7,4.8
   2013lecture3.pdf  LatexNotes3

4

April-11

            
  Learning Parametric Distributions
Exponential Models
Sufficeint Statistics
  

Chp 4.1,4.2

  2013lecture4.pdf LatexNotes4

5

April-16

Continuation of Previous Lecture

Previous lecture

  
       6
            April-18
   
Non-Parametric Methods

               Chp 8
2013lecture5.pdf  LatexNotes5

     7

April-23

                   
Regression
 

Chp 4.6, 5.8

  2013lecture6.pdf LatexNotes6

8

April-25

                    
                   AdaBoost
 

                Chp 6.4,6.5

 2013lecture7.pdf LatexNotes7
       9
            April-30
Perceptron and Support Vector Machines 
         PrimalDual    Chp 10.9 
   2013lecture8.pdf LatexNotes8

    10

May-2

           No Lecture
             
 

11

           May-7

The Kernel Trick

           

 2013lecture9.pdf LatexNotes9
      12
              May-9
          PCA and Fisher's LDA
                  Chp 6
  2013lecture10.pdf LatexNotes10

13

May-14

                
Nonlinear Dimension Reduction
           
2013lecture11.pdf LatexNotes11
    14

May-16

 
             K-means and EM Algorithm    
 

Chp 7

2013lecture12.pdf LatexNotes12
      15
              May-21

Decision Trees and Spectral Clustering
               Chp 9
 2013lecture13.pdf LatexNotes13

16

May-23

 
 Probability on Graphs

Chp 3.7,3.

 2013Lecture14.pdf LatexNotes14

17

May-28

         
Hidden markov Models
  Chp 15
2013Lecture15.pdf LatexNotes15
      18
                 May-30
SVMs with nmulitle classes and latent
              
2013Lecture16.pdf

19

June-4




    20

             June-6