
Spectral Methods for
Dimensionality Reduction

Prof. Lawrence Saul
Dept of Computer & Information Science

University of Pennsylvania

UCLA IPAM Tutorial, July 11-14, 2005

Given high dimensional data sampled
from a low dimensional submanifold,

how to compute a faithful embedding?

Manifold learning

Linear vs nonlinear

What computational price
must we pay for nonlinear
dimensionality reduction?

Quick review
• Linear methods

– Principal components analysis (PCA)
finds maximum variance subspace.

– Metric multidimensional scaling (MDS)
finds distance-preserving subspace.

• Nonlinear methods

2000
Isomap,

LLE

2002
Laplacian

eigenmaps

2003
Hessian

LLE ?

Nonlinear methods
1. Find k-nearest neighbors.
2. Estimate:

(a) geodesic distances (Isomap)
(b) local linear reconstructions (LLE)
(c) discrete Laplacian
(d) discrete Hessian (hLLE)

3. Compute:
 (a) top eigenvectors of Gram matrix

(b-d) bottom eigenvectors of sparse matrix

Problem solved?
• For manifolds without “holes”:

– Isomap with asymptotic guarantees
– landmark Isomap for large data sets

• More generally:
– hLLE with asymptotic guarantees?
– sparse matrix method should scale

well to large data sets?

Unresolved issues
• How to estimate dimensionality?

Revealed by eigenvalues of Isomap,
but specified in advance for (h)LLE.

• How to compute eigenvectors?
Bottom eigenvalues of local methods
are tightly spaced for large data sets.

• Must we preserve distances?
Preserving distances may hamper
dimensionality reduction.

Can we combine strengths of:
• Isomap

– Eigenvalues reveal dimensionality.
– Landmark version scales well.
– Numerically stable.

• hLLE
– Solves sparse eigenvalue problem.
– Handles manifolds with “holes”.

• LLE and Laplacian eigenmaps
– Aggressive dimensionality reduction
– Non-distance-preserving maps?

Today

2000
Isomap,

LLE

2002
Laplacian

eigenmaps

2004
Maximum
variance
unfolding

(Weinberger &
Saul)

(Sun, Boyd,
Xiao, &

Diaconis)

2003
Hessian

LLE

2005
Conformal
eigenmaps

(Sha & Saul)

Nonlinear
dimensionality
reduction by
semidefinite

programming

• Definition
An SDP is a linear program with an
extra constraint that a matrix whose
elements are linear in the unknowns
must be positive semidefinite (PSD).

• Example
 Minimize a • u subject to:

(i) bi • u > 0 for i = 1, 2,…, c
(ii) u1 M1 + u2 M2 + … ud Md is PSD.

Semidefinite program (SDP)

Convex optimization
• Constraints

• Cost function
Linear and bounded.

Linear and PSD
constraints are
convex.

Efficient (poly-time) algorithms exist
to compute global minimum.

dimensionality
reduction

n n aine rlo
What does

have to do with
semidefinite
programming?

X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44



















• Algorithm #1
Unfold data but preserve local distances.
SDP enforces isometric constraints.

• Algorithm #2
Unfold data but preserve local angles.
SDP learns conformal mapping.

Outline

Isometry
• Intuitively

Whatever you can do to a sheet of
paper without holes, tears, or self-
intersections.

• More formally
A smooth, invertible mapping that
preserves distances and looks locally
like a rotation plus translation.

Algorithm #1
What is being optimized by this

sequence of isometries?

inputs
{xi}

outputs
{yi}

Naïve idea
Minimize dimensionality (rank)

subject to distance constraints?
NP-hard!

inputs
{xi}

outputs
{yi}

“Maximum Variance Unfolding”

Generalizes PCA computation of
“maximum variance subspace”.

Notation
• Inputs (high dimensional)

• Outputs (low dimensional)

• Goals
Nearby points remain nearby.
Distant points remain distant.
(Estimate d.)

rxi ∈ ℜ D with i = 1,2,...,n

ryi ∈ ℜd where d = D

Optimization
• Quadratic programming

• Intuition:
Nearby inputs are connected by rigid rods.
Pull inputs apart without breaking rods.

 Maximize ryii∑ 2 subject to :
 (i) ryi - ryj

2 = rxi - rx j
2 if (rxi ,

rx j) are k-nn

 (ii) ryi
i

∑ =
r
0 Allowing slack in this

constraint turns rods
into strings.

• Change of variables
Gram matrix Kij = yi • yj determines
outputs up to rotation.

• Semidefinite program

Convex optimization

 Maximize Kiii∑ subject to :
 (i) Kii + K jj - 2Kij = rxi - rx j

2 if (rxi ,
rx j) are k-nn

 (ii) Kij
i

∑ = 0

(iii) K f 0 is PSD

Summary of algorithm
1) Nearest neighbors

Compute k-nearest neighbors and
local distances.

2) Semidefinite programming
Compute maximum variance unfolding
that preserves local distances.

3) Diagonalize Gram matrix
Matrix square root yields outputs.
Estimate dimensionality from rank.

Surrogate optimization
• Heuristic

We have substituted an “easy”
problem (maximizing variance) for a
“hard” problem (minimizing rank).

• Easy vs hard
The former is a convex optimization.
The latter is an NP-hard optimization.

Does it work?

Surfaces
• Swiss roll

• Trefoil knot

�

N = 800
k = 6

�

N =1617
k = 5

Images of teapots
• full rotation (360o)

• half rotation (180o)
�

N = 400
k = 4
D = 23028

Images are ordered by d=1 embedding.
N = 200

Handwritten digits

�

N = 638
k = 4
D = 256

Images of faces

�

N =1000
k = 4
D = 560

Eigenvalues from SDP

(normalized by trace)

eigenvalues reveals dimensionality

Word Co-occurrences

�

N = 2000
k = 4
D = 60000

PCA
MVU

Maximum variance unfolding
• Pros

– Eigenvalues reveal dimensionality.
– Constraints ensure local isometry.

• Cons
– Computation intensive
– Limited to n ≤ 2000, k ≤ 6.
– Limited to isometric embeddings.

Landmark version
• Gram matrix factorization

Factor K = QTLQ, where L is smaller
Gram matrix between landmarks.

• Constraint subsampling
Only necessary to enforce (otherwise
violated) constraints in SDP solver.

• Computational speedup
Can solve up to n=20000, but still not
as fast as landmark Isomap. Weinberger

& Saul, 2005

MVU versus Isomap
• Similarities

– Motivated by isometry
– Based on constructing Gram matrix
– Eigenvalues reveal dimensionality

• Differences
– Semidefinite vs dynamic programming
– Finite vs asymptotic guarantees
– Handling of manifolds with “holes”

MVU versus Isomap

Maximum
variance
unfolding

Isomap
(foiled by
“holes”)

Eigenvalues of Gram matrices

Open questions
• Variance vs rank?

Why and when does maximizing
variance lead to low dimensional
solutions?

• Asymptotic convergence?
Under what conditions does maximum
variance unfolding converge to the
“right answer”?

• Algorithm #1
Unfold data but preserve local distances.
SDP enforces isometric constraints.

• Algorithm #2
Unfold data but preserve local angles.
SDP learns conformal mapping.

Outline

Motivation
• A conformal map between manifolds is

continuous & locally angle-preserving.

• Locally: rotation, translation, & scaling.
Preserves shapes, not distances.

From manifolds to data sets
Given two data sets and ,

do they appear to be related by a
conformal mapping ?

 {
r
xi}i=1

n
 {
r
zi}i=1

n

r
zi = f (

r
xi)

r
xi f

r
zi

D = ηij ηik

r
zj −

r
zk

2
− si

vx j − vxk
2








2

i jk
∑

Measure local (dis)similarity.
• Build k-nearest neighbor graph.
• Compare edges in triangulated graph.
• Are lengths equal (up to local scaling)?

vertices of
triangles

scaling
factor
at

r
xi

Optimal scaling factors

• Least squares fits
Solving for the scaling factors is easy if
the inputs and outputs are fixed.

• Analytically solvable
Solution can be written in closed form.
Scaling factors are always nonnegative.

D(s) = ηij ηik

r
zj −

r
zk

2
− si

vx j − vxk
2








2

i jk
∑

min{z,s} D(z,s)

Unsupervised learning
Given inputs , how can we compute

nontrivial outputs and scaling
parameters such that angles are

maximally preserved?

 {
r
xi}

 {
r
zi}

 {si}

Problem is ill-posed:

D(z,s) = ηij ηik

r
zj −

r
zk

2
− si

vxj − vxk
2








2

ijk
∑

• Spectral graph theory
Eigenvectors of graph Laplacian yield
ordered basis for functions over graph.

• Ex: from kNN graph on Swiss roll

Smooth functions on graphs

Linear parameterization
• Partial basis expansion

Express outputs as linear combination
of , the m smoothest eigenvectors of
graph Laplacian.

• Dimensionality reduction
To reduce dimensionality, map inputs

 to with .

 {
r
yi}

 {
r
zi}

r
zi = L

r
yi with L ∈ Rm×m

r
xi ∈ RD

r
zi ∈ Rm m = D

Basis expansion
• Regularizes solution

Conformal map should be smooth,
with small contributions from higher
eigenvectors of graph Laplacian.

• Handles imprecision
Linear transformation can unmix
eigenvectors that were not resolved
by eigensolver.

r
zi = L

r
yi with L ∈ Rm×m

Maximally angle-preserving map
• Optimization

Minimize dissimilarity of triangles in
kNN-graphs of inputs and outputs.

• Parameterization
Expand (non-zero) solution in terms
of partial basis from graph Laplacian.

r
zi = L

r
yi with L ∈ Rm×m

D(z,s) = ηij ηik

r
zj −

r
zk

2
− si

vxj − vxk
2








2

ijk
∑

Is this optimization tractable?
• Cost function

Dissimilarity cost is quartic in linear
transformation and scaling factors.

• Constraint
Degenerate (zero) solution is
prevented by quadratic constraint.

 Tr(LTL) = 1

D(L,s) = ηij ηik L(

r
yj −

r
yk)

2
− si

vxj − vxk
2








2

i jk
∑

Eliminating scaling factors

• Least squares fits
Scaling factors can be eliminated in
terms of xi, yi, and L.

• Linearity
 Optimal scaling factors are linear in the

positive semidefinite (psd) matrix LTL.

D(L,s) = ηij ηik L(

r
yj −

r
yk)

2
− si

vxj − vxk
2








2

i jk
∑

Cast optimization as SDP
• Eliminate scaling factors

Cost function can be expressed solely
in terms of psd matrix LTL.

• Recognize quadratic form
Cost function is quadratic form in
vector v = vec(LTL).

• Schur complement “trick”

If M =

A B
C D







f 0, then A - BD-1C f 0.

Semidefinite programming
• Optimization is SDP in

• Size of SDP:
– independent of # inputs (n)
– independent of dimensionality (D)
–m2 unknowns, where m«n and m«D

 P = LT L

Minimize t such that:
(i) P f 0,
(ii) trace(P) = 1,

(iii)
I Sv

Sv()T t








 f 0.

From solution of SDP in P=LTL
• To recover angle-preserving map:

• To estimate dimension of manifold:
– examine singular values of L.
– gap suggests dimensionality d < m.
– intuitively, dimensionality ≈ rank(L).

L = P1/2
rzi = Lryi

Summary of algorithm

1) Run LLE or Laplacian eigenmaps
2) Solve small SDP for maximally

angle-preserving embedding

LLE & graph Laplacian
Pros and cons
+ Sparse matrices scale well
+ Embeddings preserve proximity
– Topologically not geometrically faithful
– How to estimate dimensionality?
– Hard to resolve eigenvectors
Example: Swiss roll

Comparison
• LLE and graph Laplacian

Solve sparse eigenvalue problem.
Output bottom d«n eigenvectors.

• Conformal eigenmaps (CE)
Use m«n eigenvectors as partial basis.
Expand solution in partial basis.
Solve SDP for angle-preserving map.
Eigenvalues yield dimensionality d<m.
Extra computation is modest (~3 min).

Swiss roll
n = 1000 inputs
k = 6 nearest neighbors
m = 10 basis vectors (LLE)

LLE

conformal

MVU

Images of Faces

MVU

n = 983 inputs
k = 8 nearest neighbors
m = 10 basis vectors (LLE)

Images of Oriented Edges

PCA
Isomap

MVU
conformal

n = 2016 images
D = 24 × 24 resolution
m = 10 (graph Laplacian)
k = 10 nearest neighbors

Open questions
• Which basis functions?

LLE is based on symmetries; graph
Laplacian on smoothness. Others?

• Angle-vs-distance preserving?
More aggressive dimensionality
reduction, but at what price?

• Other types of learning?
Graph Laplacians have many uses.
Where else can SDPs help?

dimensionality
reduction

n n aine rlo
What does

have to do with
semidefinite
programming?

X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44



















Manifold learning

2000
Isomap,

LLE

2002
Laplacian

eigenmaps

2004
Maximum
variance
unfolding

2003
Hessian

LLE

2005
Conformal
eigenmaps

SDPs have greatly expanded the types
of optimizations we can perform.

SDPs and manifold learning
• Constrained optimizations

SDPs give finite-sample (vs asymptotic)
guarantees for preserving distances.

• Dimensionality estimation
SDP eigenvalues reveal dimensionality
more robustly than Isomap.

• Conformal transformations
LLE was inspired by properties of con-
formal maps. SDPs can enforce them.

Tomorrow…
• Kernel methods in machine learning

– Nonlinear versions of linear models
– Ex: kernel classifiers, kernel PCA
– Relation to manifold learning?

• More open problems
– Correspondences between manifolds
– Spherical & toroidal geometries
– Applications (vision, graphics, speech)

See you tomorrow…

