Stat 202 C

Markov Chain Monte Carlo and Optimization

MWF 11:00-11:50 am, Spring 2010,     Maths/Sciences 5128.
 
www.stat.ucla.edu/~yuille/Courses/UCLA/Stat_231/Stat_231.html.
 

Course Description

This course describes MCMC sampling techniques with emphasis on optimization and statistical estimation. Topics covered include Gibbs samplers, Metropolis-Hastings, importance sampling, and simulated annealing. In addition, the course covers alternative optimization techniques including Newton-Raphson, dynamic programming, belief propagation, and variational methods.

Textbook

Instructors

Grading Plan: 4 units, letter grades. 4 homework assignments. 1 final exam.
Homework 1:
Homework 2:
Homework 3:
Homework 4:

Tentative Schedule.

Lecture

Date

Topics

Reading Materials

Handouts

Roberts & Casella

1

3-29

Introduction to Sampling and Monte Carlo:
 Issues, Applications, and Examples.

Ch 1

2010lecture1.pdf
  Ch 2

2

3-31

Basic Monte Carlo:
Inversion Method, Gaussians, Mixtures

Ch 2.1

2010lecture2.pdf
  Ch 2.2
     3
   4-2
Basic Monte Carlo:
Rejection Methods.
            Ch 2.2
2010lecture3.pdf
  Ch 2.3, 2.4

4

4-5

Basic Monte Carlo:
Rao-Blackwellization and Exact Methods.

Ch 2

2010lecture4.pdf 

 Ch  4.2

5

4-7

Basic Monte Carlo:
Importance Sampling

Ch 2.5

2010lecture5.pdf
  Ch 3.1-3.3
     6
   4-9
Basic Monte Carlo:
Importance Sampling, 
           Ch 2.5 2010lecture6.pdf
  Ch 3.1-3.3

7

4-12

Basic Monte Carlo
Weighted Sampling.

Ch 2.6

2010lecture7.pdf
 Ch 3.1-3.3

8

4-14

Exact Monte Carlo
Dynamic Programming
            Ch 2.4

2010lecture8.pdf 



     9
  4-16
Exact Monte Carlo (cont)
Dynamic Programming
            Ch 2.4
Same as previous lecture

10

4-19

Structured Probability Distributions
Examples.    
  GYtics.pdf
2010lecture9.pdf

11

4-21

Kalman Filters: 
Filtering and Tracking Examples.
            Ch 3.2   2010lecture10.pdf

    12
   4-23
Particle (Boostrap) Filters: (Cont)
Filtering and Tracking Examples.
    Ch 3.2-3.3, 4.5
 2010lecture11.pdf

13

4-26

 
Particle (Boostrap) Filters: (Cont)
Filtering and Tracking Examples
    Ch 3.2-3.3, 4.5   2010lecture12.pdf

14

4-28

Particle (Boostrap) Filters: (Cont)
Filtering and Tracking Examples
  Ch 3.2-3.3, 4.5

 

  2010lecture13.pdf

    15
   4-30
Sequential Importance Sampling
Saw Examples
Ch 3.2-3.3, 4.5  2010lecture14.pdf

16

   5-3
Markov Chain Monte Carlo: 
Introduction

Ch 5.0, 5.1

  2010lecture15.pdf

17

5-5

Markov Chain Monte Carlo:

 Example: Ising Model

 

Ch 5.2, 5.3

Same as previous 
lecture

    18
   5-7
Markov Chain Monte Carlo: 
Metropolis-Hastings and Gibbs Sampler.
          Ch 5.3  2010lecture16.pdf

19

5-10

Metropolis-Hastings Examples

Guest Lecture: Prof. Q. Zhou



20

5-12

Physical Methods:
 Hybrid Monte Carlo

Ch 9.1-9.4

  2010lecture17.pdf

    21
  5-14
Data Augmentation
               Ch 6.4
 Same as lecture 16.pdf

22

  5-17
Data Augmentation and EM

   Appendix A4.
  2010lecture18.pdf

    23

5-19

Reversible Jumps and Multiple Try MH:
             

Ch 5.5, 5.6

  2010lecture19.pdf

    24
  5-21
Swendsen-Wang
              Ch 7.1,7.2,7.4
  See lecture 18.

    25

5-24

Genetic Algorithms: 

GA Handout 

  2010lecture20.pdf

26

5-26

 
Genetic Algorithms (Cont)::  

Previous lecture

 Previous Lecture

    27
  5-28
Convergence and Review

 

   
  5-31
Memorial Day Holiday  

2010lecture21.pdf

28

  6-2
Deterministic Methods  
 

Reading List



29

6-4

Assorted Topics: