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Abstract This paper describes and reviews a class of hi-
erarchical probabilistic models of images and objects. Vi-
sual structures are represented in a hierarchical form where
complex structures are composed of more elementary struc-
tures following a design principle of recursive composition.
Probabilities are defined over these structures which exploit
properties of the hierarchy—e.g. long range spatial rela-
tionships can be represented by local potentials at the up-
per levels of the hierarchy. The compositional nature of this
representation enables efficient learning and inference algo-
rithms. In particular, parts can be shared between different
object models. Overall the architecture of Recursive Com-
positional Models (RCMs) provides a balance between sta-
tistical and computational complexity.

The goal of this paper is to describe the basic ideas and
common themes of RCMs, to illustrate their success on a
range of vision tasks, and to gives pointers to the literature.
In particular, we show that RCMs generally give state of the
art results when applied to a range of different vision tasks
and evaluated on the leading benchmarked datasets.
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1 Introduction

There has recently been considerable progress in design
probability models specified over structured representations
such as graphs and grammars [1–5]. Such models have con-
siderable representational power, but there is a tradeoff be-
tween representation and computational efficiency. For ex-
ample, natural language researchers have defined stochastic
context free grammars (SCFGs) [2] by putting probability
distributions over context free grammars which are able to
capture important properties of language—such as the hi-
erarchy of nouns, noun phrases, and so on—and which en-
able efficient inference and learning algorithms by exploit-
ing the statistical independence between different parts of
the SCFG. More sophisticated models [2] are better at rep-
resenting language but require more advanced inference and
learning algorithms.

It is attractive to formulate vision as probabilistic infer-
ence on structured probability representations. This seems
both a natural way in which to deal with the complexities
and ambiguities of image patterns [6, 7] and also fits into a
more unified framework for cognition and artificial intelli-
gence [8]. But vision is a particularly challenging problem
to formulate in this manner due to the complexity and am-
biguity of the visual patterns which occur in natural images.
This has motivated recent work which uses principles such
as compositionality [9] to build stochastic grammar models
of images and objects [5].

This paper describes a class of probabilistic models of
objects and images which are motivated both by the com-
plexity of images and by the need to have efficient infer-
ence and learning algorithms. The key design principle is
recursive compositionality and so we refer to our models
as Recursive Compositional Models (RCMs). Visual pat-
terns are represented by RCMs in a hierarchical form where
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complex structures are composed of more elementary struc-
tures. Probabilities are defined over these structures exploit-
ing properties of the hierarchy (e.g. long range spatial rela-
tionships can be represented by local potentials). This com-
positional structure enables efficient learning and inference
algorithms. In particular, when modeling multiple objects
we can share parts between different objects models and ob-
tain enormous gains in computational efficiency. Overall ar-
chitecture of RCMs provides a balance between representa-
tional and computational complexity.

We note that in this paper all the probability models,
with the exception of the unsupervised learning, can be re-
formulated within an alternative non-probabilistic frame-
work since inference is performed by MAP and the learn-
ing involves approximating, or bounding, the partition
functions—see Sect. 4.3. We prefer, however, to formulate
the models in probabilistic terms for the following reasons.
Firstly, the probabilistic framework offers a rich conceptual
framework to model all vision problems (i.e. not only those
we address in this paper). Secondly, Sect. 4.3 describes how
the learning can be obtained from the probabilistic formu-
lation by taking bounds. Thirdly, the unsupervised learning
briefly sketched in Sect. 6 can only be justified within the
probabilistic framework.

The goal of this paper is to describe the basic ideas and
themes of RCMs and, in particular, to bring out the com-
monalities between our previous work using these models
[10–17]. We will show that the same types of models are
very effective at a range of different visual tasks—including
object detection, object parsing, boundary detection, ob-
ject matching, and image labeling—when tested on bench-
marked datasets including the Weizmann horse dataset [18],
PASCAL [19], LabelMe [20], Berkeley Baseball Players
[21], a cow dataset [22], a face dataset [23], and the MSRC
image label dataset [24].

Section 2 describes the main research themes which have
influenced our work. Section 3 is intended to give contact
by describing standard ‘flat’ Markov Random Field (MRF)
models and how they differ from hierarchical models. Sec-
tion 4 describes the basic framework of RCMs which are
common to all applications. In Sect. 5 we give five examples
which show how this framework can be applied to different
problems. For completeness, Sect. 6 sketches our work on
unsupervised learning of object models.

2 Background and Themes

This section mentions four major research themes which re-
late to our work on recursive compositional models. The
themes are: (i) pattern theory and generative models, (ii) ar-
tificial neural networks, (iii) biologically motivated models,
and (iv) probabilistic models of artificial intelligence and

cognition. There is a large literature on these topics which
we refer to in more detail in our papers.

Pattern Theory and generative models. One main theme
starts with the work of Grenander on pattern theory
[6, 7] and its recent developments which include image pars-
ing [25, 26], compositional models and stochastic grammars
[5, 9, 27]. Zhu and Mumford’s review paper [5] gives a dis-
cussion of this literature with many illustrations of gener-
ative grammars including AND/OR graphs. Successful re-
sults have been obtained by using active basis functions [28]
to implement the generative models. Other work within this
broad theme includes [29]. There is also related literature on
multiscale Markov models for signal and image processing
reviewed by Willsky [30]. Although our work closely re-
lates to this literature our emphasis is more on discriminative
techniques and efficient inference and learning algorithms.

Artificial neural networks. Another important theme is
the development of artificial neural networks and, in particu-
lar, recent work on deep belief networks. This includes work
by Hinton and his collaborators who construct hierarchi-
cal networks by combining restricted Boltzmann Machines
[31]. There is closely related work by LeCun, Bengio, Ng
and their groups [32–34]. This work can also be described
in the framework of probabilistic models on structured rep-
resentations but differs by being restricted to a specific class
of probabilistic models.

Biologically motivated models. Another research theme
is motivated by known properties of the mammalian visual
cortex. Ullman and Poggio’s research groups have published
extensively on these topics and the following references pro-
vide an entry into the literature [18, 35, 36]. There is also
closely related work by Thorpe [37]. Note that much of this
work, as well as our own, is influenced by the classic work of
Fukushima [38]. Our work differs by being based on prob-
abilities and without any original biological motivation, yet
there remains some intriguing similarities.

Probabilistic models of artificial intelligence and cogni-
tion. Our work also fits into the bigger picture of trying to
model artificial intelligence and all aspects of cognition in
terms of probabilistic models defined over structured repre-
sentations. Early examples of this approach are Pearl’s prob-
abilistic models [1] and related work [39] probabilistic ex-
pert systems. Good reviews of this material are provided in
[3] and their relation to artificial intelligence in [4]. Natu-
ral language is an area where these techniques have been
very successful [2]. There have also been interesting appli-
cations of these ideas to modeling human cognition—e.g.,
see Tenenbaum, Griffiths and Kemp [40]. This is also re-
lated to advances in machine learning which involve struc-
tured representation—which include structured perceptron
[41], structure max-margin [42–45].
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3 Technical Background

We now give a brief technical review of “flat” (i.e. non-
hierarchical) probability models and discuss how they can
be applied to the visual tasks addressed in this paper. We
will consider two types of model: (i) those that describe the
entire image and are applied to tasks such as image label-
ing or segmentation, and (ii) those which model objects and
are applied to object detection, localization and description.
Then we will describe the limitation of these models which
motivate us to develop alternative models based on recursive
composition.

The critical aspects of these models are: (i) the represen-
tation which consists of the graph structure of the model and
the state variables, (ii) the inference algorithm used to esti-
mate properties of the model such as the most probable state,
and (iii) the learning algorithm used to learn the parameters
of the model. In earlier models learning was often not used
and instead models were hand designed.

We first discuss image models which are capable of de-
scribing the entire image and can be used for tasks such as
image labeling and segmentation. We will concentrate on
the image labeling task where the goal is to assign a label to
every image pixel μ ∈ D, where D is the image lattice. The
input is an image I, where I = {Iμ : μ ∈ D} specifies the in-
tensity values Iμ ∈ {0,255} on the lattice, and the output W
is W = {wμ : μ ∈ D} is a set of image labels wμ ∈ L, see
Fig. 1. The nature of the labels will depend on the problem.
For edge detection, |L| = 2 and the labels l1, l2 will cor-
respond to ‘edge’ and ‘non-edge’. For labeling the MSRC
dataset [24] |L| = 23 and the labels l1, . . . , l23 include ‘sky’,
‘grass’, and so on. Similar models can be applied to other
vision problems such as image segmentation [46, 47] and
binocular stereo [48] (by setting the input to be the images
to the left and right eyes (IL, IR) and setting W to be the
disparity labels).

We can represent the image labeling problem in terms
of a probability distribution defined on a graph G = (V , E )

where the set of nodes V is the set of image pixels D and the
edges E are between neighboring pixels—see Fig. 1. The
W = {wμ : μ ∈ V } are random variables specified at each
node of the graph. P(W|I) is a Gibbs distribution speci-
fied by an energy function E(W, I) which contains unary
potentials

∑
μ∈V λD

μ · φμ(wμ, I) and pairwise potentials∑
μ,ν∈E λP

μ,ν · ψμ,ν(wμ,wν). The unary feature functions
φμ(wμ, I) depend only on the label at node/pixel μ and the

input image I. The pairwise feature functions ψμ,ν(wμ,wν)

impose prior assumptions about the local ‘context’ of the la-
bels, for example that neighboring pixels will tend to have
similar labels. In many applications, the unary and binary
feature functions take the same form for all nodes μ ∈ V
and edges μ,ν ∈ E and so these subscripts can be dropped
from the feature functions. The λD

μ and λP
μ,ν are parameters

which are either hand-specified, or learnt from training data.
The full distribution P(W|I) is defined over the ran-

dom variables W = {wμ : μ ∈ V } specified on a graph
G = (V , E ):

P(W|I) = 1

Z(I)
exp

{
−

∑
μ∈V

λD
μ · φμ(wμ, I)

−
∑

μ,ν∈E
λP

μ,ν · ψμ,ν(wμ,wν)

}
. (1)

The inference task is to assign labels to the image
pixels—e.g., to label a pixel as being an “edge” or “non-
edge”. This is performed by specifying an inference algo-
rithm to compute the MAP estimator:

Ŵ = arg max
W

P(W|I). (2)

In general, performing inference on these graphs is dif-
ficult. Inference is straightforward if there are only unary
potentials, because then it reduces to estimating ŵμ =
arg minwμ λD

μ ·φμ(wμ, I), which can be done independently
for each μ ∈ V . But difficulties arise due to the binary poten-
tials which model the dependencies between the states at dif-
ferent pixels. A range of algorithms have been proposed but
convergence guarantees are rare. Max-flow/min-cut [49] al-
gorithms are guaranteed to converge to the optimal solution
for certain classes of models if the state variables are binary-
valued. If we allow the state variables w to take continuous
values then steepest descent, and related methods, will also
converge to the optimal estimate provided the energy func-
tion

∑
μ∈V λD

μ ·φμ(wμ, I)+∑
μ,ν∈E λP

μ,ν ·ψμ,ν(wμ,wν) is
convex in the state variables W. Markov chain Monte Carlo
(MCMC) methods are guaranteed to converge to good esti-
mate of Ŵ, but convergence rates tend to be slow [46]. Other
algorithms that empirically give good results for these types
of models include variational methods [50] and belief prop-
agation [51].

But the effectiveness of these algorithms is often re-
stricted to models where the interactions are nearest neigh-
bor only. This restriction reduces the representational power

Fig. 1 GRAPHS for different
MRF’s. Conventions (far left),
basic MRF graph (middle left),
MRF graph with inputs zμ

(middle right), and graph with
dense connections (far right)
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of the models since it only captures the local context. It is
poor, for example, at capturing the regularity that image con-
tain large regions of sky or vegetation. In general, these al-
gorithms often become difficult, or even impractical, to im-
plement if the edge structure E is complicated, see Fig. 1
(far right) or contains non-local interactions. There are very
few convergence guarantees for these cases.

The learning task is to learn the model parameters λ

from a set of supervised training examples {(Ii ,Wi ) : i =
1, . . . ,N}. The learning is straightforward if we only con-
sider only the unary potentials, because we can learn the data
parameters λD by methods such as AdaBoost [52] or simply
by learning conditional probability distributions [53]. Simi-
larly, there are techniques for learning the binary potentials
separately although these are more computationally inten-
sive [54]. Discriminative methods [55] have been used to
learn the full distribution, which requires an efficient infer-
ence algorithm, so that we can compare the performance
of the algorithm with its current set of parameters to the
groundtruth, and then modify the parameters if necessary.
This can be formulated in terms of maximum likelihood
learning or conditional random fields.

We now describe object models using a similar formu-
lation. Deformable template models have an extensive his-
tory in computer vision [56–58]. They can be represented in
terms of flat probabilistic models [59–63] as we now de-
scribe, see Fig. 2. The formulation is again described on
a graph G = (V , E ) with state variables W defined on the
nodes V , where the state wμ of node μ represents the po-
sition (and possibly orientation) of a point, or part, of the
object. The unary potentials λD

μ · φμ(wμ, I) specify how
points/parts of the object relate to the image—e.g., some
points on the boundary of objects may correspond to edges
in the image intensity, while others may be modeled by in-
terest points such as corners [59]. The edges E specify which
points/parts of the object are directly related and the binary
potentials λP

μ,ν ·ψμ,ν(wμ,wν) model the spatial relations—
e.g., capturing the overall shape of the object.

This can be expressed by a similar distribution:

P(w|I) = 1

Z(I)
exp

{
−

∑
μ∈V

λD
μ · φμ(wμ, I)

−
∑

μ,ν∈E
λP

μ,ν · ψμ,ν(wμ,wν)

}
, (3)

where the main differences are what the state variables wμ

and the graph structure, see Fig. 2.
Inference is different for these type of models. Firstly, the

state variables can typically take a far larger set of values—
i.e. the set of possible positions in an image is very large.
Secondly, the types of graph structure are different. If the ob-
ject has a chain-like structure—i.e., without closed loops—
then dynamic programming can be to perform inference and

Fig. 2 A deformable template model of a hand without closed loops
(left) and with closed loops (right)

detect the object independent [59] but pruning is necessary
to ensure that the algorithm converges quickly. The compu-
tations required by dynamic programming can be sped up
using various techniques [62]. By choosing more complex
image features, such as shape context, [61] it is possible to
perform good local matches by ignoring the binary poten-
tials and then get better matches by use of the Hungarian
algorithm. If there are good estimates of the initial config-
uration, then variational methods can be effective for infer-
ence [60]. In addition, it is also possible to combine shape
context and variational methods effectively [64]. But, once
again, the inference algorithms become less effective if we
start introducing longer range edges to capture the spatial
regularities of objects, see Fig. 2 (right).

Learning is possible for these models provided ground-
truth data has been specified. The unary terms are straight-
forward, since they can be learnt independently, but the bi-
nary terms are more difficult. In practice, many of the origi-
nal models were hand specified. Coughlan et al. [59] learnt
the unary potentials directly and adjusted the binary poten-
tials interactively by stochastic sampling from the model and
adjusting parameters until the samples looked like realistic
hands. More advanced learning methods are practical pro-
vided there is an efficient inference algorithm.

In summary, flat models for image labeling and object de-
tection can be effective if only simple graph models are used
with local neighbor interactions. But it is difficult to extend
these models to include longer-range interactions, to model
the non-local context that often occurs in images, because
of the difficulties of finding effective inference and learning
algorithms. Moreover, it is unclear how these class of mod-
els can efficiently exploit the similarities between different
objects and share parts between them.

Recent work in the computer vision literature has at-
tempted to overcome these limitations by introducing ad-
ditional layers of unobserved latent variables. This gives
a class of hierarchical models [65–68] which are typically
limited to two layers, but with exceptions such as Ahuja and
Todorovic [69]. Segmentation by weighted aggregation [70]
is an alternative approach which allows for an arbitrary num-
ber of layers and which emphasizes algorithmic efficiency,
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but is not formulated probabilistically. Kokkinos [71] devel-
oped a class of hierarchical models which are closely related
to this paper. Also hierarchical models occur naturally in the
literature of pattern theory, artificial neural networks, bio-
logically motivated models, as described in Sect. 2.

4 Recursive Compositional Models (RCMs)

This section introduces recursive compositional models
(RCMs). These are hierarchical probability distributions
which, intuitively, are built as compositions of elementary
components as shown in Fig. 3. We will consider two dif-
ferent types of RCMs in this paper. In both types of RCMs
each child node has only a single parent. The first types of
RCMs only have edges linking the parent and child nodes
and hence their graph structure is a tree (i.e. it contains no
closed loops), see Fig. 3. The second type of RCMs also
have edges between the child nodes of each parent, and

Fig. 3 Basic RCMs. An object A can be represented by an RCM (left)
which is specified in terms of parts a, b which are more elementary
RCMs (middle and right). This is a schematic and RCMs will typically
involve more layers, more children, and sideways edges liking the child
nodes

hence do contain closed loops, see Fig 4. But there are re-
strictions on the number of children of each parent node
(e.g., less than six) and so the number of closed loops is not
large. The restriction that each node has a single parent will
be relaxed when we consider families of RCMs in Sect. 5.5.

RCMs are designed to overcome the limitations of flat
MRF models discussed in the previous section. Their hi-
erarchical nature enables them to model object and image
structures that occur at different scales. Essentially they can
represent long-range dependencies by short-range vertical
connections (i.e., between scales) and avoid the need for
long-range horizontal connections. Moreover, their recur-
sive compositional structure means that they can represent
multiple objects efficiently, or single objects with multiple
poses, by sharing elementary components recursively. This
advantage will be shown for modeling baseball players from
multiple poses and for multiple objects in later Sects. 5.2
and 5.5.

The compositional nature of RCMs enables efficient in-
ference and learning algorithms. Inference is performed in-
tuitively by searching for probable states of the sub-parts
and using them to propose states for the parts. Similarly,
learning also exploit the recursive structure by first learn-
ing sub-parts and then learning ways to combine them to
form larger parts. Figure 4 shows an RCM for a horse, with
closed loops, which illustrates the recursive compositional
structure of RCMs.

4.1 RCM Components

We now define RCMs more formally to illustrate their com-
mon aspects and then we will give five explicit examples in

Fig. 4 The left panel illustrates the graph structure for an RCM repre-
sentation of a horse. The state variables of the leaf nodes of the graph
correspond to the poses (e.g., positions and orientations) of points on
the boundary of the horse. The state variables of higher-level nodes
represent the poses of parts, which are composed of subparts repre-
sented by lower-level nodes. Following the summarization principle,
the state variables only represent coarse information about the part
(e.g., its overall pose) and the lower-level nodes provide more detailed
information about it. Note that this RCM includes horizontal edges

between child nodes and hence the graph structure has closed loops.
These horizontal edges are defined over triplets of child nodes (cen-
ter), and impose constraints (which will be learnt) on the relative poses
of the subparts represented by the child nodes. If a parent node has
four child nodes, then we impose constraints on all four triplets (right).
Triplets are used because we can impose the constraints over proper-
ties of the child nodes which are invariant to rotation and scaling. All
parent nodes are restricted to having a maximum of five child nodes,
so the number of closed loops in the graph is limited
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Sect. 5. The fifth example is a families of RCMs and needs
some additional concepts which will be introduced later.

An RCM is specified by a sextuplet (V , E ,ψ,φ,λP ,λD),
which specifies its graph structure (V , E ), its feature func-
tions ψ,φ, and its parameters λP , λD (the dot products be-
tween the parameters and the feature functions give the po-
tentials). We now describe these in turn.

Graph Structure An RCM with root node R is specified
by a graph (V R, ER) where V R denotes the graph nodes
and E R the graph edges. These edges always include parent-
child relations, see Fig. 3, and we use ch(μ) to denote the set
of child nodes of μ. In this paper each node is restricted to
having a single parent—i.e. ch(ν)∩ ch(μ) = ∅ for all ν,μ ∈
V R—except for the family of RCMs in Sect. 5.5. The leaf
nodes V leaf

R are those nodes which have no children—i.e.

μ ∈ V leaf
R if μ ∈ V R and ch(μ) = ∅. The level l of an RCM

is the number of generations in the graph minus one. Hence
leaf nodes can be assigned to level 0, their parent nodes to
level 1, and so on.

We illustrate RCMs by Figs. 3, 4. Figure 3 shows a two-
level RCM representing object A, which is composed from
two 1-level RCMs represented by the parts a and b which,
in turn, are represented into terms of 0-level (leaf nodes)
RCMs c, d, e, f . In this example there are no edges linking
the child nodes, so the graph contains no closed loops. Fig-
ure 4 shows a three-level RCM representing a horse, com-
posed of three two-level RCMs representing the front, mid-
dle, and back of the horse. These RCMs have edges joining
their child nodes and hence the graph has a limited number
of closed loops.

State Variables We define state variables wμ at each node
μ ∈ VR . We set wch(μ) to be the states of the child nodes
of μ—i.e. wch(μ) = (wμ1 , . . . ,wμm), where (μ1, . . . ,μm) =
ch(μ). We use the terminology Wμ to denote the states of
the tree Vμ with root node μ—e.g. WA = (wA,wa,wb,wc,

wd,we,wf ) and Wa = (wa,wc,wd) for the RCM for Ob-
ject A in Fig. 3.

The state variables are required to be of the same form
for all nodes of the model. For example, the state variables
of an RCM for an object represent the poses of parts of the
object. This means that a parent node represents summary
information about the state of a part while the child nodes
represent information about the state of its subparts. This
implies that upper levels of the hierarchy specify a coarse,
or ‘executive summary’, representation of the object while
the lower level nodes give more fine scale detail. We call this
the summarization principle. It ensures that the complexity
of the representation is the same at all levels of the hierarchy,
which is important for efficient representation and inference.

Potential Functions and Model Parameters The probabil-
ity distribution for an RCM is specified by potentials �(.)

and parameters λ defined over the state variables and their
cliques—recall that a clique is a subset of nodes such that
all nodes are connected by edges (i.e. C = {μ1, . . . ,μm} is
a clique if (μi,μj ) ∈ E , ∀i �= j ∈ {1, . . . ,m}). If the child
nodes are not linked by edges, then the cliques will consist
of pairs of parents and children—i.e. {(μ, ν) : ν ∈ ch(μ)}. If
the child nodes are linked by edges, the cliques will consist
of parents and all their children {μ, ch(μ)}.

There are two types of potential. The first type are data
potentials of form λD

μ · φμ(wμ, I) which relate the state wμ

of a node μ to the image I. These dataterms will depend on
the specific problem, see Sect. 5, and can be defined at all
levels of the hierarchy (for some RCMs the data potentials
are defined only for leaf nodes). The second type are prior
potentials which are of form λP

μ · ψμ,ch(μ)(wμ,wch(μ)) or

λP
μ,ν ·ψμ,ν(wμ,wν), depending on whether the children are

linked by edges or not. These prior potentials impose statisti-
cal constraints on the states of the nodes in the cliques—e.g.,
the probable relative poses of sub-parts of an object.

For example, in Fig. 3, there are prior potentials of form
λP

A,a ·ψ(wA,wa) and λP
a,c ·ψ(wa,wc). We will always have

data potentials at the leaf nodes—e.g., λD
c · φ(wc, I),—and,

depending on the application, we may also have dataterms
at non-leaf nodes—e.g., λD

a · φ(wa, I).
In our applications, there are two types of prior feature

functions ψμ,ch(μ)(., .). The first type are represented by

ψAND
μ,ch(μ)(wμ,wch(μ)) and correspond to AND-potentials.

These are used when the parent node is a composition of the
child nodes—see Fig. 4 where the root node represents the
entire horse and is a composition of the front, middle, and
back of the horse. The second type are OR-potentials, which
use feature functions denotes by ψOR

μ,ch(μ)(wμ,wch(μ)).
These are used if the parent node selects between differ-
ent child nodes, see Fig. 5 (right) where the root node is
either object A or object B . In general, all AND-potentials
and OR-potentials have the same form for all cliques (ex-
cept that the size of the cliques, and the parameters, can
vary). Similarly in our applications the data potentials φμ

are typically the same at all levels of the RCM except at the
leaf nodes.

Probability Distributions The probability distribution over
the state variables WR is a Gibbs distribution whose energy
is the sum of the data and prior potentials. More specifically,
for a graph V R with root node R we define the conditional
distribution P(WR|I):

P(WR|I) = 1

Z
exp{−E(WR, I)},

where E(WR, I) = λ · �(WR, I), (4)
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Fig. 5 Hierarchical Dictionaries of RCMs. We can represent objects
compactly by constructing them hierarchically from elementary com-
ponents, which allows part sharing and is very efficient for inference
and learning. In this example, there are three dictionaries T 2 = {A,B},
T 1 = {a, b,p}, T 0 = {c, d, e, f, q, r} at levels 2,1 and 0 respectively.
The higher level dictionaries are constructed from lower level dictio-
naries, in this example by composition (i.e. AND-ing)—e.g., in the left
panel the level-1 RCM a is a composition of two level-0 RCMs c and

d , and the level-2 RCM A is a composition of two level-one RCMs a

and b. The full RCM (right) is an OR combination of two level-two
RCMs for A and B (left and center). This representation shows the
advantages of part-sharing—we only need to search for part b once,
since it shared between A and B . This makes representation, inference,
and learning much more efficient for multiple objects, viewpoints, and
poses

with

λ · �(WR, I) =
∑

μ∈V R/V leaf
R

λP
μ,ch(μ) · ψμ,ch(μ)(wμ,wch(μ))

+
∑
μ∈Vν

λD
ν · φν(wν, I). (5)

Recursive Formulation of the Energy A fundamental prop-
erty of RCMs (with or without closed loops) is that the en-
ergy can be computed recursively as follows:

Eμ(Wμ, I) = λP
μ,ch(μ) · ψμ,ch(μ)(wμ,wch(μ))

+ λD
μ · φμ(wμ, I) +

∑
ρ∈ch(μ)

Eρ(Wρ, I). (6)

This equation can be derived from (4), (5). It shows that
the energy Eμ(Wμ, I) for a subtree with root node wμ can
be computed recursively in terms of the energies of its de-
scendants {Wρ} for ρ ∈ ch(μ). More precisely, the energy
is computed from the energy of its components at the pre-
vious level {Eρ(Wρ) : ρ ∈ ch(μ)}, together with prior po-
tentials λD

μ · ψμ,ch(μ)(wμ,wch(μ)) which couples the par-
ent node to its children, and an input directly from the im-
age λD

μ · φμ(wμ, I). The formulation is recursive and is ini-

tialized by Eρ(Wρ, I) = λD
ρ · φρ(wρ, I) for the leaf nodes

ρ ∈ V leaf .
Equation (6) is the fundamental equation of RCMs.

It combines the key elements of RCMs—recursion and
composition—in a single equation. There is nothing anal-
ogous for the “flat models” described in Sect. 3. In the
next sections we will show how to exploit the fundamen-
tal equation to obtain efficient inference and learning algo-
rithms.

4.2 RCM Inference Algorithm

The goal of inference is to estimate the most probable state
ŴR = arg maxP(WR|I) and, more generally, states W
which have high probability.

The inference algorithm exploits the recursive energy for-
mulation given by (6). Inference is performed by dynamic
programming in a bottom-up and top-down pass. For object
RCMs, such as the horse in Fig. 4, we called it the composi-
tional inference algorithm [72, 73] because it proceeds intu-
itively by constructing the object by composing it from sub-
parts. Pruning is sometimes required because the state space
of the state variables can be very large for some applications
(thresholds used for pruning are selected by evaluating per-
formance on the datasets). Dynamic programming can deal
with the closed loops introduced by horizontal edges by us-
ing junction trees techniques [39] (there are only a limited
number of closed because parent nodes are restricted to have
a small number of children, e.g., six or less). Dynamic pro-
gramming is quadratic in the state space (with adjustments
for the maximal size of the cliques). Inference times are re-
ported in Sect. 5 and are typically of the order of seconds to
minutes.

The bottom-up pass is defined as follows.

Initialization At each leaf node ν ∈ V leaf we calculate the
set of states {wν,b : b = 1, . . . ,Nν} such that Eν(wν,b) =
λD

ν · φν(wν,b, I) < T (energy pruning with threshold T ).
We refer to the {wν,b} as proposals for the state wν and
store them with their minimum energies, which are defined
to be Emin

ν (wν,b, I) = Eν(wν,b, I). Note that, for the leaf
nodes, each wν,b gives a proposal for the states Wν,b of the
sub-trees with root node ν and with energy Eν(Wν,b, I) =
Emin

ν (wν,b, I). This gives the initialization for performing
inference exploiting (6).

There will minor variations in pruning depending on the
specific application as discussed in Sect. 5. For example, the



A
U

T
H

O
R

’S
 P

R
O

O
F

Journal ID: 10851, Article ID: 282, Date: 2011-04-06, Proof No: 1, UNCORRECTED PROOF

« JMIV 10851 layout: Large v.1.3.2 file: jmiv282.tex (LK) class: spr-twocol-v1.2 v.2011/02/19 Prn:2011/04/05; 15:29 p. 8/25»
« doctopic: OriginalPaper numbering style: ContentOnly reference style: mathphys»

J Math Imaging Vis

757 811

758 812

759 813

760 814

761 815

762 816

763 817

764 818

765 819

766 820

767 821

768 822

769 823

770 824

771 825

772 826

773 827

774 828

775 829

776 830

777 831

778 832

779 833

780 834

781 835

782 836

783 837

784 838

785 839

786 840

787 841

788 842

789 843

790 844

791 845

792 846

793 847

794 848

795 849

796 850

797 851

798 852

799 853

800 854

801 855

802 856

803 857

804 858

805 859

806 860

807 861

808 862

809 863

810 864

energy pruning may accept a fixed percentage of proposals,
or we may use surround suppression to prune out proposals
which are too similar.

Recursion The input is the set of proposals {wμi,bi
} for the

states of the children μi of node μ ∈ V /V leaf together with
minimum energies Emin

μi
(wμi,bi

, I). These minimum ener-
gies are obtained recursively, as described below, and are the
lowest energies Eμi

(Wμi, I) over all possible states Wμi
of

the subtree whose root node μi takes state wμi
. Note that

we do not need to know the lowest energy state Ŵμi
dur-

ing the bottom-up pass because we can compute it later in
a top-down pass (as is standard for dynamic programming),
but we do need to know its energy. Here {bi} is the index set
for the state variables {wμi,bi

} for node μi .
Then for each state wμ,b of node μ, we compute:

Emin
μ (wμ,b, I) = min{bi }

{
λP

μ,ch(μ) · ψμ,ch(μ)(wμ,b, {wμi,bi
})

+ λD
μ · φD

μ (wμ,b, I)

+
|ch(μ)|∑
j=1

Emin
μj

(wμj ,bj
, I)

}
. (7)

This requires minimizing over all compositions of proposals
of the child nodes which are consistent with state wμ,b (i.e.
over all possible b1, . . . , bi, . . . , see Sect. 5 for examples of
consistency).

Here Emin
μi

(wμi,bi
, I) is the smallest energy of the sub-

graph Vμi
with root node μi taking state wμi,bi

, and is com-
puted recursively by (7) with boundary conditions provided
by the initialization. Observe that (7) exploits the fundamen-
tal (6).

This gives a set of proposals {wμ,b} for each node μ

together with their minimal energies Emin
μ (wμ,b, I). Prun-

ing is used to remove some of the proposals—e.g., energy
pruning removes proposals wμ,b for which Emin

μ (wμ,b, I)
is below a threshold. The output is the set of proposals
{wμ,b,E

min
μ (wμ,b, I)} which survive the pruning.

The procedure stops when we reach the root node V
of the graph. The output is a set of proposals {wR,b} for
the state of the root node R and their minimum energies
{Emin

R (wR,b, I)}.
The top-down pass is used to find the state configura-

tions {WR,b} of the graph nodes V R which correspond to
the proposals {wR,b} for the root nodes. By construction,
the energies of these configurations is equal to the minimum
energies at the root nodes, see (7). This top-down pass re-
cursively inverts (7) to obtain the states of the child nodes
that yield the minimum energy—i.e., it solves:

{b∗
i } = λP

μ,ch(μ) · ψμ,ch(μ)(wμ,b, {wμi,bi
})

+ λD
μ · φD

μ (wμ,b, I)

+ arg min{bj }

{|ch(μ)|∑
j=1

Emin
μj

(wμj ,bj
, I)

}
. (8)

We then set the optimal solution to be:

ŴR = WR,b∗ ,

where b∗ = arg min
b

Emin
R (wR,b, I). (9)

Beyond Dynamic Programming The algorithms described
above can be easily extended to RCMs with a little number
of closed loops (as occurs when there are a limited number
of edges between the child nodes). But the compositional in-
ference algorithm can also be applied to graphs with many
closed loops, as described in [73]. The strategy is to perform
the bottom-up pass on a simplified graph model which has
many of its edges removed. The edges, and their constraints
are then imposed during the top-down process. This has in-
teresting relationships to belief propagation [1]. Our empir-
ical studies [74, 75] show that this procedure works well.

4.3 Learning the Parameters by Structure Learning

This section describes how we learn the parameters λ of
the RCM from supervised training data provided the graph
structure V , E is known. We learn the model parameters
λD,λP . To simply notation, in this section we refer to the
models parameters as λ and the potentials as � (i.e. we make
no distinction between the data and the prior potentials and
parameters). Similarly we drop the subscript mR from the
state variables W because we will always be dealing with
all the state variables of the graph.

The input is a set of training images {Ii} with groundtruth
{Wi}, or partial groundtruth {yi}, specified:

{(Wi , Ii ) : i = 1, . . . ,N} groundtruth

{(yi , Ii ) : i = 1, . . . ,N} partial groundtruth
(10)

For some datasets the groundtruth is only specified for the
state variables at the leaf nodes of graph but the nature of the
problem enables us to determine the state variables for the
rest of the graph, see Sects. 5.1, 5.3. For other examples, see
Sect. 5.4, the partial groundtruth {yi} only specifies if an ob-
ject is present yi = 1, or not present yi = −1, in an image Ii .
In this case, the state Wi of the RCM are hidden/latent vari-
ables and so must be estimated during learning.

We learn the parameters of the distributions using ma-
chine learning methods which can be derived as approxi-
mations/bounds to the more standard parameter estimation
techniques such as maximum likelihood. These machine
learning techniques are computationally simpler than more
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traditional methods and arguably more effective for discrim-
inative tasks.

We use three different machine learning methods. The
first, the structure-perceptron algorithm [41], is an approxi-
mation/bound to maximum likelihood learning. The second,
structure max-margin [42–45] is an approximation/bound
to parameter estimation with a prior and a loss function.
The third, latent structural SVM [68, 76], is an approxima-
tion/bound to parameter estimation with a prior, loss func-
tion, and hidden/latent variables. Hence the difference be-
tween these methods, and the selection of which to use,
is determined by whether there is a prior, a loss func-
tion, and/or hidden/latent variables. Structure perceptron is
the simplest algorithm to use, followed by structure max-
margin, and finally latent structural SVM. All these al-
gorithms need an efficient inference algorithm as a pre-
requisite.

We have also worked on novel unsupervised learning al-
gorithms which are capable of learning the graph structure.
There is not sufficient space to describe them in this paper,
but we will briefly sketch them in Sect. 6.

Structure Perceptron Learning This algorithm can be ob-
tained as an approximation to maximum likelihood (ML)
estimation of the parameters λ of an exponential model
P(W|I,λ) = 1

Z[I,λ] exp{−λ · �(W, I)} by replacing the ML

criterion FML(λ) = −∑N
i=1 logP(Wi |Ii ,λ) by the bound:

FML,approx(λ) =
N∑

i=1

λ · {�(Wi , Ii ) − �(Ŵ(Ii ,λ), Ii )}, (11)

where Ŵ(Ii ,λ) = arg min
W

λ · �(W, Ii ). (12)

The approximation is obtained by approximating Z[I,λ]
by its dominant term exp{λ · �(Ŵ(I,φ), I)}. Recall that
Ŵ(Ii ,λ) = arg minW λ · �(W, Ii ) is also the MAP estimate
of W from P(W|I,λ), and can be obtained by the inference
algorithm described above.

The structure perceptron algorithm performs online learn-
ing for FML,approx(λ) by selecting an element Wi , Ii from
the training data, see (10), and performing an iteration of
gradient descent on λ · {�(Wi , Ii ) − �(Ŵ(Ii ,λ), Ii )}:
λt+1 = λt − �(Wi , Ii ) + �(W∗(Ii ,λ

t ), Ii ), (13)

where an additional approximation is made by ignoring the
dependence of Ŵ (I,λ) on λ when the derivative is taken.

Structure perceptron has the desirable property, empiri-
cally verified for these applications, that many of the weights
λ remain close to zero (the weights are initialized at zero).
This enables a selection process where we specify many
feature functions—i.e. make �(W, I) a high dimensional
vector—and reject feature functions if the corresponding

term in λ is small (using a threshold). Better selection
procedures can be obtained by adding a spareness prior—
e.g., P(λ) ≈ exp{−|λ|}—and modifying FML,approx(λ) by
adding |λ|.

Structure Max-Margin We modify the ML criterion FML(λ)

by introducing a loss function l(W,Wi ), which gives a
penalty for making decision W for input Ii when the
groundtruth is Wi , and a prior P(W). This requires mini-
mizing a criterion Floss(λ) = ∑N

i=1
∑

W exp{L(W,Wi )} ×
P(W|Ii ,λ) − logP(λ) which we approximate by:

Floss,approx(λ) = 1

2
|λ|2 + C

∑
i

max
W

{λ · {�(Wi , Ii )

− �(W, Ii )} + L(W,Wi )}, (14)

where P(λ) is a Gaussian prior, the summation of over W is
approximated by the dominant term maxW exp{L(W,Wi )−
λ ·�(W, Ii )}, and the Z[Ii ,λ] term by exp{−λ ·�(Wi , Ii )}.
This gives a convex quadratic criterion Floss,approx(λ). From
the perspective of machine learning, the prior term |λ|2 is
interpreted as a margin term and the goal is to classify the
data while maximizing the margin. Like other max-margin
criteria it can be expressed as a primal-dual problem and its
solution can be expressed in terms of the support vectors:

λ∗ = C
∑
i,W

α∗
i,W{−�(Wi , Ii ) + �(W, Ii )}, (15)

where the {αi,W} are solutions to the dual problem, and only
take non-zero values for the small number of datapoints that
lie on the margin. They can be efficiently solved for using
the working set algorithm [44, 45], which sequentially cre-
ates a nested working set of tighter relaxations using cutting
plane methods.

Latent Structural Support Vector Machines For some ap-
plications only part of the groundtruth is specified. In-
stead the training data only gives a set of images {Ii : i =
1, . . . ,N} and a binary variable {yi : i = 1, . . . ,N}, where
yi = 1 if the object is present in Ii and yi = 1 otherwise.
This requires extending the probability model to a distribu-
tion over y and the states W of an RCM:

P(y,W|I,λ) = 1

Z[I,λ] exp{−λ · �(y,W, I)}. (16)

The state variables {Wi} of the RCM are not specified
in the training dataset and hence are hidden/latent variables.
In some applications, see Sect. 5.4, the object is modeled
by a mixture of RCMs so the mixture variables are also
hidden/latent variables. In this case we use W in the equa-
tions below, to represent {V,W1,W2} where W1,W2 are
the states of two RCMs and V is an index variable specify-
ing which RCM is selected.
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We extend the criteria Floss(λ) to include hidden vari-
ables giving Flatent(λ) = ∑N

i=1
∑

y,W exp{L(y, yi)}
P(y,W|Ii ,λ) − logP(λ) which can be approximated/
bounded by:

Flatent,approx(λ) = 1

2
|λ|2 + C

∑
i

max
y,W

{L(y, yi)

− λ · �(y,W, Ii )}
+ max

W
λ · �(yi,W, Ii ), (17)

where we approximate the summation over y,W by the
dominant term, and the normalizing term Z[I,λ] =∑

y,W exp{−λ·�(y,W, I)} by maxW exp{−λ·�(yi,W, I)}.
The criterion Flatent,approx(λ) is a non-convex function of

λ and there is no algorithm that can be guaranteed to con-
verge to the global minimum. Instead Yu and Joachims [76]
proposed an algorithm based on the CCCP procedure [77]
by decomposing Flatent,approx(λ) into a convex and concave
part.

This reduces to an iterative algorithm which performs
two steps in alternation:

λt+1 = arg min
1

2
|λ|2

+ C

N∑
i=1

min
y,W

{λ · �(y,W, I) + L(y, yi)}

− C

N∑
i=1

λ · �(Ii , yi,Wt
i ), (18)

Wt+1
i = arg min

W
λ · �(yi,W, Ii ). (19)

The first step requires solving a standard structure learn-
ing problem—i.e. minimizing a criteria like Floss,approx(λ)—
and can be solved by the methods described above in the
Structure Max-Margin section. The second step can be per-
formed by the compositional inference algorithm. Observe
that this algorithm is analogous to the standard EM algo-
rithm. In [16] we describe a variant of this approach, called
iCCCP, which converges significantly faster.

4.4 Hierarchical Dictionaries of RCMs

Now suppose we want to model a large number of ob-
jects seen from different viewpoints and with different
poses. How can we use RCMs to represent these ob-
jects/viewpoints compactly so as to enable efficient learning
and inference? One solution is to represent objects by hier-
archical dictionaries of RCMs [16], which consists of a set
of dictionaries of RCMs at each level together with rules for
how dictionary elements at level-l are composed—by AND-
ing or OR-ing—from dictionary elements at level-(l − 1).

We illustrate the basic idea in Fig. 5, where objects are
built recursively from more elementary RCMs which can
be shared between different objects/viewpoints. This is for-
malized by having hierarchical dictionaries of RCMs T ’s,
where T 0 are elementary RCMs of level-0 (single nodes
in this example), T 1 denotes RCMs of level-1 which are
composed of elements of T 0, and T 2 are composed of el-
ements of T 1. In this example T 2 represents the two ob-
jects A and B . We can perform inference on these models
efficiently by performing inference on the dictionaries—i.e.
detecting instances of T 0, using them to detect instances of
T 1 and so on. This is a simple generalization of the compo-
sitional inference algorithm and is also dynamic program-
ming in this example (with some pruning). Moreover, we
can also learn the dictionaries—and hence the graph struc-
ture of the models—automatically as described in [16]. For
reasons of space we will not describe this learning algorithm
in detail, but we will sketch it in Sect. 6.

More formally, a hierarchical dictionary of RCMs is
specified by T = ⋃L

l=1 T l , where each T l is a dictionary
of RCMs with l levels. A dictionary is of form T l = {t la :
a = 1, . . . , nl} where there are nl RCMs t la at level-l. In ad-
dition, an RCM t la at level l has a set of child RCMs {t l−1

i(a)}
at levels (l − 1). Child RCMs can have one or more ‘par-
ent RCMs’. Hence the full graph structure is specified by
the dictionaries and the parent-child relationships. These re-
lationships will be either AND-ing (i.e. compositional) or
OR-ing, as we will discuss.

Suppose that a level-l RCM t la has m child level-(l −
1) RCMs {t l−1

i(a) : a = 1, . . . ,m}. Express all these level-

(l − 1) RCMs by their sextuplets (V l−1
i(a), E l−1

i(a) ,ψ
l−1
i(a),φ

l−1
i(a),

λP,l
i(a),λ

D,l
i(a)). Then we construct the sextuplet (V l

a, E l
a,ψ

l
a,

φl
a,λ

P,l
a ,λD,l

a ) for t la as follows:

V l
a = (Rl

a)

m⋃
i(a)=1

V l−1
i(a)

E l
a = (Rl

a, {Rl−1
i(a)})

m⋃
i(a)=1

E l−1
i(a) ,

ψ l
a = (ψ Rl

a ,{Rl−1
i(a)

}, {ψ l−1
i(a) : i(a) = 1, . . . ,m})

λP,l
a = (λP

Rl
a ,{Rl−1

i(a)
}, {λP

Rl−1
i(a)

: i(a) = 1, . . . ,m}),

φP,l
a = (φRl

a
, {φl−1

i(a) : i(a) = 1, . . . ,m}),
λD,l

a = (λD,l
a , {λD,l−1

i(a) : i(a) = 1, . . . ,m}). (20)

The choice of the potential λP

Rl
a ,{Rl−1

i(a)
} · ψ Rl

a ,{Rl−1
i(a)

}—
i.e. whether it is an AND-potential or an OR-potential—
determines whether this is an AND composition, see Fig. 5
(left and center), or an OR combination as shown by com-
bining A and B at the root node in Fig. 5 (right).
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The compositional inference algorithm can be applied di-
rectly to the dictionaries. For example in Fig. 3, when we
seek to detect objects A and B , we search for probable in-
stances for the elements {c, d, e, f, q, r} of the first level dic-
tionary T 1, then compose these to find probable instances
for the second level dictionary T 2, and then proceed to find
instances of the third level T 3—which detects the objects.
By comparison, performing inference on objects A and B

separately, would waste time detecting part b for each ob-
ject separately.

More precisely, for each RCM t1
a in dictionary T 1 we

find all instances {W(t1
a )} whose energy is below a thresh-

old (chosen to provide an acceptably small false negative
rate) and whose states are sufficiently different by select-
ing the state with locally minimal energy, see [14] for more
details of the inference algorithm. Next we form composi-
tions of these to obtain instances of the RCMs from the next
level directory T 2 and proceed in this way until we reach the
object-RCMs at the top level. At each stage of the algorithm
we exploit the recursive (7) to compute the energies for the
“parent” RCMs at level l in terms of their “child” RCMs at
level (l − 1). It should be emphasized that this dictionary
inference algorithm directly outputs the objects/viewpoints
which have been detected as well as their parses—there is
no need for a further classification stage.

Observe that there may be closed loops in the graph struc-
tures specified by the dictionaries, since child RCMs can
have multiple parent RCMs. This means that the composi-
tional inference algorithm will not, in general, be guaranteed
to converge to the optimal solution. In this case, the update
rules for dynamic programming can be thought of as belief
propagation using message parsing [1] which is known to
be a good approximation for inference on graphs with closed
loops. Some of our empirical studies [74, 75] show that these
approximate methods can give good results for these types
of models.

Learning of these models can be performed by the learn-
ing algorithms described above if the graph structure is
known. Structure induction—i.e. learning the hierarchical
dictionaries—is a more challenging task and we will briefly
sketch how we perform it in Sect. 6.

5 Five Examples

We now describe five examples of RCMs which show how
they can be applied to a representative set of computer vision
tasks. Three examples apply RCMs to model objects, the
fourth addresses multiple objects, and the fifth addresses im-
age labeling. We will give results on standard benchmarked
datasets—Weizmann horse dataset [18], the MSRC image
label dataset [24], a Baseball player dataset [21], a cow
dataset [22], a face dataset [23], PASCAL [19], LabelMe

[20]—showing that our results are competitive to the state
of the art. All these examples follow the basic strategy de-
scribed in the previous section but the details—e.g. graph
structures, state variables, pruning techniques, and learning
methods—will depend on the application.

5.1 A Hierarchical Deformable Model

The first example describes a hierarchical model for a de-
formable object where the goal is to segment the object
and parse it—i.e. to detect and label subparts of the object
[12, 15]. We test on the Weizmann horse dataset [18], see
Fig. 4 and on a dataset of cows constructed by Magee and
Boyle [22] and studied by [78]. In these datasets, the objects
are deformable but there is comparatively little variation in
viewpoint or pose. Note that these datasets are defined for
segmentation only and other researchers do not address pars-
ing.

The Graph Structure This RCM uses a fixed graph struc-
ture G = (V , E ) illustrated in Fig. 4. This graph structure was
learnt by a simple hierarchical clustering algorithm, adapted
from SWA [70], which used a single object boundary as in-
put, as described in [15]. The edges E connect child node to
their parents and child nodes to each other, see Fig. 4 (right).
The number of children is restricted (to between 3 and 6 for
each parent) so the number of closed loops is not very large.
All nodes are connected to the image—i.e., there are data
potentials φμ(wμ, I) defined for all nodes μ ∈ V .

The State Variables The state variables wμ represent the
poses of the parts and subparts of the object. More precisely,
they are of form wμ = (xμ, yμ, θμ, sμ), where (xμ, yμ) is
the position in the image, θμ is the orientation, and sμ is the
size.

These state variables obey the summarization principle
because they are the same at all levels of the hierarchy. The
top level of the RCM specifies a crude description of the
object—its position, orientation, and scale—while the lower
levels specify the poses of subparts of the object. The state
variables for all graph nodes gives a parse of the object, in-
dicating the poses of all parts and subparts.

The Potentials The feature functions φμ(wμ, I) of the data
potentials are defined in terms of a dictionary of image
features—e.g., Gabor filters, derivatives of Gaussians, his-
tograms of filter responses, see [12, 15] for details. For this
RCM, data potentials are defined for all nodes μ ∈ V of the
graph. The data potentials for the leaf nodes μ ∈ V leaf are
defined in terms of image features, such as edges, which
give cues for the boundaries of the object (all leaf nodes have
the same potentials). The data potentials for all other nodes
μ ∈ V /V leaf use features which correspond to the appear-
ance of subregions of the object—e.g., to the appearance of
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the hair on a horse’s body (all non-leaf nodes have the same
potentials).

The prior potentials for this model are used to specify
spatial relations between parts (parent nodes) and subparts
(child nodes). The feature functions ψμ,ch(μ)(wμ,wch(μ))

have the same form for all nodes μ ∈ V /V leaf . This model
uses AND-potentials only which we specify as follows. We
divide them into vertical feature functions
ψV

μ,ch(μ)(wμ,wch(μ)), which relate the state of the parent
node μ to a summary statistic of state of its children, and
horizontal feature functions ψH

μ,ch(μ)(wch(μ)) which relate
the relative states of the child nodes. The vertical features
functions ψV

μ,ch(μ)(wμ,wch(μ)) are simplified by requiring
that the state of the parent node is a deterministic function of
the states of the child nodes. We set ψV

μ,ch(μ)(wμ,wch(μ)) =
−δ(wμ − f (wch(μ))), where δ(.) is a delta function, and
f (.) specifies the position and orientation of the parent to
be the mean positions and orientations of its child nodes
(and the size is obtained by the region that is covered). The
vertical feature function is a hard constraint and it has no
parameters to be learnt. The horizontal feature functions
ψH

ch(μ)(wch(μ)) are defined over the triplets of the child
nodes. They are defined to be the second order moments of
the invariant transformation vector (ITV) 	l which is defined
to be independent of the position, scale, and orientation of
the triangle, see Fig. 4 and [12, 15]. These specify statistical
constraints on the relative poses of the child nodes which are
independent of the orientation and scale of the object. This
gives prior potentials of form:

λP
μ,ch(μ) · ψμ,ch(μ)(wμ,wch(μ))

= −δ(wμ − f (wch(μ))) + λP
ch(μ) · ψH

ch(μ)(wch(μ)). (21)

The Inference Algorithm and Pruning We use the compo-
sitional inference algorithm, described earlier by (7), (8).
For this application, the state space of the variables wμ =
(xμ, yμ, θμ, sμ) is very large. Hence, like other applications
of dynamic programming to computer vision [79], we re-
strict the size of the state space using three pruning mecha-
nisms.

Firstly, we use energy pruning to remove all config-
urations whose minimum energy falls below threshold—
Emin

μ (wμ,b, I) < T .
Secondly, we use surround suppression to inhibit pro-

posals which are too similar to each other and hence are
redundant. More formally, surround suppression is formu-
lated by eliminating any proposal wμ,b unless Eμ(wν,b, I) ≤
Eμ(wν, I) for all wμ ∈ Wd(wμ,b), where Wd(wμ,b) is a
window centered on wμ,b . The size of the window speci-
fies the degree of accuracy which we require. At leaf nodes,
surround suppression is similar to non-maximal suppression
as used in the Canny edge detector. At higher levels, it en-
ables us to use coarser spatial representations for parts and is

similar to techniques used in biologically inspired models—
e.g., [35, 38]—which match the experimental neuroscience
findings that receptive fields in the visual cortex become
more broadly tuned spatially as they become more specific
to stimulus type (e.g, neurons which respond to faces are
relatively insensitive to the pose of the face).

Thirdly, we make the pruning robust by the two out of
three rule. Suppose a node has only three children and
consider a situation where two child nodes have proposals
which are above threshold but there is no corresponding
proposal from the third child node. In this case, the algo-
rithm creates a proposal for the third node by finding the
state which best fits the horizontal prior, pays a penalty, and
proceeds as above. This procedure can be generalized in the
obvious way to cases where the parent node has more than
two child nodes, see [15]. The two out of three rule enables
the algorithm to deal with situations when there is partial oc-
clusion, failure of the filters to detect a subpart of the object,
or an error made by pruning.

The parameters of these pruning mechanisms were de-
termined experimentally using the training dataset with the
goal of maximizing the speed of the algorithm while keep-
ing the performance rates high, see [15].

The algorithm has an intuitive interpretation. During the
bottom-up pass—equation (7)—the child nodes find state
configurations which have low energy values and form com-
positions of them to make proposals for the states of their
parent nodes. The parents check the consistency between
child states, imposed by the prior potentials, and incorpo-
rate additional image cues using the data potentials. Incon-
sistent proposals are rejected, typically because they violate
the spatial relationships. As we proceed up the levels of the
graph, the algorithm enforces increasingly more global con-
straints on the spatial configuration of the object.

The Learning Algorithm The structure perceptron algo-
rithm is used to learn the parameters λ. Initialization is per-
formed by the same hierarchical clustering that was used to
learn the graph structure, see [15].

The form of the prior potentials—the deterministic func-
tion wμ = f (wch(μ))—means that we know the states of all
the graph nodes provided we know the states of the leaf
nodes. Hence we can infer the groundtruth for all graph
nodes even if the groundtruth is only specified for the leaf
nodes (as it is for all benchmarked datasets).

Postprocessing The output of the RCM is the states of the
graph nodes. The leaf nodes give a sparse representation of
the boundary in terms of a finite set of points. To obtain
a complete boundary we link the leaf node points using a
standard linking algorithm [15].
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Fig. 6 Segmentation and parsing results on horses and cows. The four columns show the raw images, the edge maps, the parsed results, and the
segmentation results (respectively). Example A

Table 1 Comparisons of segmentation performance on the weizmann horse dataset. Example A

Methods RCMs [80] [81] [66] [82] [83] [67].

Testing 228 172 328 328 N/A 5 N?A

Seg. Acc. 94.7% 91.0% 93.0% 93.1% 94.2% 95.0% 96.0%

Fig. 7 Multi-view Face
Alignment on examples from a
face dataset [23]. Example A

Datasets and Results This RCM was evaluated for object
segmentation and parsing on the Weizmann horse dataset
and the cow dataset. Typical results are shown in Fig. 6.
Quantitative comparisons on the Weizmann dataset are
given in Table 1. See [15] for more detailed results, con-
vergence analysis, generalization analysis, and feature se-
lection.

This RCM was also evaluated for object matching on a
standard face dataset [23]. Examples are given in Fig. 7. We
obtained an average pixel error of 6.0 pixels on this dataset
(using the same parameter settings as for horses and cows)
compared to the best result of 5.7 pixels [23]. The algorithm
ran in about 20 seconds for a typical 300 × 200 size image
(timed in 2008).

5.2 The Hierarchical Configural Deformable Template:
AND/OR Graphs

This RCM is a deformable model which is capable of deal-
ing with different poses and configurations of objects, see

Fig. 8 and [11]. This requires much greater flexibility than
the RCMs in the previous example. Here we supplement the
graph structure by introducing OR nodes and switch vari-
ables [5]. This allows the graph to change topology and
hence enables it to deal with great variations in the appear-
ance and geometry of the object. Essentially the AND/OR
is a very efficient way—in terms of representation and
computation—to implement mixture models as shown in
Fig. 8.

The Graph Structure The graph structure is the same as
the previous example but we now divide the nodes into two
classes: (i) AND nodes V AND, which have AND-potentials
identical to those described in the previous example, and
(ii) OR nodes V OR which use OR-potentials where a parent
node μ is required to select one of its children by a switch
variable zμ [5]. The graph structure was hand specified, see
[5]. The OR nodes enable us to have many different graph
topologies (determined by the states of the switch variables)
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Fig. 8 Including OR nodes, and OR-potentials, enables the topology of the graph to change in response to the input data. This enable the RCM to
alter the graph topology to deal with different poses of the object. Each OR node is required to select one of its child nodes by a switch variable.
Example B

which correspond to different poses of the object. Intuitively,
the object is composed of parts and the switch variables de-
termine which parts are chosen. Different object parts will
be visible from different poses. In turn, these parts can be ex-
pressed as compositions of sub-parts and the choice of sub-
parts again will depend on the object pose. This is illustrated
in Fig. 8 where the graph has alternating levels of AND and
OR nodes. Note that each specification of the switch vari-
ables corresponds to a hierarchical deformable model as de-
scribed in Sect. 5.1. Hence we can think of a probabilistic
model defined over an AND/OR graph as a mixture of dis-
tributions, where the number of mixture components corre-
sponds to the number of different topologies.

This model can also be described as a hierarchical dictio-
nary. The top level dictionary T L contains a single RCM.
This is related to the RCMs in the level-(L − 1) dictio-
nary T L−1 by an AND-potential. These RCMs are related
to RCMs in the level-(L − 2) dictionary T L−2 by OR-
potentials. This pattern repeats with alternative levels con-
nected by AND-potentials and OR-potentials finishing with
AND-potentials relating the RCMs in the level-1 dictionary
T 1 to the level-0 RCMs T 0. We constrain that each child
RCM has only a single parent RCM, which ensures that the
graph has no closed loops and guarantees that the composi-
tional inference algorithm will converge to the optimal solu-
tion (subject to pruning).

The State Variables The AND nodes have the same state
variables as the previous RCM—i.e. wμ = (xμ, θμ, sμ),
where xμ, θμ, sμ represent the position, orientation, and size
of the subpart. The OR nodes have an additional ‘switch’
variable zμ which indicates which child node is selected (if
the OR node itself is not selected, then zμ is unspecified).

The Potentials The data potentials φ(wμ, I) are defined
at the leaf nodes only and are identical to those used
in the previous RCM. We use AND-potentials λμ,ch(μ) ·
ψμ,ch(μ)(wμ,wch(μ) for the AND nodes which are the same

as for the previous model as specified by (21) (all AND
nodes have the same potential).

We define OR-potentials for the OR nodes. These poten-
tial terms bias the selection of the child nodes. The switch
variables zμ for an OR node μ takes values zμ ∈ ch(μ), and
has a potential term:

λP
μ,ch(μ) · ψμ,ch(μ)(wμ, zμwch(μ))

= −
∑

ν∈ch(μ)

λμνδzμ,νδ(wμ − wν) (22)

The Inference Algorithm and Pruning The inference al-
gorithm is a natural extension of the compositional infer-
ence algorithm defined above in Sect. 5.1 including the three
pruning mechanisms.

The only difference is that we modify (7) at OR nodes so
that we select the best child. This replaces

min{bi }

{
λP

μ,ch(μ) · ψμ,ch(μ)(wμ, {wμi,bi
})

+
|ch(μ)|∑
j=1

Emin
μj

(wμj ,bj
, I)

}

by

min
tμ

{λP
μ,ch(μ) · ψμ,ch(μ)(wμ, tμwch(μ))

+ min
b

Emin
tμ

(wtμ,b, I)}.

The Learning Algorithm The graph structure was specified
manually (which takes 3 minutes per image). The parame-
ters λ are learnt by structure max-margin. The loss function
specifies a penalty for each node who pose wμ differs from
the groundtruth position by more than a threshold, see [11].
We also attempted to learn using the structure perceptron
algorithm (i.e. without a loss function) but obtained worse
results.
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Fig. 9 The parse results (odd
columns) and segmentation
results (even columns). We use
colored dots to show the
positions of the subparts (i.e.
states of the graph nodes) for the
parse results. The same color is
used in all images to indicate the
same subparts. Example B

Fig. 10 We compare the results of HCDTs with those of Srinivasan and Shi [84]. The performance for parsing (position error) and segmentation
(overlap score) are shown in the top and bottom figures respectively. Note that [84] select the best one (manually) of the top parses. Example B

Datasets and Results The method was evaluated for pars-
ing on the baseball dataset, see Fig. 10. Some examples are
shown in Fig. 9. Our results were significantly better than
previous methods which is probably due to the greater rep-
resentational power of the AND/OR graph and differences
in the learning algorithms. The algorithm ran at 24 seconds
for 300 × 200 image (tested in 2008, time evaluated on the
Weizmann dataset).

We also learnt an AND/OR model for horses using the
Weizmann dataset. We obtained only slightly better segmen-
tation results than our previous model, see previous sec-
tion, which we attribute to the limited pose variations in
the dataset and the crudeness of the segmentation perfor-
mance measure (e.g., good performance can be obtained us-
ing models which fail to detect the legs of the horse accu-
rately). But the AND/OR graph did perform better on the
more challenging parsing task, see [11].

5.3 Image Labeling. Hierarchical Image Models

We now apply RCMs to the image labeling problem [13].
This is a very different application and requires a different

type of state variable, which must represent the labels and
segmentation of image regions. We call this a Hierarchical
Image Model (HIM). Note that there is a trade-off between
the complexity of the graph structure (e.g., the use of OR
nodes) and the complexity of the state variables. The last
application used a complex graph structure, with variable
topology, and a simple state variable. By contrast, this ap-
plication uses a simple graph structure but a complex state
variable.

The Graph Structure The graph structure is a fixed quad-
tree structure where each non-leaf node has four child nodes,
see Fig. 11.

The State Variables For this application, the state variables
wμ = (sμ, 	cμ) represent a region of the image, see Fig. 11
(left panel). The variable sμ ∈ S indexes a segmentation-
template, see Fig. 11 (center panel), which specifies a par-
tition of the region into different sub-regions (|S| = 40 and
there are either one, two or three sub-regions). The variable
	cμ specifies labels for all the sub-regions where each label
c ∈ C , where C is a set of pre-defined labels (|C| = 23 for the
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Fig. 11 The left panel shows the structure of a hierarchical image
model [13]. The grey circles are the nodes of the hierarchy. The graph
structure is a fixed quadtree so that all non-leaf nodes have four chil-

dren. The center panel shows 30 segmentation templates. The right
panel shows an example of the groundtruth and the labeling result. Ex-
ample C

Cambridge Microsoft Labeled Dataset—[24]). As above,
the states of the high-level nodes give a coarse description
of the image while the lower level nodes give higher preci-
sion.

The Potentials The potential terms λ · � impose statistical
consistency between the states of the parent and child nodes
for the labeling and segmentation variables. They also im-
pose priors on the segmentation templates and on the label-
ing. In this application there are no horizontal edges linking
the child nodes.

There are six potential terms. The first is a data term
λ1

μ · φ1
μ(wμ, I) which represents image features of regions

(features are color, Gabors, difference of Gaussians, etc.).
The second is a data term λ2

μ · φ2
μ(wμ, I) which favors

segmentation templates whose pixels within each parti-
tion have similar appearances. The third term λ3

μ,ch(μ)
·

ψ3
μ,ch(μ)(wμ,wch(μ)) encourages consistency between the

segmentation templates and labeling of parent and child
nodes. The fourth term λ4

μ,ch(μ) · ψ4
μ,ch(μ)(wμ,wch(μ)) cap-

tures the co-occurrence of different labels (e.g. a cow is un-
likely to be next to an airplane). The fifth term λ5

μ · ψ5
μ(wμ)

is a prior over the segmentation templates. The sixth term
λ6

μ · ψ6
μ(wμ) models the co-occurrence of the labels and the

segmentation templates.

The Inference Algorithm and Pruning We use the compo-
sitional inference algorithm specified by (7), (8). The state
space consists of the set of segmentation templates and the
set of labels that can be assigned to them. This is smaller
than the size of the state space for the object models, but it
is still large. We prune the proposals based on their energies
so as to keep a fixed proportion of the proposals (we do not
use surround suppression or the two out of three rule).

The Learning Algorithm We used the structure perceptron
algorithm to learn the parameters. The simple form of the
graph structure makes it straightforward to estimate states
of the high-level nodes from the groundtruth labels of the
image pixels.

Datasets and Results We tested the RCM on the Microsoft
dataset [24]. We show example results in Fig. 12 and report
good performance compared to state of the art methods in
Table 2. See [13] for more details. the average runtime of
the algorithm was 30 seconds for a 320 × 200 image (tested
in 2008).

5.4 Object Detection on the Pascal Databases

We now apply our approach to the challenging PASCAL
datasets see [17]. We use a mixture of graphs with no closed
loops. We use complex features based on HOG. For these
datasets the groundtruth only specifies whether an object
is present or not within an image region and so the state
variables of the graph are hidden during learning. Code for
the latent hierarchical learning is available by emailing the
third author or deform Leo Zhu’s website (Google Leo Zhu
CSAIL—and go to the Pascal application).

The Graph Structure This model consists of two hierar-
chical graphs. Each graph has three levels, see Fig. 13 (a, b).
There is 1 node at the third level, 9 nodes at the second level,
36 nodes at the first level. Each node at the second level has 4
children. All the edges are from parents to children so there
are no closed loops.

The State Variables A binary-valued variable y ∈ {−1,+1}
indicates whether the object is present or not in a specific
image window.

The state variables of the model are {V,W1,W2}, where
the binary-valued variable V indicates which graphs is se-
lected and W1,W2 indicate the state of each graph. Each
graph node corresponds to a rectangular region in the image
and represents an object part. The size of these regions is the
same for all nodes at each level. Each node has a state vari-
able wμ = pμ which indicates its position in the image, see
Fig. 13(c, d). The variables V,W1,W2 are not specified in
the training dataset, so we denote them as hidden variables
h = (V ,W1,W2).
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Fig. 12 Images and labels
given by the Hierarchical Image
Model. Example C

Table 2 Performance comparisons for average accuracy and global accuracy. “Classifier only” are the results where the pixel labels are predicted
by the classifier obtained by boosting only. Example C

TextonBoost [24] PLSA-MRF [85] Auto-context [86] Classifier only HIM

Average 57.7 64.0 68 67.2 74.1

Global 72.2 73.5 77.7 75.9 81.2

The Potentials The data potentials are defined at all graph
nodes. The feature functions φ(wμ,V, I) are defined in
terms of HOG features in the corresponding image region.
For details, see [17].

The prior potentials relate the states of the children and
parent nodes—i.e. their relative positions. The feature func-
tions ψ(wμ,wch(μ)) are quadratic in the difference in posi-
tions of the state variables of the child and parent, and hence
correspond to Gaussian distributions. We set �(V ,p, y =
−1) = 0 for when the object is not present.

The Inference Algorithm and Pruning The inference task
is to estimate y∗(I), h∗(I) = arg maxy,h λ · �(y,h, I).

For y = 1 and for each V , we perform inference by dy-
namic programming using (7), (8). We use energy pruning
and surround suppression as for our first example. We com-
pute the best energy for y = 1 and V = 1,2 and compare
the energy 0 for y = −1. Then we select the configuration
with lowest energy. We apply this to images by moving a
sliding region and then applying dynamic programming to
each image region.

The Learning Algorithm The training data is a set of im-
age windows which contain either an image of the object or
a background image. We apply the latent-SVM algorithm to
deal with the hidden variables h = (V ,W). The loss func-
tion l(yi, y) = 0 if y = yi and = 1 if y �= yi .

Results This model worked well on PASCAL challenge
datasets, see Table 3 [17], and example results are shown in
Fig. 13(c, d). The model described here was adapted to in-
clude active windows yielding improved performance [88].
A later version obtain second position in the Pascal Chal-
lenge for object detection at ECCV 2010. The runtime per
image was 8 seconds (tested in 2010).

5.5 Families of RCMs for Multi-Object/Viewpoint
Detection

In this section we consider families of RCMs for represent-
ing multiple objects and viewpoints. We use the hierarchical
dictionary representation introduced earlier in Sect. 4.4.
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Fig. 13 (a) The graph structure
is a three-layer model. The root
node has 9 child nodes, each of
which has 4 children. (b) Each
node corresponds to a
rectangular region in the image.
The big rectangle corresponds
to the root node of the model.
The light dots indicate positions
of the centers of the rectangles
of the 9 nodes at the middle
level. The dark dots are the
centers of the rectangles of the
36 nodes at the lowest level.
(c, d) The positions of the nodes
(i.e. their rectangles) are
variable and adjust to the
structure of the object in the
image. Example D

Table 3 Performance comparisons on the 20 PASCAL VOC 2007
challenge categories [19]. (us) refers to our 3-layer model. (UoCTTI)
reports the results from [68] without special post-processing. (UCI)
[87] is a method using multi-object relationship. (V07) is the best re-
sult for each category among all methods submitted to the VOC 2007

challenge. Our method outperforms the other methods in 13 categories.
Our 3-layer model is better than UoCTTI’s 2-layer model in all 20 cat-
egories. The average APs per category are 0.296 (us), 0.268 (UoCTTI)
and 0.271 (UCI)

class aero bike bird boat bottle bus car cat chair cow

us 0.294 0.558 0.094 0.143 0.286 0.440 0.513 0.213 0.200 0.193

UoCTTI 0.290 0.546 0.006 0.134 0.262 0.394 0.464 0.161 0.163 0.165

CI 0.288 0.562 0.032 0.142 0.294 0.387 0.487 0.124 0.160 0.177

V07 0.262 0.409 0.098 0.094 0.214 0.393 0.432 0.240 0.128 0.140

table dog horse mbike person plant sheep sofa train tv

us 0.252 0.125 0.504 0.384 0.366 0.151 0.197 0.251 0.368 0.393

UoCTTI 0.245 0.050 0.436 0.378 0.350 0.088 0.173 0.216 0.340 0.390

CI 0.240 0.117 0.450 0.394 0.355 0.152 0.161 0.201 0.342 0.354

V07 0.098 0.162 0.335 0.375 0.221 0.120 0.175 0.147 0.334 0.289

The Graph Structure The graph structure for a family of
RCMs is a hierarchical graph where the root node is an
OR node whose child nodes correspond to different objects,
see Fig. 5, represented by RCMs, see Fig. 4. Because these
object models share subparts it is more convenient to de-
scribe them in terms of hierarchical dictionaries of RCMs.
In this case, the dictionaries at neighboring levels are re-
lated only by AND-potentials (i.e. all nodes except the root
node are AND nodes). We constrain each parent RCM to
have exactly three child RCMs, but child RCMs can have

multiple parents and so the graph structure will have closed
loops. The graph structure was learnt automatically [16] by
a variant of the unsupervised learning algorithm described
in Sect. 6.

The State Variables The state variables wμ = (xμ, θμ, sμ)

are the positions, poses, and sizes of subparts. Hence the
RCMs in each dictionary have the same form as the Hierar-
chical Deformable Models described in Sect. 5.1, see Fig. 4.
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Fig. 14 The top panels show
RCMs of cars from different
viewpoints. The leaf nodes
correspond to the features on the
boundary of the cars (indicated
by arrows). Each root node has
a mask 
 which helps capture
the texture and appearance of
the object (assumed to be the
same for each viewpoint). The
bottom panels show an image
(left), the body map (center)
which indicates the response of
texture and appearance cues,
and the boundary map (right)
which shows the response of
edge-like cues

The Potentials The prior potentials are all AND-potentials
with the same form as those in Sect. 5.1.

There are two types of data potentials. The first type
associates a rectangular mask R(
,wR) to the root node
for each object. These model the body appearance, or
body map, using regional cues which capture the tex-
ture and material properties of objects, see Fig. 14. These
are described by the feature functions φbody(wR; I) =
(1/|R(
,wR)|)∑

x∈R(
,wR) logP(b(x)|I). These body po-
tentials are specific to each object but are independent of
viewpoint. The second type are defined at the leaf nodes and
are intended to model the image features at the boundary
of the object, or boundary map. They are similar to those
used in previous models, such as HIM (at the leaf nodes) in
Sect. 5.1 and the Hierarchical Configural Deformable Tem-
plate in Sect. 5.2.

The Inference Algorithm and Pruning As discussed in
Sect. 4.4, the compositional inference algorithm is applied
directly to the dictionaries. We use the same pruning tech-
niques as in Sect. 5.1.

For this application, each child RCM can have multiple
parent RCMs and so there will be closed loops. Hence the
compositional inference algorithm is not guaranteed to con-
verge to the optimal solution (subject to pruning). Instead we

treat it as a message parsing algorithm [1] which are known
to perform well on loopy graphs.

We stress that the inference algorithm outputs the ob-
jects/viewpoints which have been detected as well as their
parses—there is no need for a further classification stage.

Learning The family of RCMs is learnt by a hierarchical
clustering algorithm whose input is a set of silhouettes of the
different objects/viewpoints. To encourage part-sharing the
labels of the objects/viewpoints are ignored. The algorithm
outputs the hierarchical dictionaries, including the parame-
ters of the RCMs. For reasons of space, we do not describe
this algorithm in detail but we will sketch it in Sect. 6.

The object/viewpoint masks are learnt from the bounding
boxes (and object boundaries) specified by LabelMe [20].
This is performed by a simple averaging over the boundaries
of different training examples (for fixed object and view-
point).

The body and edge potentials P(b(x)|I) and P(e(wμ)|I)
are learnt using standard logistic regression techniques [89]
with image features as input (see below). The edge poten-
tials are the same for all objects and viewpoints.

The image features include the greyscale intensity, the
color (R, G, B channels), the intensity gradient, Canny
edges, the response of DOG (difference of Gaussians) fil-
ters at different scales and orientations. A total of 55 spatial
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Fig. 15 This figure shows the mean shapes of sub-RCMs at different levels. RCMs learn 5-level dictionary from 120 object templates (27 classes)

filters are used to calculate these features (similar to [24]).
The scales of these features are small for the edges and larger
for the body (which need greater spatial support to capture
texture and material properties). Two types of edge features
were used depending on the quality of the groundtruth in
the applications. For single objects, we use features such as
edges and corners—see the probabilistic maps calculated by
the body and part potentials in Fig. 14. For multiple objects
applications we had poorer quality groundtruth and used
simpler edge-based potentials similar to [14] based on the
log-likelihood ratio of filter responses on and off edges.

Results We evaluated our approach in two ways. Firstly, by
the families of RCMs that we learn from the training data.
Secondly, by the performance of the family of RCMs on Pas-
cal datasets.

Figure 15 shows the mean shapes of typical RCMs at dif-
ferent levels of the hierarchy. Note that the first few levels
appear to capture generic shapes which are typical of those
proposed by Gestalt theorists and used in theories of per-
ceptual grouping. The higher levels are more object specific
and describe parts which are shared between only a few ob-
jects. The amount of part sharing is illustrated in Fig. 16,
which shows that the majority of shared RCMs are those in
the lower level dictionaries.

The performance of the RCMs were quantified on three
datasets: (i) Multi-View Motorbike detection (PASCAL),
(ii) The Weizmann horse dataset, and (iii) a LabelMe car
dataset. We compared our approach to published results on
the first two datasets and trained a HOG-SVM for compari-
son the LabelMe dataset. The results, see Fig. 17, show com-
petitive performance to state of the art methods. The run-
times on the first two datasets were typically 1.5 minutes for
images of size 1200 × 900 (tested in 2009).

Fig. 16 Each curve plots the proportion of parts to object/viewpoints
as a function of the levels of the parts (for five families containing dif-
ferent numbers of object/viewpoints). The overall representation cost
can be quantified by the size of area under the curves. Observe that the
larger the families then the lower the cost and the more the amount of
part sharing

6 Unsupervised Structure Learning

Learning the graph structure for an RCM from unsupervised
training data is more challenging than learning the param-
eters. But it is also more exciting since it offers the pos-
sibility of avoiding the need for hand-labeled datasets and
of obtained deeper understanding of the structure of images
and objects. Our unsupervised learning was reported in [14],
and was modified to learn the family of RCMs reported in
Sect. 4.4 [16]. The approach has some similarity to the work
of [90] which performs hierarchical grouping but which is
not formulated in probabilistic terms.
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Fig. 17 RCMs (blue curves) show competitive performance compared with state-of-the-art methods on several datasets

Fig. 18 Left panel: This figure illustrates the bottom-up process of
unsupervised learning. The far left panel shows the instances of the
RCMs in the level l dictionary. The left panel shows the compositions
(step 1). Clustering is performed to generate level l + 1 RCMs which
are used to parse the image (steps 2 and 3). We perform suspicious
coincidences and competitive exclusion (steps 4 and 5) as shown in

the right panel. This results in the level l + 1 dictionary, shown in the
far right panel. Right panel: This figure shows elements of the hierar-
chy of schemas for horses (mean values only—i.e., we do not illus-
trate the shape variability of these schema). Observe how the set in-
cludes “generic” shapes at low levels, but finds horse-specific parts at
the higher levels

For reasons of space, we will only briefly sketch this
method and refer to conference papers [14, 16] for more de-
tails.

The input is a set of images containing the same object,
but with varying background, and the output is an RCM for
the object [14]. The strategy is to learn the RCM by building
it up from elementary components and is analogous to the
compositional inference algorithm, except that it works in
the space of object models. It can be thought of as learning
a hierarchical dictionary as described in Sect. 4.4. This is
performed in a bottom-up pass followed by a top-down pass
which combines dictionary elements to obtain the?

The bottom-up pass proceeds by defining a zeroth level
dictionary T 0 which consists of RCMs with a single node
and potentials and parameters which tune them to edges at
different orientations (four different orientations in [14], six
in [16]). Then we parse the training images to find instances

of these level-0 RCMs. Next we perform a series of opera-
tions, illustrated in Fig. 18 (left) and described below, which
generate a level-1 dictionary of RCMs. We proceed from
level to level until our procedure stops automatically when
it fails to output an RCM. The output of the bottom-up pass
is a set of dictionaries, whose mean shapes are shown in
Fig. 18 (right). The top-down process performs operations
on the dictionaries—e.g., adding subparts—to build a com-
plete model of the horse, see Fig. 19 (left).

We evaluated these models on the Weizmann dataset us-
ing twelve images for testing. We applied some postprocess-
ing using a method inspired by Grab-Cut [91] to improve the
boundaries found by the model, see [12, 15] for details (we
use the initial estimate provided by the RCM to initialize a
max-flow/min-cut algorithm).

Some results are shown in Fig. 19 (right). The overall
performance of our algorithm was 93.3% when tested on
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316 images (and trained on 12). This is only slightly worse
than our supervised method, see Sect. 5, and hence is close
to the state of the art. Other examples are shown in [14]. In
general, the dictionaries at the first three levels appear very
similar for all objects.

7 Conclusion

This paper has reviewed recent work on Recursive Com-
positional Models (RCMs). It has given described the ba-
sic mathematical and computational framework and shown
applications to different visual tasks. In particular, we have
shown that RCMs can be successfully applied both to tasks
involving objects (i.e. detection and parsing) and to image
interpretation asks (i.e. image labeling). In all cases, RCMs
obtain results which are at, or close to, the state of the
art when evaluated on the most challenging benchmarked
datasets.

The key ideas are the use of hierarchical models de-
fined in a recursive way. The hierarchical structure enables
us to represent object and image properties at a range of
difference scales so that we can take into account statisti-
cal regularities at all scales. The executive summary prin-
ciple ensures that the high level nodes represent coarse, or
summary, information about objects and images while the
lower level nodes provide the finer scale details. Part shar-
ing helps simply the representation when dealing with mul-
tiple objects/viewpoints/poses and greatly speeds up com-
putation.

There are many ways to extend RCMs in the future. The
framework proposed here can be applied to other visual
tasks—for example, recent work applied the same princi-
ples for modeling motion correspondence and provides a
model for human perception of motion [75]. The models de-
scribed here can also be strengthened by adding richer visual
cues and more complex graph structures. There are many
issues to be addressed—for example, what is the tradeoff
between representation with simple graphical topology and
complex state variables as against complex graphs (with
variable topology) and simple state variables? Also it is in-
teresting to explore the relationship between RCMs and neu-
roscience since there appear to be intriguing similarities. the
structure of the visual cortex.
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