Lecture 13: Images as Compositions of Patterns

A.L. Yuille
March 13, 2012

1 Introduction

Pattern theory is a research program which believes that visual processing is best thought of in terms
of patterns (Grenander 1973, Mumford and Desolneux 2010). Images can be expressed as combinations
of elementary patterns, see figure (1), and image interpretation/understanding consists of decomposing the
image into these patterns. The same principles apply to other sensory systems and to cognition and thought.
This program is very attractive but it is also very difficult. Here we restrict ourself to applying it to image
segmentation with a small extension to image parsing which includes the detection and recognition of objects.
Note that the weak membrane/smooth models of images (earlier lectures) can be thought of as examples of
this approach but where the patterns are very simple — image regions with smooth intensity. The pattern
theory approach suggests that we have a larger dictionary of patterns — including texture, shading, and even
patterns for objects such as faces and text. See also Zhu and Mumford (2006).

sports field spectator

person

point prog€ss

o m ‘.; »»»»»»»»»»

i
Ve
persons

curve groups S
group texture -

face texture

color region texture

Figure 1: Pattern theory argues that images are composed from different patterns and the task of image
processing is to parse the image into its constituent patterns.

This lecture will start by describing snakes (Witkin, Terzopoulos, Kass) which relate to this framework
but pre-date it. This is one of the most cited papers in computer vision. We will formulate it probabilistically,
which relates to a model for detecting roads by Geman and Jedynak.

After describing snakes, we will proceed by describing three pattern theory models of images of increasing
complexity: (i) Zhu and Yuille (1996), (ii) Tu and Zhu (2002), and (iii) Tu, Chen, Yuille, Zhu (2005). The

last two require complex algorithms — data driven Markov Chain Monte Carlo (DDMCMC), which we will
also describe. We will introduce (ii) and (iii) together since the mathematics is very similar.

2 Snakes

Snakes were originally intended as an interactive tool. It has many applications and, in particular, it
motivated considerable work on object tracking (see ” Active Vision” A. Blake and A.L. Yuille eds.).

2.1 Basic Snakes

A snake is a contour by T'(s) (s is not the arc length). Typically T'(s) is a closed contour. It is defined by an
energy function:

1. = .
E[l = /F S{eATs(s) + BIT s — AIVI(#(s))[*}ds. (1)
Here s denotes partial derivative with respect to s — I'y = 21;

To run a snake, you initialize it by placing it near, or surrounding, and object (e.g. a face). Then
minimize E[I'] by steepest descent. This gives update equations:

— = ol + BT sss + AV|VI]2. (2)

The first two terms try to make the curve short and have small curvature (NEED AN APPENDIX ON
CURVATURE.). The third term tries to move the snake to regions of large intensity gradient.

Snakes can be modified in several different ways. Basic snakes try to minimize their areas (consequence
of the prior terms). But we can have balloons by putting in prior terms that try to make the area as big
as possible. We can also add regional terms (check Ishihara and Geiger!!). Alternative algorithms are more
effective than steepest descent.

2.2 Bayesian Interpretation of Snakes

Bayesian interpretation. There is a natural Bayesian interpretation of snakes. This shows that the energy
imaging term —|VI|? is not very sensible (as was realized in practice fairly soon). Technically this requires
taking the continuous formulation and discretizing it.

Specify a generative model for the image intensity gradients (see notes for lecture 1):

(FIH0) = [T P92 [T Poss (9262, Q
zel zeQ/T
P0) = ewl= [5ol (oF + AT). (4)

MAP estimation of I" corresponds to minimizing;:

—log P({|VI|}|T) — log P(T"), (5)

where we see that the second term reduces to the spatial terms in the energy function for the snakes.
We now concentrate on the first term which can be re-expressed as:

S log P ((FI@) — Y log Py (VI@) = — Y log L2WVIE) 5~ p (1),)

zFer FeQ/T zFer POff(WI(f)D TeQ

We see that the second term is independent of I' and hence can be dropped during MAP estimation. We
on (| VI (X

P ff((‘|VI((2)||))
the log-likelihood function is from lecture 1 — and it certainly is not —|VI ()|?! Instead it rises slowly from
a minimum at |VI | = 0 and (roughly) asymptotes. This is because if |V1| is large then it is almost certainly
an edge — but —|VI(7)|? rewards big edges too much at the expense of small edges.

Models like equation (6) were used, in combination with a smoothness prior, to model roads in aerial
images (Geman and Jedynak).

then see that log corresponds to the term —|VI(Z)[2. But we know what the typical shape of

3 Probabilistic Models of Images: (I) Region Competition

The goal of image segmentation is to decompose the image domain €2 into M non-overlapping sub-domains
{; : i =1,..., M} — such that Ufil Q, = Qand Q;NQ; =0, ¢ # j. The boundaries of sub-region i is
specified by 0€;. We defined T" to be the set of all the boundaries. The number of regions M is a random
variables — we do not know how many regions there will be in any image.

The region competition model (Zhu and Yuille 1996) assumes that the intensity, or intensity features, in
each subregion 2; are generated by a distribution parameterized by «;. Formally we write P({I(z,y) :
(x,y) € Qi} a;)P(a;). For example, a simple model is that the image intensities are drawn indepen-
dently at each position (x,y) from a Gaussian distribution — i.e. «; = (ui,02), P{I(x,y) : (z,y) €
Qitpis o) = Iy eo N(I(x,y)|ui,0?), where N(I(z,y)|pi,0?) is a Gaussian with mean u; and vari-
ance 7. By extending this formulation, we can also include the imaging term for the Mumford-Shah
model — «; corresponds to {J(z,y) : (z,y) € Q;} and there is a Gaussian prior defined on J specified by
(1/Z) exp{— [[, dzdyV J(z,y) - VJ(z,y)}. (Note: Zhu's work on minimax entropy learning was driven by
the need to discover other, more realistic, models of images that could be used).

Putting everything together gives a model:

PR, M {ai}) = o exp{~EI{}, {au), M}, 7)

where

M
E[{Q}, {ai}, M] = Zg/ dsaq, + AM — ZlogP {I(z,y) : (z,y) € Qi}t|ay) ZlogP (). (8)
i=1 i=1

We can express the model in a, more insightful, generative form:

P(IQ, @) P(a) P(QM)P(M), 9)

where

P(M) = - exp{-AM},

1 M
POIM) = Z-exo{=(/2 Y [ds,
N
P(I|Q,0) = [[P{I(z.y) : (z,y) € Qi}ow). (10)
=1

In other words, to generate an image you proceed in four steps: (I) sample M from P(M) — to generate
the number of regions in the image, (II) sample the shape of the regions {€2;} from P(Q2|M), (III) sample

the parameters «; for each region from P(«), and (IV) sample the images in each region from P({I(z,y) :
(2,y) € Qitloy).

In practice, it is very hard to do this sampling. The most difficult step is to sample from P(Q2]M) to
generate a partition of the image into regions (there have been few attempts to do this). But, using the
more advanced model in the next section, Tu and Zhu (2002) did from P({I(z,y) : (z,y) € ;}|a;) when
the a;’s were estimated from the images (their sampled results often looked similar to the input images).

We can also interpret this model in terms of encoding the image. Shannon’s information theory proposes
that if data is generated by a distribution P(x) then an example x should be encoded by —log P(x) bits. If
the distribution has a parameter «, then it is best encoded by finding a* = arg min, {— log P(z|«)}, which
is simply the maximum likelihood estimate. (recall discussion of information theory in earlier lectures).

3.1 Inference: Region Competition

The region competition algorithm was proposed to minimize the energy function in equation (8). The
algorithm is not guaranteed to converge to the global optimal solution because the energy function is highly
non convex.

Suppose the number M of regions is known. Then we can fix M and minimize E(Q, a, M) with respect
to Q and « alternatively.

This gives two (alternating) steps:

Solve o = argmax{// log P(o;|I(z,y))dzdy}, Vi=1,..., M. (11)
(o8

dl'(s) _ —p PI(v)|ax) -
= —FK,N, +log ——————n,.
dt 2 & PIW)|ans)

Here v denotes a point of the boundary I' between regions k£ and k+ 1, 7, is the normal to the boundary
curve. This equation is derived as gradient descent of the functional (calculus of variations).

The intuitions for these equations are clear. The regions k and k41 compete for ”ownership” of the pixels
on the boundary between the regions (by the log-likelihood term) and the curvature terms tries to make
the boundary as short (straight) as possible. In particular, if the probability distributions are Gaussians we
obtain:

(12)

—= 2 — 2
dr'(s) _ —p Lo (T—pw) {T—p) & 8
= P, {log 7 R 13
ar v gles T = R (13)

where T is the intensity mean in the window W and s? is the intensity variance.

Note: In practice, a window is used to get better estimate of the statistics (Zhu et al) — so we replace
the log-likelihood term on the pixel by the log-likelihood over the window. Other example involves texture
statistics I, 1.

But how to estimate the number M of regions? The following strategy was used (Zhu et al 1996): (i)
initialize with many (small) regions, (i) run the 2-stage iterative algorithm — this will make some regions
disappear (get squashed) while others grow large, (iii) remove the squashed regions, (iv) merge bigger regions
if their o’s are similar and if this decreases the energy (tradeoffs — need to estimate a single « for the combined
region, which increases the energy, but this may be compensated for by eliminating the boundary between
the regions and the reduced penalty for number of regions).

4 Probabilistic Models of Images: (II) Image Parsing

We now introduce a richer class of image models. The energy function in equation (8) was limited because
it used the same image model for each image region. The next step (Tu and Zhu 2002) was to allow there
to be several different models which could be used for each image. Formally, this required having families

of models — P(I € Q;|7,a)P(a|r)P(7), where 7 is the type of the model and « are its parameters. This
allows us to use models for texture, for smoothly varying intensity, for junk, or for image regions containing
smooth gradients. This model represents the images better but it leads to a more complex inference problem
— we know have to estimate the model class 7 as well as the model parameters . Note that there the
image models can be extended to include models of objects, as was done in (Tu, Chen, Yuille, Zhu 2005)
These generative models are illustrated in figure (2)(left panel). The effects of image parsing are shown in
figure (77).

The DDMCMC algorithm was proposed to perform inference for this richer class of models (Tu and Zhu
2002). Formally, the DDMCMC algorithm simulates a Markov chain MC =< Q,v, K > with kernel K in
space 2 and with probability v for the starting state. An element W € Q) is a parsing graph. We proceed
by defining a set of moves for reconfiguring the graph. These include moves to: (i) create nodes, (ii) delete
nodes, and (iii) change node attributes. We specify stochastic dynamics for these moves in terms of transition
kernels. Some types of moves are illustrated in figure (2)(right panel).

(a) Scene, Scene
/f Split
- -

. Merge
(a) (b) Text Backgr(;md— Text Background Face
[5)/8]/5]@) ()
[l /o] =2/ (o] (=1 /5]

(] @[] (] [}]

= = = [v] =127 57
(b)

Scene Diffusion Scene
_ Diftwson
Diffusion
= : e
L—.l e
A=

Figure 2: Left Panel: A generative model for images (a) and samples from models of objects — letters and faces (b).
Right panel: examples of moves which allow us to search through the space of W.

For each move we define a Markov Chain sub-kernel by a transition matrix IC,(W'|W : I) with a € A
being an index.
Each sub-kernel® is designed to be of Metropolis-Hastings form:

p(W'D)Qq(W|W' : Tsty(I))
PWDQa(W[W : Tstq(I))

Ko(WW 1) = Qo (W'|W : Tsto(I)) min{1, Y, WAEW (14)

where a transition from W to W’ is proposed (stochastically) by the proposal probability Q,(W'|W : Tst,(I))
which depends on features/tests Tst,(I)) performed on the image. These tests are accepted (stochastically)
by the acceptance probability:

p(W'D)Qo(W|W': Tsty(I))

WIW =) = mind L G50 0, (W Tsta(D) (%)

For more details about MCMC See the appendix.

The effectiveness of DDMCMC (i.e. its convergence rate) depends on the choice of the proposal proba-
bilities. In fact this is true of many real world applications of MCMC. So there is a separate modeling stage
which involves finding good proposals. This involves finding cues for the probable positions of edges in the
image, for the detection of faces and text.

1Except for one that evolves region boundaries.

=
|7/

{‘\
™ \\L@BL

d. Manual segmentation

Figure 3: Left Panel: the need for object models to obtain good segmentation. The input image (a),
segmentation by a model (Tu znd Zhu) which does not use models of objects, (c) the image re-sampled from
the Tu and Zhu model, (d) the groundtruth segmentation. Right Panel: the effect of using object models.
The input image (upper left) and the proposals for faces and text (upper right). The segmentation (lower
left), the text and faces detected (lower center), and the re-sampled image (lower right).

4.1 Generative Models

The number K of intermediate nodes is a random variable, and each node ¢ = 1, ..., K has a set of attributes
(Li, ¢, ©;) defined as follows. L; is the shape descriptor and determines the region R; = R(L;) of the image
pixels covered by the visual pattern of the intermediate node. Conceptually, the pixels within R; are child
nodes of the intermediate node i. (Regions may contain holes, in which case the shape descriptor will have
internal and external boundaries). The remaining attribute variables (¢;, ©;) specify the probability models
P(Xr(L,)|Gi, Li, ©;) for generating the sub-image Iz, in region R(L;). The variables ¢; € {1,...,66} indicate
the visual pattern type (3 types of generic visual patterns, 1 face pattern, and 62 text character patterns),
and ©; denotes the model parameters for the corresponding visual pattern (details are given in the following
subsections). The complete scene description can be summarized by:

W= (K7{(CZ7L’L?®2) vi= 17277K})

The shape descriptors {L; : i = 1,..., K} are required to be consistent so that each pixel in the image is
a child of one, and only one, of the intermediate nodes. The shape descriptors must provide a partition of
the image lattice A = {(m,n) : 1 <m < Height(I),1 < n < Width(I)} and hence satisfy the condition

A=US R(Li), R(L)NR(L;) =0, Vi j.

The generation process from the scene description W to I is governed by the likelihood function:

K
p(I[W) = Hp(IR(Li) |Gis Li, ©;).

i=1
The prior probability p(W) is defined by
K
p(W) = p(K) HP(Li)P(CHLi)p(@i\Ci)-
i=1

In our Bayesian formulation, parsing the image corresponds to computing the W* that maximizes a
posteriori probability over €2, the solution space of W,

W = arg max p(W|I) = arg max p(I|W)p(W). (16)

It remains to specify the prior p(W) and the likelihood function p(I|W). We set the prior terms p(K)
and p(0;|¢;) to be uniform probabilities. The term p(¢;|L;) is used to penalize high model complexity.

4.2 Generative intensity models

We use four families of generative intensity models for describing intensity patterns of (approximately)
constant intensity, clutter/texture, shading, and faces (a fifth model for letters is omitted for reasons of
space). The first three are similar to those defined in (Tu and Zhu 2002).
1. Constant intensity model (= 1:.

This assumes that pixel intensities in a region R are subject to independently and identically distributed
(iid) Gaussian distribution,

nIrpl¢=1L0)= [[G, —wms?), ©=(uo0)

veER(L)

2. Clutter/texture model ¢ = 2:.
This is a non-parametric intensity histogram h() discretized to take G values (i.e. is expressed as a vector
(h1, ha,...,hg)). Let nj be the number of pixels in R(L) with intensity value j.

(IR(L |C—2 L, @ H h Hh hl,hg,...,h)

vER(L)

3. Shading model (=3 and ¢ =5, ...,66:.
This family of models are used to describe generic shading patterns, and text characters. We use a
quadratic form
J(x,y;0) = az® + bry + cy® + dx + ey + f,

with parameters © = (a,b,c,d, e, f,0). Therefore, the generative model for pixel (z,y) is

ps(Ir(L)[¢ € {3,(5,...,66)},L,0) = [] G, —Jui0?), ©=(a,b,c.de,f0).

vER(L)

4. The PCA face model ¢ = 4:.

The generative model for faces is simpler and uses Principal Component Analysis (PCA) to obtain
representations of the faces in terms of principal components {B;} and covariances X. Lower level features,
also modeled by PCA, can be added. Figure 7?7 shows some faces sampled from the PCA model.

pa(Ir(L)[¢ = 4,L,0) = G(Ip(r) — ZA B;i¥), ©=(A1,., A,).
5. Models of Text ¢ = 5:. Conceptually straightfroward. Too complex to include.

4.3 Proposal Probabilities

The proposal probabilities g(w;|Tst;(I)) make proposals for the elementary components w; of W. For
computational efficiency, these probabilities are based only on a small number of simple tests Tst;(I). The
cues are of the following forms:

1. Edge Cues. These cues are based on edge detectors. They are used to give proposals for region
boundaries (i.e. the shape descriptor attributes of the nodes). Specifically, we run the Canny detector at
three scales followed by edge linking to give partitions of the image lattice. This gives a finite list of candidate
partitions which are assigned weights, see section (5.2.3). The probability is represented by this weighted
list of particles (similar to particle filtering).

2. Binarization Cues. These cues are computed using a variant of Niblack’s algorithm. They are
used to propose boundaries for text characters (i.e. shape descriptors for text nodes), and will be used in
conjunction with proposals for text detection. Like edge cues, the algorithm is run at different parameters
settings and represents the discriminative probability by a weighted list of particles indicating candidate
boundary locations.

3. Face Region Cues. These cues are learnt by a variant of AdaBoost which outputs probabilities
(Hastie, Tibishani, Friedman). They propose the presence of faces in sub-regions of the image. These cues
are combined with edge detection to propose the localization of faces in an image.

4. Text Region Cues. These cues are also learnt by a probabilistic version of AdaBoost. The algorithm
is applied to image windows (at a range of scales). It outputs a discriminative probability for the presence
of text in each window. Text region cues are combined with binarization to propose boundaries for text
characters.

5. Shape Affinity Cues. These act on shape boundaries, produced by binarization, to propose text
characters. They use shape context cues and information features to propose matches between the shape
boundaries and the deformable template models of text characters.

6. Region Affinity Cues. These are used to estimate whether two regions R;, R; are likely to have
been generated by the same visual pattern family and model parameters. They use an affinity similarity
measure of the intensity properties Ig,,Ig;.

7. Model Parameter and Visual Pattern Family cues. These are used to propose model parameters
and visual pattern family identity. They are based on clustering algorithms, such as mean-shift. .

In our current implementation, we conduct all the bottom-up tests Tst;(I),j = 1,2,..., K at an early
stage for all the probability models g;(w;|Tst;(I)), and they are then combined to form composite tests
Tst, (I) for each subkernel K, in equations (14,15).

4.4 Control Structure of the Algorithm

The control strategy used by our image parser explores the space of parsing graphs by a Markov Chain Monte
Carlo sampling algorithm. This algorithm uses a transition kernel K which is composed of sub-kernels I,
corresponding to different ways to reconfigure the parsing graph. These sub-kernels come in reversible pairs?
(e.g. birth and death) and are designed so that the target probability distribution of the kernel is the
generative posterior p(W|I). At each time step, a sub-kernel is selected stochastically. The sub-kernels
use the Metropolis-Hasting sampling algorithm, see equation (14), which proceeds in two stages. First, it
proposes a reconfiguration of the graph by sampling from a proposal probability. Then it accepts or rejects
this reconfiguration by sampling the acceptance probability.

To summarize, we outline the control strategy of the algorithm below. At each time step, it specifies
(stochastically) which move to select (i.e. which sub-kernel), where to apply it in the graph, and whether
to accept the move. The probability to select moves p(a : I) was first set to be independent of I, but we
got better performance by adapting it using discriminative cues to estimate the number of faces and text
characters in the image (see details below). The choice of where to apply the move is specified (stochastically)
by the sub-kernel. For some sub-kernels it is selected randomly and for others is chosen based on a fitness
factor (see details in section (5)), which measures how well the current model fits the image data.

2Except for the boundary evolution sub-kernel which will be described separately, see Section 5.1.

The basic control strategy of the image parsing algorithm

1. Initialize W (e.g. by dividing the image into four regions), setting their shape descriptors,
and assigning the remaining node attributes at random.

2. Set the temperature to be T}pt.

3. Select the type a of move by sampling from a probability p(a), with p(1) = 0.2 for faces,
p(2) = 0.2 for text, p(3) = 0.4 for splitting and merging, p(4) = 0.15 for switching region
model (type or model parameters), and p(5) = 0.05 for boundary evolution. This was modified
slightly adaptively, see caption and text.

4. If the selected move is boundary evolution, then select adjacent regions (nodes) at random
and apply stochastic steepest descent, see section (5.1).

5. If the jump moves are selected, then a new solution W’ is randomly sampled as follows:

— For the birth or death of a face, see section (5.2.2), we propose to create or delete a
face. This includes a proposal for where in the image to do this.

— For the birth of death of text, see section (5.2.1), we propose to create a text character
or delete an existing one. This includes a proposal for where to do this.

— For region splitting, see section (5.2.3), a region (node) is randomly chosen biased by
its fitness factor. There are proposals for where to split it and for the attributes of the
resulting two nodes.

— For region merging, see section (5.2.3), two neighboring regions (nodes) are selected
based on a proposal probability. There are proposals for the attributes of the resulting
node.

— For switching, see section (5.2.4), a region is selected randomly according to its fitness
factor and a new region type and/or model parameters is proposed.

e The full proposal probabilities, Q(W|W : I) and Q(W'|W : I) are computed.

e The Metropolis-Hastings algorithm, equation (14), is applied to accept or reject the
proposed move.

6. Reduce the temperature T'= 1+ Tyt X exp(—t X ¢|R|), where t is the current iteration step,
c is a constant and |R)| is the size of the image.

7. Repeat the above steps and until the convergence criterion is satisfied (by reaching the max-
imum number of allowed steps or by lack of decrease of the negative log posterior).

5 The Markov Chain kernels

This section gives a detailed discussion of the individual Markov Chain kernel, their proposal probabilities,
and their fitness factors.

5.1 Boundary Evolution

These moves evolve the positions of the region boundaries but preserve the graph structure. They are
implemented by a stochastic partial differential equation (Langevin equation) driven by Brownian noise and
can be derived from a Markov Chain. The deterministic component of the PDE is obtained by performing
steepest descent on the negative log-posterior, as derived in (Zhu and Yuille 1996).

We illustrate the approach by deriving the deterministic component of the PDE for the evolution of the
boundary between a letter T; and a generic visual pattern region R;. The boundary will be expressed in
terms of the control points {S,,} of the shape descriptor of the letter. Let v denote a point on the boundary,
ie. v(s) = (z(s),y(s)) on I'(s) = OR; N OR;. The deterministic part of the evolution equation is obtained
by taking the derivative of the negative log-posterior —log p(W|I) with respect to the control points.

More precisely, the relevant parts of the negative log-posterior, see equation (16,4.1) are given by F(R;)
and E(T};) where:

BR) = [[{=1ogp(I(e.)l Ydady 7] R|" + AR,

and

B(T;) = / / log p(I(z, y) 6,)dzdy + A R(L;)|* — logp(L;).

Differentiating F(R;) + E(T;) with respect to the control points {S,,} yields the evolution PDE:

iS5, SE(R) BT
dt 5S,m 0Sm
B /[_ 5E(Rz) _ 6E(Tj)] 1 ds
o ov dv [JI(s)]
[aos P b L e DG, (G
= / ()[logp(I(U),GCJ)_F 7(|Dj|1_a |Di|1_a) >\ +D(GSJ()HGT())]lJ(S)|d7

where J(s) is the Jacobian matrix for the spline function. (Recall that o = 0.9 in the implementation).
The log-likelihood ratio term log % implements the competition between the letter and the generic

region models for ownership of the boundary pixels.

5.2 Markov chain sub-kernels

Changes in the graph structure are realized by Markov chain jumps implemented by four different sub-kernels.

5.2.1 Sub-kernel I: birth and death of text

This pair of jumps is used to create or delete text characters. We start with a parse graph W and transition
into parse graph W’ by creating a character. Conversely, we transition from W' back to W by deleting a
character.

The proposals for creating and deleting text characters are designed to approximate the terms in equa-
tion (??). We obtain a list of candidate text character shapes by using AdaBoost to detect text regions
followed by binarization to detect candidate text character boundaries within text regions. This list is rep-
resented by a set of particles which are weighted by the similarity to the deformable templates for text
characters (see below):

Si (W) = { (2, 0y s p=1,2,.., Ni,).
Similarly, we specify another set of weighted particles for removing text characters:

Sll() { (2” ,wll) LV = 1,2, ...,Nll}.

{z(“)} and {zly)} represent the possible (discretized) shape positions and text character deformable templates

for creating or removing text, and {wlu)} and {wi } are their corresponding weights. The particles are then
used to compute proposal probabilities

wlr(W’) wll(W)
M QuUVIWLD) = 75
Do s Wiy Dot Wy

The weights w) and w l) for creating new text characters are specified by shape affinity measures, such

QlT(W/|W : I) =

as shape contexts. For deleting text characters we calculate wl . dlrectly from the likelihood and prior on

. . : i os POW'D) p(WID)
the text character. Ideally these weights will approximate the ratios PV & and W

5.2.2 Sub-kernel II: birth and death of face

The sub-kernel for the birth and death of faces is very similar to the sub-kernel of birth and death of text.
We use AdaBoost to detect candidate faces. Face boundaries are obtained directly from using edge detection

to give candidate face boundaries. The proposal probabilities are computed similarly to those for sub-kernel
I

10

5.2.3 Sub-kernel III: splitting and merging regions

This pair of jumps is used to create or delete nodes by splitting and merging regions (nodes). We start with
a parse graph W and transition into parse graph W’ by splitting node 7 into nodes j and k. Conversely, we
transition back to W by merging nodes j and k into node i. The selection of which region i to split is based
on a robust function on p(Ig,|(;, Li, ©;) (i.e. the worse the model for region R; fits the data, the more likely
we are to split it). For merging, we use a region affinity measure and propose merges between regions which
have high affinity.

Formally, we define W, W":

W = (Ka (Ckvav(—)k%Wf) = W/ = (K+ 17 (CZ7L27@’L)7 (CjaLJ7@])7W7)

where W_ denotes the attributes of the remaining K — 1 nodes in the graph.

We obtain proposals by seeking approximations to equation (??) as follows.

We first obtain three edge maps. These are given by Canny edge detectors at different scales. We use
these edge maps to create a list of particles for splitting Ss,.(W). A list of particles for merging is denoted
by Sz (W’).

Sa (W) = { 4, wi) s p=1,2,.., N3}, Say(W') = { (23, wl) s v=1,2,..., Ny}

where {zé’f)} and {z;l’ } represent the possible (discretized) positions for splitting and merging, and their
weights {ws, }, {ws;} will be defined shortly. In other words, we can only split a region 7 into regions j and
k along a contour 24, (i.e. z, forms the new boundary). Similarly we can only merge regions j and k into
region ¢ by deleting a boundary contour z%;.

We now define the weights {ws, }, {ws;}. These weights will be used to determine probabilities for the
splits and merges by:

wsr (W' ws (W
Qs (W'|W 1) = fv(i()ﬂ) Qu(W[W':1) = %
Z/_L:l w37‘ ZV:l w3l
. Again, we would like w4, and wf; to approximate the ratios = ((VV[I,/,I‘II)) and 2 ((VV[I/,II‘II)) respectively. £ ((VV[‘/,/”II)) is
given by:
pW'D) p(Ir: (G Li, ©)p(Lg; G5, Ljs ©5) p(Gis Li, ©4)p(G5, Ly, ©5) p(E +1)
p(WI) p(Ir, ¢k, Lk, O) P(Crs L, Or) p(K)
This is expensive to compute, so we approximate 2 ((W|‘II)) and 5 (VVVVJ‘II)) by:
3r —
(IRk‘<k7Lka®k) (Ck?aLk:a@k)
v Ri7 R;) o
Wéz) _ q(J) (k) (Ck k) (18)

p(Ig,[Cis Li, ©4)p(Ig, ¢, Ly, ©5) p(Ciy Li, ©:)p(Cj, Ly, ©5)
Where ¢(R;, R;) is an affinity measure of the similarity of the two regions R; and R; (it is a weighted sum
of the intensity difference |I; — I;| and the chi-squared difference between the intensity histograms), q(L;) is
given by the priors on the shape descriptors, and ¢(¢;, ©;) is obtained by clustering in parameter space.

5.2.4 Jump II: Switching Node Attributes

These moves switch the attributes of a node i. This involves changing the region type ¢; and the model
parameters ©;.
The move transitions between two states:

= ((CivLi’@i)’W*) = W= ((C1{7L27®2)7W*)

11

The proposal should approximate:
pW'L) _ p(Ig,|¢;, Ly, ©)p(&i, L, ©7)
p(WI) p(Ig,[Gis Li, ©:)p(i, Lis ©3)

We approximate this by a weight wfl”) given by

L) q(L7)q(&i, O7)
4 p(Ir, |G, Li, ©4)p(Ciy Li, ©4)

/@/

where ¢(L})q(¢},©}) are the same functions used in the split and merge moves. The proposal probability is

the weight normalized in the candidate set, Q4(W/|W : I) = %
n=1%a

Appendix: Markov Chain kernels and sub-kernels

For each move we define a Markov Chain sub-kernel by a transition matrix ICo(W/|W : I) with @ € A
being an index. This represents the probability that the system makes a transition from state W to state
W’ when sub-kernel a is applied (i.e. > ., KCo(W/|W : I) = 1, V W). Kernels which alter the graph
structure are grouped into reversible pairs. For example, the sub-kernel for node creation K, . (W'|W : 1) is
paired with the sub-kernel for node deletion /o ;(W'|W : I). This can be combined into a paired sub-kernel
Ko = parlarWW : 1) 4+ paillai(W|W : 1) (par + par = 1). This pairing ensures that ICo(W/|W : I) =0
if, and only if, ICo(W|W' : I) = 0 for all states W, W’ € 2. The sub-kernels (after pairing) are constructed
to obey the detailed balance condition:

(WK (W' W 2 T) = p(W' DK, (W]W :). (19)
The full transition kernel is expressed as:

KWW - 1 Zpa DWW 1), > pla:I)=1, pla:T)>0. (20)

To implement this kernel, at each time step the algorithm selects the choice of move with probability
p(a : I) for move a, and then uses kernel IC,(W'|W;1) to select the transition from state W to state W’.
Note that both probabilities p(a : I) and K, (W'|W;I) depend on the input image I.

The full kernel obeys detailed balance, equation (19), because all the sub-kernels do. It will also be
ergodic, provided the set of moves is sufficient (i.e. so that we can transition between any two states
W, W’ € Q using these moves). These two conditions ensure that p(JW/I) is the invariant (target) probability
of the Markov Chain.

Applying the kernel K, updates the Markov chain state probability u;(W) at step ¢ to p,1(W') at
t+1:

Pt (W) =" Koy (W|W 2 g (W), (21)
w

In summary, the DDMCMC image parser simulates a Markov chain MC with a unique invariant proba-
bility p(W/I). At time ¢, the Markov chain state (i.e. the parse graph) W follows a probability p; which is
the product of the sub-kernels selected up to time ¢,

W~ (W) = v(W,) - [Kay 0 Kagay 0 -+ - 0 Koy (Wo, W) — p(WI). (22)

where a(t) indexes the sub-kernel selected at time ¢. As the time t increases, p:(W') approaches the pos-
terior p(W|I) monotonically at a geometric rate independent of the starting configuration. The following
convergence theorem is useful for image parsing because it helps quantify the effectiveness of the different
sub-kernels.

12

Theorem 1 The Kullback-Leibler divergence between the posterior p(W|I) and the Markov chain state prob-
ability decreases monotonically when a sub-kernel Ko,V a(t) € A is applied,

KLpWID || (W) = KL(pW D) || prr42(W)) = 0 (23)

The decrease of K L-divergence is strictly positive and is equal to zero only after the Markov chain becomes
stationary, i.e. @ =p.

The theorem is related to the second law of thermodynamics, and its proof makes use of the detailed
balance equation (19). This KL divergence gives a measure of the “power” of each sub-kernel K, and
so it suggests an efficient mechanism for selecting the sub-kernels at each time step, see Section (?7?7). By
contrast, classic convergence analysis shows that the convergence of the Markov Chain is exponentially fast,
but does not give measures of power of sub-kernels.

Proof. For notational simplicity, we ignore the dependencies on the kernels and probabilities on the input
image I.

Let p:(We) be the state probability at time step ¢. After applying a sub-kernel IC,(Wyi1|Wy), its state
becomes W, 1 with probability:

pre+1(Wega) Zut W)Ka(Wega[Wy). (24)

The joint probability pu(Wy, Wiiq) for Wy and Wt+1 can be expressed in two ways as:

(Wi, Wiy1) = e (W) Ko (W1 [We) = pie1 (Weg1)paae (We|[Wiga), (25)

where pae(Wi|[Wip1) is the “posterior” probability for state Wy at time step ¢ conditioned on state Wiy
at time step £ + 1.

This joint probability pu(W;, Wi41) can be compared to the joint probability p(W;, Wii1) at equilibrium
(i.e. when p;(Wy) = P(W;)). We can also express p(Wy, Wiy 1) in two ways:

p(Wi, Wiy1) = p(We) Ko (Wig1|Wi) = p(Wip 1)Ko (Wig1, We), (26)
where the second equality is obtained using the detailed balance condition on /.
We calculate the Kullback-Leibler (K-L) divergence between the joint probabilities P(W;, Wyi1) and

(Wi, Wiiq) in two ways using the first and second equalities in equations (25,26). We obtain two expressions
(1 & 2) for the K-L divergence:

R Y
S (t) - Ka(Wig1|W2)
1 Zp W) %jlic (Wesa[We)) log = i s
= KL(p() || (W) (27)
= Z ZKG<Wt|Wt+1))p(Wt+1)1Og PWi 1)Ko (Wi Wit 1)

Wiit Wi .ut+1(Wt+1)pMC(Wt|Wt+1)
= KLWi1) [| per1(W)) + Epew,,) [IKLICa(We|[Wip1)[Ipame (We|[Wiy))] (28)

We equate the two alternatives expressions for the KL divergence, using equations (27) and (28), and
obtain

KLpW) || p:(W)) = KL(p(W) [| pe1(W)) = Epw,) K L(Kagty (We|Weg 1) |[prc (Wi Wit1))]

This proves that the K-L divergence decreases monotonically. The decrease is zero only when KCq¢) (Wi |[Wiy1) =

pame(We|Wis1) (because KL(p||p) > 0 with equality only when p = p). This occurs if and only if
w(W) = p(W) (using the definition of pae(Wi|Wit1), given in equation (25), and the detailed balance
conditions for Ky (Wi|Wiy1)). [End of Proof].

13

