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1 Introduction

This lecture discusses way to detect faces and text in natural images. The strategy is to combine multiple
cues to build a strong classifier — which involves selecting cues and weighting their importance. This can be
formulated as a regression problem or, in machine learning terms, to AdaBoost.

An important issue here is the idea of invariance to nuisance variables. The image of a face depends on
the identity of the person, the lighting conditions, and other factors. These can be thought of as nuisance
variables. They must either be modeled explicitly or we must find cues which are invariant to them. Similarly
we can treat text as "texture” and treat the identity of the letters, and the form of the font, as nuisance
variables. Then we can search for cues which are invariant to these nuisances.

The nuisance variables must be modeled explicitly if we are making generative modesls of the object —i.e.
models of form P(I|W), P(W) that enable us to sample a configuration W of the nuisance variables (from
P(W)) and then an image I from P(I|WW)). But we do not need models this detailed for detection except
in really extreme circumstances (there are not make objects in the world that look like faces or text). If we
want to perform the harder tasks of recognizing faces (e.g., Obama or Romney) then we have to model some
of these nuisance variables. Similarly is we want to read the text — does it say ”Obama” or "Romney”?

The methods in this lecture are limited by this requirement — e.g., invariance to nuisance variables.
Suppose you want to build a cat detector — how can you find visual cues/features of the cat which are
invariant to the different poses of the cat? (Cats are extremely flexible). This is much harder, and maybe
impossible, compared to finding invariant features for the face of a cat — because properties like the relative
positions of eyes, mouth, nose, ears, and whiskers are fairly constant for all cats. But in general, if you are
detecting objects which has large variations in their spatial relationships (e.g., cats, groups of cats, groups
of humans) then it becomes very hard to get invariance to nuisance variables — and so more sophisticated
models are needed, (see later lectures).

2 Regression and AdaBoost

Consider the problem of detecting an object like a face or text. This can be formulated as a binary classifi-
cation problem. The data is a set of images {I"} and binary-valued labels {y*} (y* € {—1,1}). This is an
example of regression, where the goal is to learn a conditional probability distribution P(y|I).

How can this be modeled? The modeling task is to specify a class of distributions P(y|I) and learn-
ing/estimating which of these distribution to use (based on training data). There are a range of possible
distributions which can be used.

One class is non-parametric: we represent the joint distributions as P(I,y) = (1/N) 25:1 SI-TIMd(y—
y*). This can be smoothed by a kernel K (e.g., Parzen windows, like a Gaussian ) to take form P(I,y) =
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Intuitively, we classify images as object y = 1 or non-obejext y = —1 based on how similar the input image

I is to to classified examples {1*,y*}. This approach can be modified to replacing the image I by features
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F(I) extracted from the image, yielding a conditional distribution P(y|I) =



Another approach is parametric: we represent the conditional distribution by P(y|I) = ﬁ exp{y\ -

¢(I)}. The reduces learning to estimate the parameter A by maximum likelihood (ML), or some other
estimator. from the training data {(I*,y*)}. Here ¢(I) are statistics, or features, extracted from the images
(more about them later). There are two extreme cases:

Firstly: if the number of features is fixed (this corresponds to classical regression in statistics). In this
case ¢(I) is typically low-dimensional. ML estimation selects \* = argmin ; {—log P(y*[I*,A\)} (which
is a convex minimization problem — computationally tractable since Z[\, 1] is easily computable, it equals
>y exp{yr- o(I)} = exp{A- ¢(I)} + exp{—A- ¢(I)}.

Secondly: suppose the number of possible features is very large. For example we can specify a large
dictionary of features {¢*(I)} and decide to select only to select a small subset of them. This can be
formulated as P(y|I,\) = ﬁ exp{)_, A*-¢*(I)}. One way to impose a small subset by by using a sparsity

prior, such as P(\) = L exp{—K Y, |\a|}. This prior introduces an L' (sparsity) norm when we perform
MAP estimation — i.e. solve
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This encourages sparse solutions (i.e. with A; = 0 for most @). This is an alternative to the better
known AdaBoost algorithm (discussed below). Various authors (e.g., Muller at al, Lebanon and Lafferty)
have argued that better results are obtained using this approach (theoretically better justified, slightly more
computation).

Note that this formulation can easily be generalized to multiple outputs. Mathematically, we simply
replace y¢(I) by ¢(y,I). This enables y to take multiple values or even be vector-valued — ¢ = (y1, ..., yn).
The only difference is that if  is multi-valued, then it may become computationally intractable to compute
the normalization term Z[A,I] (unless the distribution can be expressed as a probability distribution defined
over a graph which does not have closed loops — similar to ML learning in earlier lectures).

3 Features

For practical applications, the choice of feature, or feature directory, is critical. In principle, we could address
this problem by making the dictionary so large that it includes every possible feature. But large dictionaries
require a large amount of data in order to avoid over-generalization. In addition, the way the exponential
models combine cues — by weighted linear addition — is not necessarily optimal.

Suppose we have two cues ¢1(I), p2(I). The best way to combine them is by computing the joint con-
ditional distribution P(y|¢1(I), ¢2(I)). This can usually not be expressed in exponential form P(y|I) =
ﬁ exp{A1 - $1(I) + A2 - ¢o(I)}. Similarly, if we have more cues ¢1(I), ..., ¢, (I) then we should combine
them by the joint conditional distribution P(y|¢1(I),...,#,(I)) (see Minsky and Pappert, for limitations
about what can be expressed in the exponential form — note, their arguments were for perceptrons but
they carry over to these cases). The big problem, however, is that unless we have a parametric form for
P(y|#1(X), ..., ¢ (I)) then it will require an exponential amount of data in order to learn it. Hence the ex-
ponential form is used partly for practical reasons, it means that the number of parameters \ scales linearly
with the number of features (instead of exponentially).

Another important issue is that the cues should be, ideally, invariant to nuisance variables. For example,
the image of a face will depend on the identity of the person, the lighting conditions, and the viewpoint. We
can either choose to model these variables explicitly, or try to find invariant features. It is very hard to get
features which are invariant to viewpoint, so typically viewpoint is fixed.

What properties of faces are relatively invariant to identity and lighting changes? For example, (i) the
intensity of the forehead is almost always brighter than the intensity of the eye/eyebrow region, and (ii) faces
are symmetric and so images of faces will tend to be symmetric (unless the lighting conditions are extremely
asymmetric). Properties based on the derivatives of images will tend to be more invariant (consider earlier
lectures — lecture three?). Successful features (e.g., Viola and Jones) can be made by Haar basis function



Bq(z), where By is a vector whose elements are {—1,0,1} with the constraint that ) B,(z) = 0 (i.e.
derivative filter). See figure (1). Then we can use a polarity and a threshold to produce a binary-classifier.

Figure 1: Left panel: The filters are rectangular binary-valued (£1). Image window is 24 x 24, then a total
of 49,396 features, rectangular features are used because of computational efficiency (integral images). Right
panel: the top two filters respond to face symmetry and to the edge between forehead and eye region.

It is harder to find invariant features for text. The images of text vary much more — e.g., AbC' is different
than T'gR. If we do principal component analysis of feces we obtain a 15 dimensional space, but we get 150
dimensions for text. Nevertheless there are invariances if we treat ’text as texture’: (i) there are usually
no edges in the regions directly above and below text, (ii) text regions have frequent edges in the x and
y directions. This enables us to obtain features (Chen and Yuille) which are fairly invariant to different
types of text. See figure (?7?). In total, In summary, we had: (i) 79 first class features including 4 intensity
mean features, 12 intensity standard deviation features, 24 derivative features, (ii) 14 second class features
(histograms), and (iii) 25 third class features (based on edge linking).

We mention two other issues. Firstly, in practice, cascades methods are used to speed up the algorithm
(and arguably to allow it to enable it to represent combinations of features which are hard to express by
an exponential additive model). The strategy (Viola and Jones) is like an attentional mechanism. It uses a
small number of cues to rapidly decide that there are no faces/text in large regions of the images (surprisingly
few cues can be used to do this). Each stage of the cascade can be trained by AdaBoost and constrained so
that the number of false negatives is extremely small (need more details about this!). Secondly, the number
of negative examples (i.e. non-faces, non-text) is much larger than the number of positives. This motivates
a strategy where the negative examples are initially selected at random from all the negative examples. The
AdaBoost algorithm is run to yield a classifier. This is run on the full dataset and the false positives are used
as negative examples for a new run of the AdaBoost algorithm. This procedure is repeated until convergence.
For example, for text the false positives are typically found in vegetation or in repetitive structure on building
(which might be series of the digit 1). False positives in the first run are typically of these types. This means
that the next runs of AdaBoost will select cues that deal with the examples which are hard to classify.

4 AdaBoost

AdaBoost is motivated by the idea of trying to combine together weak classifiers, which classifiers which are
only partially successful, to make a strong classifier (the relationship to regression was only realized a lot



Figure 2: Left panel: The means of the modul of the x (top left0 and y (top right) derivatives have a
standard pattern for text. The x-derivatives are large with large variance (bottom left). The y-derivatives
are small everywhere with small variance (bottom right). The averages are different above and below the
text. Center panel: the riginal image (top left) has intensity histogram (top right) with only a single peak.
But the joint histograms of intensity and intensity gradient shows two peaks (bottom left) and shown in
profile (bottom right). The intensity histogram is contaminated by edge pixels which have high intensity
gradient and intensity values which are intermediate between the background and foreground mean intensity.
The intensity gradient information helps remove this contamination. Right panel: ideally we would combine
features by taking their conditional distributions and performing the log-likelihood ratio test, but this requires
an amount of data which is exponential in the number of cues/features, unless we have a parametric model
for the conditionals.

later). Each weak classifier can be expressed by ¢;(.), where ¢;(I) € {—1,1}. The error rate on the training
data D = {(Ia,ya : @ =1,.., N} is given by (1/N) Zivzl f(¢i(La), ya), where f(¢i(La),vya) =1 if ¢i(La) # Ya
and f(¢:(1a),ya) = 0 if ¢;(1,) = yo. A weak classifier has error rate > 0.5. If a classifier has error rate less
than 0.5 then we can convert it into a weak classifier by changing the sign of its output (i.e. if a friend’s
advice is always wrong then it is best to do the opposite of what he/she suggests).

A strong classifier is constructed to be of form ). A;j¢;(I) — i.e. taking linear combinations of the weak
classifiers. This is exactly like an exponential model because, after learning the \’s, the probability model
will classify an input I by y* = arg max, P(y|I), which corresponds to y* = sgn(}_, Ai¢:(I).

AdaBoost can be expressed concisely as doing coordinate descent for a function:

Z[)‘] = Z exp{_ya Z )\i(bi (Ia)}' (2)

This is initialized by setting A\; = 0, Vi. Then it is minimized as follows. Let {\!} be the set of weights
at time ¢. At each ¢, solve %Z[A] =0 to get A\l + A;. For each i compute Z; = Z[\}, ..., AL + Ay, ..., AN]
and calculate ¢ = arg min; Z;. Then set A\ = AL+ A; and A;H = AL Vj # i. In other words, we calculate
the decrease in Z due to changing each v?zeight i, and then change the weight that decreases Z most. As
we will show, the form of Z means that it is possible to form the required computations directly.

It can easily be checked that 1/nZ is an upper bound of the error of the strong classifier ), A; - ¢;(I).
This follows by comparing each term in the summation and using the fact that miss-classification occurs
when yq >, Ai - ¢i(1,) < 0 and using the fact that exp A > 1if A >0, and exp A > 0if A <O0.

To perform the operations, we first define D;" = {(ya,1a) : ¥a0i(1s) > 0and D; = {(ya,1a) : va0:i(1s) <0
(i.e. D is the set of examples which are classified correctly by weak classifier ¢;(.). Then define w!(a) =
(1/Z;) exp{—ya y_; \i#i(1,)} where Z; is chosen to normalize so that Y, w'(z) = 1, this term is small if the
data example a is well classified by the current strong classifier —i.e. yo . Algi(I,) > 0 and is large if the
data is miss-classified — i.e. y, Y_; Aigp;(I,) < 0.

The partial derivative condition ai,\iZ [A] = 0 can be expressed as Y, ya¢;(La) exp{—ya >, Aidi(Ia)} =0,
where \; = Al Vi # j and \; = A\l + A,;. Using the fact that y,¢;(I,) =1lifa € Dj+ and y,¢;(I,) = —1ifa €



Dy, we can express thisas 30, c p+ exp{=yal;0;(Ta)} exp{—ya 32, Ni¢i(Ta)} = Xocp- exp{=yad;d;(Ta)} exp{—ya 325 Nidhi(]
Simply this to exp{—A;} > cp+ wj(a)’ = exp{—=A;} > o1 wj(a)’
J J
This gives the solution:
1 ZaED;r w§ (a)

A;=-log =——1—F——
2 ZaED]._ w§(a)

GIVE INTUITION!! Discuss what the weights are for. To take into account the effect of the classifiers
that have already been selected. The worst classifier is right fifty percent of the time.
Similarly, we can compute the decrease in Z caused by changing A} to \j+A4;. Z = 2Z{exp{—Ai} 3, c p+ wj(a)+

3)

exp{Ai} > ,cp- wj(a)}. Hence this can be computed directly so that we can estimate i. It gives Z =
Zt{\/ZaeD;r w; (a)\/ZaeD].‘ wj(a)}. So we pick J to minimize \/E:QGD;r w; (a)\/ZaeD].‘ wj(a).

Observe that the decrease of Z is due to the factor 2\/ZaeDJ_+ wj(a)\/zaeD; wj(a). The biggest

decrease, multiplying by 0, occurs if either ZaeD; wj(a) = 0 or ZaeD]__ wj;(a) = 0 — or equivalently if
Y wep- wila) =1 or Y p+wi(a) = 1. In other words if we can classify the training data perfectly after
weightJing the examples. The weighting takes into account the effect of the earlier selected classifiers. The
least decrease is 1 if ZGGD; w;(a) = ZaeD; w;(a) = 1/2. In this case, the classifiers provide no information.
To summarize, the update rules of AdaBoost result from minimizing the function Z by coordinate descent
(after initializing all weights to be zero). Everyting can be derived from that. The justification is that Z
is an upper bound on the error of the strong classifier (if we want to minimize a different error criterion —
e.g., weighting positive errors differently from negative errors — then we can derive a different bound). We
do not minimize the error function directly, with respect to A, because it is non-convex (while Z is a convex
function). We can alternatively estimate the A by ML, or MAP, as described above (previous section).



