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1 Introduction
This lecture describes how to learn models for detecting objects. These models explicitly represent objects parts and
allow the spatial relations between these parts to vary. This differs from the methods we used to model faces and text
which did not represent parts and instead relied on features that were invariant to these spatial variations. But many
objects have large spatial variations and it is not possible to find invariant features. Moreover, modeling the subparts
explicitly enables us to detect them and hence parse the image to detect the positions of the parts (i.e. say where
different parts of the object are – and not simply detect the object).

2 Standard Learning of Object Models without Hidden variables
Previous lectures gave models where the objects are represented by deformable parts. These are represented by
graphical models G = (V, E) where the state variables {zµ : µ ∈ V} represent the positions of the parts and the edges
(µ, ν) ∈ E specify the nodes which are directly related. We use x to represent the input image.

The models are specified by a conditional distribution:

P (z|x;λ) =
1

Z[λ, x]
exp{−E(z, x)},

withE(z, x) =
∑
µ

λµ · φ(zµ, x) +
∑

(µ,ν)∈E

λµν · φ(zµ, zν , x). (1)

The unary terms λµ · φ(zµ, x) give local evidence for the state zµ of part µ. The binary terms λµν · φ(zµ, zν , x)
specify the relationships between the states zµ, zν of pairs of parts. These binary terms may be dependent on the image
x in which case they are sometimes called data-dependent priors. Often, however, the binary terms are independent of
x and so there are similar to priors (but not identical – explain why.)

If we have training examples – D = {(za, xa) : a ∈ D} – then we can learn the parameters λ of the distribution
P (z|x;λ) by maximum likelihood (ML) – i.e. by maximizing

∏
a∈D P (za|xa;λ) with respect to λ. There are only

two difficulties: (I) Computational – (a) can we perform inference on the model to estimate quantities like z∗ =
arg maxz P (z|z;λ)? (note that inference is a pre-requisite for learning), and (b) can we compute, or approximate, the
normalization constant Z[λ, x] and other properties? (II) Data – do we have enough training data to learn the model
(i.e. so that it generalizes to novel data)? This depends on the number of parameters λ – and so we can adjust the
complexity of the model to the amount of data available (e.g., by imposing regularization constraints on the λ).

One way to simply the learning is to use machine learning methods. This can be thought of in two ways: (i)
re-formulate the problem as classification and drop the probabilistic interpretation, and (ii) treat the machine learning
formulation as an approximation to the probabilistic formulation. This viewpoint has been developed by several
authors – see handout by Yuille and He – who stress the many advantages of the rich conceptual structure provided by
probability theory in conjunction with the computational practicality of machine learning methods. But here we will
concentrate on the machine learning formulation.
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The machine learning formulation drops the probabilistic formulation and specifies the learning task as being to
find parameters λ to obtain an estimate of the state variables z:

z∗ = arg min
z

∑
µ

λµ · φ(zµ, x) +
∑

(µ,ν)∈E

λµν · φ(zµ, zν , x), (2)

so that this estimator minimizes a criterion which combines the empirical loss L(z, za) with a regularization term
1/2|λ|2 (which helps give generalization). This criterion is given by:

1/2|λ|2 + C
∑
a∈D

min
z
{
∑
µ∈V

λµ · φ(zµ, x
a) +

∑
(µ,ν)∈E

λµν · φ(zµ, zν , x
a) + L(z, za)}

−C
∑
a∈D

∑
µ∈V

λµ · φ(zaµ, x
a) +

∑
(µ,ν)∈E

λµν · φ(zaµ, z
a
ν , x

a). (3)

This is a generalization of the max-margin criterion for binary classification. It is called the structure max-margin
criterion (citations). It is a convex function which can be minimized by two different types of algorithms. The first is
an online method which selects data at random from D and performs an iteration of steepest descent on this quantity
(removing the summations) – the structure perceptron algorithm (Collins) – is an approximation to this procedure.
The second is to reformulate this problem in terms of primal and dual problem (see paper handout for lecture 18,
the discussion in Yuille and He, and many other sources). This leads to an algorithm that is similar to that used for
max-margin classification (i.e. support vector machines).

Note: the criterion in equation (3) is usually obtained as a convex upper bound (convex in λ) of the empirical loss∑
a∈D plus a regularization term 1/2|λ|2. But it can also be related (e.g., Yuille and He handout) as an approximation

to more standard probabilistic estimation of the parameters of regression models.
The handout to lecture 18 will give vision examples of the use of these machine learning methods for learning the

parameters of models of objects – this include AND/OR graph models of baseball players. (Need citations to more
standard work on learning probabilistic models of objects).

Another class of learning problem – which we will discuss later in this lecture – is when the model has hidden
variables. In one common form – the only information is whether an object is present in an image window or not. In
this case, the state variables for the positions of parts are hidden variables (this also requires introducing a probability
model for the data if the object is not present). Formally this can be addressed by using the EM algorithm to deal with
the hidden variables. But, in practice, people often use machine learning methods – such as multiple instance learning
and a simplification known as latent SVM. These are described in a later section of the lecture.

3 Other Topics
This section describes other topics which we did not have time for (will be written up in later drafts).

Firstly, what are the cues (i.e. the φ(.) that should be used for these models? One solution is to specify a dictionary
of possible φ(.) and then allow the learning process to select which φ(.) using a sparsity criterion (e.g., an λ| term).
But, as discussed in this AdaBoost lecture, this only postpones the problem to the choice of the dictionary (and the
dictionary for faces is different than the dictionary for text). There are types of visual cues that have been empirically
been shown to be useful (examples in the next section) and considerable efforts to learn dictionaries (citations), but
there is no satisfactory solution at present. Only general criteria – e.g., the cues should be specific to the objects (and
object parts) but invariant to nuisance parameters (see lecture 3).

Secondly, how do the condition models P (z|x) relate to generative models P (x|z) and p(z)? Generative models
are able to generate samples of the objects – by stochastic sampling from P (x|z) and p(z). They have many other
desirable properties (see the next topic) but they suffer from some big problems. Most importantly, the space of all
images is astronomically big – nobody, in any research discipline, has managed to define probability distributions
over spaces of this enormous size. The ability to do this in general would require the ability to understand and
model all the patterns that occur in natural images – this is an exciting but a very difficult endeavour. Moreover, at
present, computer vision lacks the technical machinery to model images expect in restricted circumstances. There are
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limited exceptions – e.g., active appearance models work for certain objects under restricted circumstances, lambertian
reflectance models coupled with three-dimensional shape models can also deal with certain types of objects, there are
also models of restricted classes of texture.

It is considerably easier to have generative models for image features. For example, there are several models that
are generative for sparse features points (e.g., Caltech work, L. Zhu et al, others). These are simpler because they only
need to put distributions over the positions and attributes of the interest points. Hence they do not provide generative
models of the full images. Moreover, if we sample from the image to obtain interest points with attributes then it is not
certain they there is a consistent image which has these attributes (well, if the interest points are far enough apart then
it is almost certain that there is). Suppose, for example, we can sample the first derivatives ∂I

∂x and ∂I
∂y independently

– then these is no guarantee that these samples will satisfy necessary consistency constraints to correspond to a well-
defined image (like the integrability constraint). Technically learning should involve computing, or estimating, the
g-factor (Coughlan and Yuille).

Thirdly, how to learn the graph structure of the model? The current formulation assumes that the graph structure
of the model – the nodes and the edges – is known and only the parameters need to be estimated. This formulation
does include some ability to learn the graph edges – by including in the dictionaries potentials which allow us to
link different nodes to form edges. The generative approach gives a principled way to learn models of objects and
images without specifying the graph structure. The basic strategy is simple – defined a large class of graphical models
(with different graph structures and parameters) – and selecting between them to pick the best model that describes
the data. This involves evaluating P (D|model1, λ1), ..., (D|modelN , λN ). In practice, this is difficult because there
are an extremely (exponentially) large set of models that we need to consider. Current strategies involve building
models out of elementary components and growing them (e.g. by AND, or OR operations). The ideas that models
can be constructed in this manner relates to the compositionality conjecture and it at the heart of stochastic grammars.
Searching through the enormous space of possible models can be done by a greedy strategy – e.g., pick the best model
and grow it – or by picking several different models in parallel and growing all of them.

4 Hierarchical Part Models and Latent SVM
The remainder of this lecture concentrates on a special class of models that have been successful on the Pascal Object
detection challenge. This section introduces the hierarchical structure of the models, the types of image cues φ’s that
are used, and the latent SVM learning algorithm.

In these models, objects are represented as a mixture of hierarchical models. A hierarchical model is illustrated
in figure (1). Several models (i.e. a mixture) are used for each object to deal with the different viewpoints. Each
hierarchical model represents the object in terms of parts – but these parts are not ”semantic parts”, so there do not
correspond to the legs of the horse, the head, or the torso. The parts are allowed to model to deal with the spatial
deformations that can happen at different scales of the object.

The image cues φ(.) are chosen to represent the different possible appearances of the object and to use those factors
that distinguish it from the background. Appearance patterns can be roughly classified into two classes: (i) structural
(e.g., the head of a cat) which can be roughly described by the intensity edges and their spatial relations (e.g. by a
HOG), and (ii) textural (e.g., the fur of a cat) which can be modeled by Bag of Words – i.e. histograms of image
features or words. Here the words will be based on SIFT features.

Each hierarchical model is a graphical model without closed loops. So we can use dynamic programming to
perform inference and estimate its state variables. We can perform inference separately for each hierarchical model
(i.e. each mixture component) separately and then select the model that has the lowest energy score.

4.1 The Hierarchical Model
Each hierarchy is a 3 layer tree G = (V, E) where each node represents a part. The number of nodes depends on the
application. In one example (L. Zhu, Y. Chen, A. Yuille and W. Freeman – CVPR 2010) there are a total of 46 nodes:
1 root node representing the entire object, 9 part nodes (at the second level), and 36 sub-part nodes (at the third level).
The position of a node µ ∈ V is represented by a state variable zµ. The potentials λµ · φ(zµ, x) relates the position
of the part to cues (HOG and SIFT features) in the image. The graph edges (µ, ν) ∈ E relate the root node to all

3



Figure 1: A 3-layer model (a), the structure has three layers with nodes in simple grid layouts (b), the nodes represent
parts which move to adapt to the object (c,d).

nine nodes at the second level, and each second level node is related to four nodes at the third level. The potential
defined over the graph edges – λµν ·φ(zµ, zν) – specify statistical constraints for the relative positions of the parts and
subparts.

Each model can be formally expressed as probability model of form given in equation (1). In particular, the
energy function can be expressed in terms of a sum of unary terms (depending on the states of the nodes) and binary
terms (depending on the states of pairs of nodes). The nodes can be re-expressed in terms of different level – i.e.
V = V1

⋃
V2
⋃
V3 where V1 is the root node, V2 is the nine level-2 nodes, and V3 are the thirty six level-3 nodes.

Graph edges exist between nodes at adjacent levels. (Write down the full model next time).
The basic ideas of the inference and learning algorithms do not depend on the details of the model – only on the

fact that each models can be expressed as a graph without closed loops and the energy is a linear sum of features φ’s
weighted by parameters λ’s.

First we will describe the features/cues and then we will describe how latent SVM can be applied to learn the
parameters λ.

4.2 The features
The binary features φ(zµ, zν) are defined over the graph edges and relate the spatial positions of the nodes (they do
not depend on the image x). We express zµ = (uµ, vµ) in terms of its components in the x and y directions. Then
φ(zµ, zν) = (∆u,∆v,∆u2,∆v2), where ∆u = (uµ − uν) and ∆v = (vµ, vν). These statistics are quadratic in the
relative positions of the two parts, and hence correspond to a Gaussian distribution on the relative positions of the parts
(if we expressed the model probabilistically).

The unary features φ(zµ, x) are defined as follows. Each node µ corresponds to a region D(zµ) of the image. For
the root node, this region consists of W × H cells of size 8 × 8 pixels: D =

⋃W,H
w,h=1,1Dw,h. For nodes in layer-2,

each region is composed of 2/3W × 2/3H cells, while layer-3 nodes have 1/3W × 1/3H cells. This is illustrated in
figure (1).

The unary features are of two types, which model the edges and the internal appearance of the objects respectively.
The first type of features, for edges, are modeling using HOG’s (Histograms of Gradients). For each cell we

compute a HOG, which is a 31-dimensional vector (containing 9 contrast sensitive features, eighteen contrast sensitive
features, and four summations). HOGs are invariant to small spatial changes of the object and lighting and other
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Figure 2: Some models (appearance only) learnt from the PASCAL 2007 dataset. The first 2 rows are the car models
from two views and the last row is a horse model. Three columns show the weights in each orientation of the HOG
cells at the root node, level-2 and level-3. Each cell consists of 8×8 pixels. The models look semantically meaningful.
The weights along the object boundary are high. The features at different layers capture object appearance in a coarse-
to-fine way. The features at lower levels capture more detailed appearance (e.g. the horse legs at the 3rd layer look
brighter.

nuisance variables (see third lecture). This gives a potential of form φHOG(zµ) = {φHOG;w,h(zµ) : w, h} – i.e. this
concatenates the HOG responses in each cell. There are lambda variables for each cell – hence λHOG = {λHOG,w,h :
w, h}. Hence if W = 10, H = 5, then there is a 50 × 31 HOG feature vector for each node. Figure (2) represents
the parameters λ learnt for some parts and illustrates that the larger λ’s tend to capture the edge structure of the object
approximately (this will not be true for highly deformable objects like cats).

The second type of features are intended to capture the appearance of regions of the images. These features are
Bag of Words constructed as follows. On all 8 × 8 cells in the dataset (including all object and all the background)
we compute the SIFT descriptor (see third lecture). We do k-means clustering of these SIFT responses to obtain M
centers (each M = 60). This gives a dictionary of M words – corresponding to the centers obtained by clustering.
Each SIFT descriptor, computed on an 8× 8 cell, can be assigned to a single a word (i.e. the cluster center it is closest
to). Then a node containing W × H cells is represented by the histogram of the words that occur in its cells. The
λBAG parameter for the node is an M dimensional vector. Examples of these histograms are shown in figure (3).

5 Hierarchical Models and Latent Structural SVM
The goal is to detect whether an object with class label y is present in an image region x. The model has latent variables
h = (V, z) (i.e. not specified in the training set), where V labels the mixture component and z specifies the positions
of the graph nodes.

The model is specified by a function [w ·Φ(x, y, h)] where w is a set of parameters (to be learnt) and Φ is a feature
vector. Φ has two types of terms: (i) Appearance terms ΦA(x, y, h) which relate features of the image x to object
classes y, components V and node positions z. (ii) Shape terms ΦS(y, h) which specify the relationships between the
positions of different nodes and which are independent of the image x. These potentials were described in the previous
sections.

The inference task is to compute:
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Figure 3: Appearance features. The top three panels show the Histogram of Oriented Gradients (HOGs). The bottom three panels
show the Histogram Of Words (HOWs) extracted within different cells. The visual words are formed by using SIFT descriptors. In
this case, HOWs are calculated using the first shape mask (regular rectangle). There columns from left to right correspond to the
top to bottom levels of the active hierarchy.

Fλ(x) = argmax
y,h

[λ · Φ(x, y, h)] (4)

The learning task is to estimate the optimal parameters λ from a set of training data (x1, y1, h1),...,(xN , yN , hN )
∈ X × Y ×H.

We formulate the learning task as latent structural SVM learning. The object labels {yi} of the image regions {xi}
are known but the latent variables {hi} are unknown (recall that the latent variables are the mask positions ~p and the
model component V ). The task is to find the weights λ which minimize an objective function L(λ):

L(λ) =
1

2
||λ||2 + C

N∑
i=1

[
max
y,h

[λ · Φi,y,h + Li,y,h]−max
h

[λ · Φi,yi,h]

]
(5)

where C is a fixed number, Φi,y,h = Φ(xi, y, h) and Li,y,h = L(yi, y, h) is a loss function. For our object detection
problem L(yi, y, h) = 1, if yi = y, and L(yi, y, h) = 0 if yi 6= y.

Solving the optimization problem in equation (5) is difficult because the objective function L(λ) is non-convex
(because the fourth term −maxh[λ · Φi,yi,h] is a concave function of λ). Following Yu and Joachims we use the
Concave-Convex Procedure (CCCP) (Yuille) which is guaranteed to converge at least to a local optimum. We briefly
describe CCCP and its application to latent SVMs in section 5.1.

The kernel trick is used for the Bag of Words models – using a kernel like radial basis functions, which gives a
similarity between image regions which have similar histograms of words. We did not use a kernel for the HOG (edge)
features, or for the spatial relationship terms.

5.1 Optimization by CCCP
Learning the parameters λ of the model requires solving the optimization problem specified in equation (5). Following
Yu and Joachims we express the objective function L(λ) = f(λ) − g(λ) where f(.) and g(.) are convex functions
given by:

f(λ) =

[
1

2
||λ||2 + C

N∑
i=1

max
y,h

[λ · Φi,y,h + Li,y,h]

]
(6)

g(λ) = −

[
C

N∑
i=1

max
h

[λ · Φi,yi,h]

]
(7)
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The Concave-Convex Procedure (CCCP) (Yuille 2001) is an iterative algorithm which converges to a local mini-
mum of L(λ) = f(λ) − g(λ). When f(.) and g(.) take the forms specified by equation (6), then CCCP reduces to
two steps which estimate the latent variables and the model parameters in turn (analogous to the two steps of the EM
algorithm):

Step (1): Estimate the latent variables h by the best estimates given the current values of the parameters λ: h∗ =
(V ∗, ~p∗).

Step (2): Apply structural SVM learning to estimate the parameters λ using the current estimates of the latent
variables h:

min
λ

1

2
||λ||2 + C

N∑
i=1

[
max
y,h

[λ · Φi,y,h + Li,y,h]− λ · Φi,yi,h∗
i

]
(8)

We perform this structural SVM learning by the cutting plane method to solve equation (8).
A variant of CCCP, called incremental CCCP (iCCCP), has the advantage of less training data (L. Zhu et al. 2010).

5.2 Detection: Dynamic Programming
The inference task is to estimate Fλ(x) = argmaxy,h[λ · Φ(x, y, h)] as specified by equation (4). The parameters λ
and the input image region x are given. Inference is used both to detect objects after the parameters λ have been learnt
and also to estimate the latent variables during learning (Step 2 of CCCP).

The task is to estimate (y∗, h∗) = argmaxy,h[λ · Φ(x, y, h)]. The main challenge is to perform inference over the
node positions z since the remaining variables y, V take only a small number of values. Our strategy is to estimate the
~p by dynamic programming for all possible states of V and for y = +1, and then take the maximum. From now on
we fix y, V and concentrate on z.

First, we obtain a set of values of the root node z1 = (u1, v1) by exhaustive search over all subwindows at different
scales of the pyramid. Next, for each location (u1, v1) of the root node we use dynamic programming to determine
the best best configuration z of the remaining nodes. To do this we use the recursive procedure:

F (x, za) =
∑

b∈Ch(a)

max
zb
{F (x, zb) + w · ΦS(za, zb)}+ λ · ΦA(x, za) (9)

where F (x, za) is the max score of a subtree with root node a. The recursion terminates at the leaf nodes b where
F (x, zb) = ΦA(x, zb). This enables us to efficiently estimate the configurations z which maximize the discriminant
function F (x, z1) = maxz λ · Φ(x, z) for each V and for y = +1.

The bounding box determined by the position (u1, v1) of the root node and the corresponding level of the image
pyramid is output as an object detection if the score F (x, z1) > 0 – if F (x, y) ≤ 0 we set y = −1.

5.3 Experimental Results
Some results of this model are shown in figure (4). A more sophisticated version of this approach – using more cells,
more mixture components, better clustering to get words, soft assignments – was second in the Pascal object detection
challenge in 2010 and first equal in 2011.
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Figure 5 Some detection results from the PASCAL 2007 dataset Each row contains several results of one class Big rectangles are the

Figure 4: Examples on Pascal.
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