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1 Introduction

This lecture covered several topics. Some of them — active bases, active appearance models, FORMs — are described
in more detail in handouts. These notes also describe grammars, which were only partially discussed in lecture 18.

2 Active Appearance Models

AAM’s model the intensity properties of objects allowing for spatial warps. The simplest model is:

I(x) =T(¢(x)), where ¢(z) =x+ ZQMBM(QT). (1)

Here T'(.) is an intensity template for the object and ¢(z) is a spatial warp. The {B,(.)} are basis functions
of the warps and the {a,} are the coefficients. The basis function are fixed and the o’s specify different examples
of the object. For example 7'(.) is the image of a face and the ¢(.) allow warps to get different shapes of faces.
Note that the assumption that the warps can be expressed in terms of basis functions is limited. It is plausible for
limited deformations of faces but a very large number of eigenvectors are required to model the movement of lips
when speaking (Bregler and Omohundro). It is also not a good way to describe the shape changes of an articulated
deformable model — like a person or a cow walking — which are better modeled by parts (e.g., lower leg, upper leg,
torso, arms, head) joined at joints, see figure (1) and later part of this lecture.
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Figure 1: AAMs are not good models for articulated objects that contain parts — head, upper legs, lower legs, torso —
that move semi-independently. AAMs are better at describing the variability of each part separately.

The basis functions B,, can be learnt in several ways from a set of different example images {I*(z) : a € A}:
(D) Fully supervised (e.g., Cootes and Tayler), where the correspondence is specified between points in the images —
e.g., we know that points % in image 1°(z) correspond to points 2” in image I°(z) (or we know the correspondence
for a set of labeled points and can interpolate the rest). Then we can estimate the basis functions by doing Principal
Component Analysis on the {z® : a € A}. (II) Unsupervised, either by first estimating the correspondence between
images by using a generic model (e.g., by minimizing a term like > [I%(z) — I®(¢(x))| + K >, |[V¢(x)| which
attempts to estimate the warp ¢A>(9c) by matching points with similar intensities while requiring the warps to spatially
smooth — Hallinan), or by the methods described below (Kokkinos and Yuille).



A more advanced model involves a richer model for the image appearance — e.g., that, before warping, the image
can be expressed as a linear combination of basis functions.

I(z) = Z BiCi(x + Y apBuu()), )

where the C;(.) are eigenvectors of appearance (with coefficients 3;) and the B,,(.) are the eigenvectors of the spatial
warps (with coefficients ).
This can be thought of as a generative model for images with energy function:

E(B,a:C,B] =Y {I(z)— Z BiCi(z + Y o, Byu(x))}. 3)

and a probability distribution:
1
P(I|B7Q7C7B] = EeXp{—E(ﬁ,a:C,B]}. “4)

A prior P(f3, «) can also be imposed on the model parameters (note, this model assumes that the image is generated
with additive gaussian noise, hence the quadratic energy function).

The inference task is to estimate the coefficients 3;, o, for a specific image. The learning task for AAM:s is to
learn the basis functions C;, B, from training data, which will be described below.

The inference task can be performed by an alternating algorithm which minimizes the energy F with respect to
the 3; and the oy, in alternation (with the other fixed). Minimizing with respect to the 3; reduces to solving linear
equations. Minimizing with respect to the o, can be performed by steepest decent using multi-scale to blur the images
and hopefully prevent the algorithm from getting stuck in local minima (multi-scale is commonly used in computer
vision — by blurring out the small scale structure in the image it leaves the coarse-scale structure which is likely to
be less ambiguous for matching problems). But this procedure requires good initialization to converge to a good
minimum.

Learning an AAM model can, in theory, be performed by using the generative model in equation (4) and then
selecting 5, C, v, B to maximize

I1 paes®.a% ¢, B), (5)
acA
with respect to C;, B, and ay, B¢ (i.e. the basis functions B, C are learnt for the entire dataset, but the coefficients
«, [ are estimated for each image).

But performing EM on equation (5) is very difficult due to the large number of local minima (and I do not think
anybody has done it). But EM has been successfully applied to a simpler version (Kokkinos and Yuille 2007) which
filters the image to extract features like edges and ridges, which are invariant to appearance changes, and then learning
the warps basis functions and estimating the coefficients of the warps. This relies on using mean shift methods, see
figure (2) to first roughly align the images. By using edges and ridges to remove appearance changes it has only a
single appearance basis function B; (z) with coefficient oy = 1. For details, see handout.

3 Models with Semantic Parts

For articulated objects it is usually better to represent the object as a set of parts. Each part can be represented by an
AAM. An early example of this work is FORMs (Zhu and Yuille) which is applied to binary images of the silhouettes
of objects.

Each object is composed of a grammar or parts, see figure (3). Each part is modeled based in its symmetry axis,
see figure (4).

FORMS was tested only on binary shapes (cite enormous amount of material on these topics). But similar methods
can be applied to real images, see figure (5) (from Kokkinos and Yuille 2007).



Initial After Mean Shift

Figure 2: The mean shift algorithm (a variant which moves object edges only in the direction perpendicular to the
edges) is used to perform alignment of the images in a pre-processing step.

Figure 3: A human figure can be generated by combining parts together (far left) following a grammatical procedure
(left). The result can be expressed as a graphical model (right) and the same approach can be applied to a range of
other objects (far right).
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Figure 4: Left Panel: Each part can be represented in terms of basis functions of the radius from the symmetry axis.
Center Panel: the symmetry axis is detected by rolling a ball from point of high curvature so that the boundaries of the
ball touch the side walls. When the object splits into parts the symmetry axis bifurcates, indicating the presence of a
split. Right Panel: this gives a decomposition of the object into parts where each part has one symmetry axis and the
splits are at the bifurcations of the symmetry axis.

4 Grammars

Not covered in lecture. A small part of this material was discussed in lecture 18.

Grammars provide a natural way to model many phenomena in vision. Images, objects, and scenes can be thought
of as being built out of a vocabulary of elementary components using a set of stochastic rules which allow certain
configurations but prohibit others. For example, Biederman’s Geon theory (Biederman 1987) can be thought of as
providing a grammar of objects in terms of elementary components. The FORMS system (Zhu and Yuille 1996) is
one example where a grammar is defined that can build deformable articulated objects, such as people and birds, from
elementary components which can yield the heads, arms and torso, see figure (3). The Gestalt rules which enable
humans to perceptually group components, see figure (6) may also be modeled in terms of compositional rules which



Figure 5: Detecting cows using part-based models.

relate closely to grammars (see discussion in Mumford and Desolneux 2010). For example, tokens in the image (e.g.
edge segments) can be grouped by proximity, alignment, and parallelism, while image regions can be grouped based on

proximity, similar color or texture, and symmetry. Many Gestalt phenomena are beautifully demonstrated in Kanizsa
(1979).
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Figure 6: Gestalt laws (left panel) can be used to help detect the letter 7" and the square using color (i.e. black or white)
and alignment despite the present of occluding white surfaces which obscure parts of the objects. Similarly Gestalt
laws can be used to explain why we perceive white surfaces in the two images on the right despite the lack of direct
visual evidence for them. These examples are from Kanizsa 1979.

There are, however, several differences between grammars used in vision and those which have been successfully
applied to natural language. Firstly, language is a human construct which has evolved to enable humans to commu-
nicate with each other. Hence it is reasonable to believe that there are considerable syntactic regularities in language



which can be modeled by grammars. By contrast, visual stimuli are generated by light rays reflected from objects in
the visual scene and so have much more complex structures with less apparent regularities. Hence grammars for vision
tend to be more complex and there is less general agreement and which forms they will take. There are, of course, some
exceptions where there is some underlying process that leads naturally to certain types of visual structures — e.g, the
”grammar of animal shapes” derives ultimately from the the same underlying physical and biological processes (Zhu
and Yuille), the ”grammar of buildings” follows the set of rule invented by architects and engineers, and the ”grammar
of text documents” uses basic elements like paragraphs, lines, and figures (cite VIOLA!!). Secondly, language has a
one-dimensional structure while vision is two-dimensional. This is not a conceptual barrier but it does mean that it is
easier to perform learning and inference for language by exploiting the one-dimensional structure (e.g., by dynamic
programming). Thirdly, there is no natural analogy in vision to the distinction between syntax and semantics which
occurs in language. Nevertheless there are considerable conceptual similarities between language and vision. As ar-
gued by Mumford (Mumford and Desolneux 2010), the key ingredients of grammars are the existence of shared, or
re-usable, parts which are often combined hierarchically.

We now proceed more formally by defining a stochastic context free grammar (SCFG) as used in language and
modifying it to make it suitable for vision. This will lead to compositional and AND/OR graph models.

SCFGs are defined by a set of rules R € R, non-terminal nodes I € N, and terminal nodes [ € 7. There is a
root node Iy € N. A rule Ry is applied to a non-terminal node [ to generate a set of k nodes Iy,...,lx € N T.
There is a probability distribution P (1?;) defined over the rules so that >~ P;(/;) = 1. Starting at the start node S
and applying rules, sampled from the distribution, will produce a parse tree whose leaf nodes are terminals (technical
conditions are required to ensure that the parse trees will be almost certainly finite). The SCFG is specified by a
set of values {7, N, S,R,{P,}}. A specific parse tree § consists of a set of nodes V where each node has a label
L(v) € N T. The probability of this tree is given by:

Piree(Blroot lo) = [ Proy(R 6)
vey

In vision applications the terminal nodes correspond to image pixels or to features, or tokens, extracted from images
such as edges. For objects the non-terminal nodes will correspond to parts and subparts of objects. For example, in
figure (7)(Kokkinos and Yuille — ), the object is composed of three parts of the car (front, middle, and back) while each
part is composed from a number of contours, which are themselves composed of tokens in the image. In this case, the
root node is the Object node and there is a single rule R;, which is applied to [y and which generates three part nodes.
Other rules are applied to the part nodes to generate contour nodes. Finally, rules are applied to the contour nodes to
generate foken nodes in the image. This is a very simple grammar and we will describe a more complex variant later.
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Figure 7: Hierarchical Model for a Car (Left Panel). A parse tree (Right Panel).

There are, however, limitations to the SCFG described in equation (6). It completely ignores the spatial positions
of the parts/contours and other attributes which they can have (e.g., their color). This can be addressed by introducing
attributes at each node which can represent, for example, properties such as the spatial positions of parts of the car
shown in figure (7). These attributes could be more general and include color, texture, or precise specifications about
the type of part (e.g. the front of a Prius or of a Mercedes-Benz). In addition, we require that the attributes of nodes



may be related — for example the positions of the front, middle, and back parts of the car must obey spatial regularity
constraints. These can be imposed by introducing edges between nodes whose attributes are related (e.g., in figure (7)
we could put edges connecting the parts in order to impose constraints on their relative positions).

More formally, following the exposition in Mumford and Desolneux (2010) we introduce attribute variables «.(l)
for each node I € N'(T. Edges e(u,v) € & are added to the graph in order to connect nodes 1, v whose attributes
we want to relate. These edges will introduce closed loops into the graph structure and so we will now have parse trees
instead of parse graphs. We modify the rules mathcal R so that they generate a set of attributed nodes together with a
set of edges to specify the relations. In addition, we require that the attributes of a parent node «(11) can be expressed
as a deterministic function f(.) of the attributes of its child nodes i1, ..., ttn, — a(p) = fla(pr), a(p2), ..., aliy)).
For example, in figure (7) the position of the car is a deterministic function of the position of its parts. For the Gestalt
examples shown in figure (6). Finally, we can place probability distributions over these graphs by defining binding
factors Be(o(p1i), o(p5), o)) where (u;, jo5) is an edge connecting two child nodes of 1 (e.g. Be(, ., .) specifies the
likely relative positions of the parts of the car). These are combined with the earlier SCFG in equation (6) to yield a
distribution for the entire parse graph w (which include the nodes V, the edges &, the labels and attributes of the nodes
(L(v),a(v)):veV:

Piree) o [ Pry(BR) [T Belalm), aluy), (). (7

vey (vi,vi)€E

Mumford and Desolneux (2010) sketch how probabilistic grammars of this type can be applied to model simple
Gestalt phenomena. For example to grouping together two edge contours, I'; and I'; to form a bigger contour I'. In

this case, a natural choice for the binding factor is the likelihood ratio % of the probability of modeling the two

contours jointly (i.e. by P(T')) compared to the probabilities of modeling them separately by P(I';) and P(T'2). This
has a natural interpretation in terms of minimal length encoding theory (Rissanen 1989) where you group two elements,
I'y,To, provided the cost —log P(T") of encoding them jointly is less than the cost —log P(I'y) — log P(T'2) of
encoding them separately. These ideas have been explored much further in Geman’s work on compositional modeling
(Geman et al. 2002). In many applications the attributes of the nodes, and the relationships between the attributes
of nodes connected by edges, carries more useful information than the nature of the terminal nodes themselves. For
example, in the car example the parts are the child nodes of the root (car) node. In other words, they are generated
by only one rule (e.g., the one applied to the root) and their most important properties are their positions (i.e. their
attributes).

These modified SCFG’s have considerable similarities to AND/OR graphs (Zhu and Mumford 2006) which rep-
resent objects by graphical models where the nodes are of two types — AND’s and OR’s. The AND nodes build extra
nodes by composition. For example, see figure (8)(top left) from (L. Zhu et al. 2010), the root node of a model of a
Baseball player is the AND of the head, the torso, and the legs (the arms are not modeled in this application).

To define these classes of models we must introduce some additional notation. We consider probability models
formulated over graphs G = (V, £) where V denotes the vertices and £ denotes edges. State variables y,, are defined
at the nodes p € V. The variable y = {y,, : p € V} describes the state of the entire graph. The edges £ in the graph
specify which nodes are directly connected and define the cliques CI —i.e. for all u1, o € Cl then (g, po) € £. We
index Cl by -y and let y., represent the state of all variable in clique y. Potential functions ¢.,(y~, I) and parameters w
are defined over the cliques v € Cl (note that these potentials allow direct input from the data I). And and Or nodes
will have different types of potential functions. We also define potentials which depend on the states of individual
graph nodes and are dependent only on the input I. An example of the probability models are given in figure (8). The
nodes ;1 € V represent subparts of the object where states y,, specify whether the part is present/absent and, if it is
present, its position and other attributes (e.g., orientation and size). For our vision applications the graphs are typically
organized in layers where a node at one layer is connected to a subset of nodes at the lower level forming a clique.
These cliques are of two types: (i) AND-cliques where the upper node represent the position/attributes of a part which
is composed from subparts represented by the lower nodes, and (ii) Or-cliques where the upper node takes the same
state as one of the lower nodes —i.e. it chooses between them.

How do these AND/OR models relate to the stochastic grammars defined in equations (6,7)? The state variables
1 correspond to the attributes of the nodes in the stochastic grammars. The labels correspond to “Head”, ”Torso”,
”Leg” as shown in figure (8). The forms of the AND-cliques and the OR-cliques show that the states (i.e. attributes) of
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Figure 8: The AND/OR Graph Model. The Baseball player is an AND of the head and torso, and left and right legs,
but the head is an OR of straight head and torso or an inclined head and torso (top left).

the parent nodes are indeed deterministic functions of the states of the child nodes. Hence the potential terms ¢ (y- )
correspond to the binding factors.

More formally, we specify a conditional distribution on the probability of the state variables y conditioned on the
input image I:

P(y|L;w) = Z[vi 1 x exp{z Wy @y, 1) + Z Wy - @y (yy, D} (®)

HEY ~y€EeCl

To use this distribution, for detecting the poses of baseball players, requires learning the parameters w of the probabil-
ity model and also estimating the most probable state y* = arg max P(y|I; w). As discussed in L. Zhu et al. (2011)
the most probable state can be estimated by using the junction trees learning algorithm (which is an extension of dy-
namic programming — has this, or message passing been mentioned in the book?). The parameters w can be estimated
by standard methods (do we mention them?) although some approximations are required (L. Zhu et al. 2011).

One application is to estimate the pose of baseball players, see figure (8). The AND/OR graphs are designed to
model multiple poses of the object using a single graphical model. The object is constructed by composition which
involves AND-ing and OR-ing elementary parts together to form the object. The OR-ing operation allows the model
to deal with different poses of the object. This is formulated as probability defined on a graph with state variables
Y = (pu,t,), where p, represents the pose (i.e. position, orientation, and scale) of an object part, and ¢,, is a binary
variable which indicates if the part is selected or not. The layers of the graph alternate between AND nodes, for which
the part is a composition of the sub-parts of its child nodes (see figure (8), and OR nodes which requires a node to
select one of its child nodes (i.e. a "head’ must be "head-up’ or "head-down’). The ¢ variables perform the selection
for the OR nodes, which can be thought of as switch variables. The graph structure can change topology due to the
state of the ¢ variables (i.e. the selections made at the OR nodes). This means that a graph containing only 40 (check
1) nodes can have 100 different topologies, which correspond to 100 different poses. An alternative strategy would
be to have 100 different models — one for each pose of the object — and perform pose estimation by selection between
these different models. The AND/OR graph is more compact and efficient, because it is able to share parts (i.e. the
most elementary components) between different poses. The potentials ¢~ (y.) impose spatial relations on the relative
positions of parts, their composition from more elementary parts, and the selection choices made at OR nodes. The
data potentials ¢p” (yu,I) relate the node at level ! = 1 to the image (e.g., by encouraging the boundaries of parts to



correspond to edge-type features in the image).

The graph structure for this model contains some closed loops because of the graph edges connecting siblings (e.g.
the spatial representations between parts at the same scale). But the numbers of closed loops is small enough that
we can perform inference use dynamic programming with the junction tree algorithm. The size of the state space,
however, is very large because there are many possible values for the pose p,, of each part. So we perform pruning
based on the energy and by surround suppression (penalizing states which are too similar to each other). We emphasize
that we are performing inference over the state variables including the topology (i.e. the t,,’s), which means that we
do inference over 100 different models efficiently be exploiting the re-use of the elementary parts. For more details
see (L. Zhu et al. 2011).

The graph structure of the graphical model of the AND/OR graph was specified by hand. But it is more desirable
to learn these types of models automatically from data. This is a very challenging problem because it requires a search
over the enormous space of models as well as over the model parameters.



