6.
7.

Lecture 2: Stat 238. Winter 2012. A.L. Yuille.

January 22, 2012

Lecture 2: Edge Detection and Multi-Scale

. What is an Image? It is a set of intensity values (usually {0,255} for a black and white image)

defined over a lattice. Each lattice element is called a pixel. The pizel’s intensity is called the pixel
value (each pixel will have three values for a color image). Hence the input to a computer vision
system is a matrix of numbers (the pixel values).

Given a matrix-image, how could you segment it into two regions? There are two types of cues.
There are big intensity changes — edges — at the boundary between the two regions. Also the
intensity values are similar within each region (foreground and background). Assumes that images
are piecewise smooth. Show a clean number-image and a noisy number-image with cross-sections.

Filtering images. Smoothing filters and derivative filters. Filterbanks (represent local properties).
Convolution and Fourier theory.

Piecewise smooth images — a 1980’s model of images. Motivates edge detection and region grouping
(by similar intensity values). Empirical justification for this model based on statistics of natural
images — weakness of this justification. Texture and image structures at multiple scales.

Multiscale. blurring. Aude Oliva — Chuck Close — Dali — Dennis Peli New York Times article.
Fourier components — low frequency, high frequency. Blur with Gaussian — eliminates the high
frequencies. Limitations of linear smoothing — destroys structure — alternatives later.

Statistical Edge Detection.

Bayes Decision Theory and Learning.

Techniques:

1.

-

® N o o

Calculus (derivatives and integrals).

Filter Theory. Fourier Theory.

The Diffusion/Heat equation. Nonlinear diffusion. Differential equations.
Basis functions — over-complete bases. Wavelets. Harmonic analysis.
Histrograms (non-parameteric probability distributions).

Log-likelihood ratio test, Bayes rule, Bayes Decision Theory.

Theory of Learning — memorization and generalization — cross-validation.

Mixtures of Distributions. Robust and non-robust distributions.

2 What is an Image?

What is the input to a computer vision system? An image is an array of intensity values: {I;; €
[0,255] |i =1..n,7 = 1l..m}. For example, the number matrix in Fig 1(a) describes a dark box in bright
background (Fig 1(b)).

Images like (Fig 1(b)) are easy for humans to process since our brains are designed to deal with them
and we can exploit all our visual knowledge. But the real input to our visual system, and to a computer
vision system, is the set of numbers in Fig 1(a). The numbers represent the amount of light incident on
the eye or a camera (e.g., numbers of photons).

2 118 110 115 116 120]
L2020 16 10 12
219 17 18 20 117
108 121 107 116 112

(a) Intensity matrix of an image (b) Image of the matrix (150x100)

Figure 1: Image representations. Left panel: the intensity matrix is the true input to a vision system.
Right panel: a conventional image which our brains are designed to process. Both representations convey
exactly the same information.

Suppose you are only given the intensity values — the set of numbers {I(i,5)} (Fig 1(a)) — but you
cannot see the image. How would you start to interpret it? This is the task that a computer vision
system, and biological vision systems, are faced with.

If you look at the matrix of intensities you would probably decide that it corresponds to the image
of a dark square (low intensity values) surrounded by a bright background (high intensities). You are
using two cues, edge detection and region grouping, to segment the images into foreground (center) and
background regions.

For example, in most parts of the image the neighboring pixels typically have similar values (e.g.
from 20 to 15), but sometimes there’s a big jump (e.g. from 135 to 25). This can be used to detect edges.
Also, we can group pixels with similar intensities values — which gives a complimentary way to group
the pixels into two different regions. We will discuss grouping in later lectures (starting with lecture 4)
and now concentrate on detecting edges.

For Fig 1(b), we can differentiate the image in the x and y directions using derivative filters (details in
the next section — e.g., derivatives, differences, filters). We plot the image intensities for one-dimensional
cross-sections of the image in Fig 2 (a,b). Taking the derivative in terms of 2 (on cross-section with
y = 50), we obtain the result is shown in Fig 2(c). We see that the big jumps occur at where edges
are. Hence we could detect edges at places where the image gradients are very large (details in a later
section).

ol WA S A A Y i "
0 80 ‘/\]\A
fo fu £ VSIS I
’) IED\NVWV’W\v
5 = m 3 %) &
(a) Intensity values (y=5) (b) Intensity values (y=>50) (c) Derivative Filter response
(y=50)

Figure 2: Edge detection by derivative filters. Left and Center panels: cross-sections of the intensity at
y = 5 and y = 50 respectively. Right panel: the response of the derivative filter has large peaks at the
edges (note different polarities).

However, for images which are noisier (Fig 3), there will be many places in the image where the
derivatives are large. So large derivatives will not correspond to edges in the image. In this case, we need
to first smooth the image before differentiating. Smoothing is performed by filtering with a smoothing
function (see later section). It converts the image Fig 3(b) into a smoother version Fig 4)(a). The
derivatives on this smoothed image are now largest at the edges and smaller elsewhere Fig 3)(b).

3 Linear Filtering. Convolution and Fourier Theory

This section describes introduces linear filtering. This can be used to smooth and differentiate images
(gives more details for the ideas in the last section). It can also give multiscale descriptions of the image
and also give dense local representations of images.

Linear filters act on an image by moving a filter G through the image and computing the integral of
the product of the filter (in each position) with the images, see Fig. 5.

EY ERINS /\mvw/\/\]\vfmwlwu\wwm\/\wj\//\vww

2 50,
10
100

Gl 00 150 El 00

(a) Original image (b) Intensity values (y=>50) (c) Filter response (y=50)

Figure 3: A more complex image. Edge detection by derivative filters. Left panel: noisy image. Center
panel: cross-section of the intensity at y = 50 Right panel: the response of the derivative filter has many
peaks it is hard to detect the real edges (NOTE: check figure (c).

[

. /ﬁ Ao 4 M\N\’
15| /‘/ /\/'\/W\V \/\/ u

0

i

(a) Intensity values after smoothing (b) Filter response (y=>50)
(y=50)

Figure 4: Edge detection by smoothed derivative filters. Left panel: the image after applying a smoothing
filter. Right panel: the derivative of the smoothed images has its biggest responses at the edges.

FxI(7) = //dudvF(x —uyy — v o) (u,v). (1)

If F' is a smoothing filter, see Fig. 5, it will smooth the image by performing local weighted averaging.
(Note: smoothing is used in Statistics and Machine learning as a non-parametric estimate of a probability
distribution. In this case the input is I(z) = (1/N) Zf\il 0(x — x;), where {z; : i = 1,..., N} are the
positions of the samples and ¢ is the Dirac delta function. Convolving I(x) with a smoothing filter F
gives output G x I(xz) = (1/N) >, F(x — x;) — a standard non-parametric way to estimate a distribution
from samples).

A particularly important smoothing filter is the Gaussian G, (2,y) = 5-=5 exp{—(z?+y?)/20%}. The
standard deviation ¢ of the Gaussian specifies the amount of smoothing — small ¢ means little smoothing
and large o is a lot of smoothing. We can smooth the image at different values of ¢ to get representations
of the image at multiple scales.

GU*I(:E’)://dudvG(xfu,yfv:U)I(u,v), (2)

where o is the standard deviation of the Gaussian (the larger o the more the smoothing).
Discrete and Continuous images. Images have discrete values I(z,y) € {0,255} where x € {1,n}
y € {1,m} are also discrete (i.e. the pixels). But it is often convenient to think of images as being

()]

A 1Y)
Fly

-

S VA (=rv o \NTL T

Figure 5: The image I is filtered by a function F'. For each point z in the image we center the filter at
x, multiply by the image, and integrate. In this case F' is performing a local weighted average of the
image.

Figure 6: Left Panel: cosine Gabor. Right panel: sinusoid Gabor.

continuous differentiable functions I(x,y) where (x,y) take continuous values in D C R?. This allows
us to take derivatives and use mathematical results from harmonic analysis and other disciplines. The
relations between continuous and discrete images is complicated. We can think of a continuous image as
being the continuum limit of discrete images as the distance between the pixels tends to zero. We can
think of the discrete image as being sampled from a continuous image — and use Fourier analysis (e.g.,
Nyquist’s theorem) to quantify how much information is lost. More practically, we can replace differential
operators dI /dx by a difference operator I(z + 1) — I(x) (recall that dI/dz = limgﬁow. This
is called finite differences (see Wikipedia). A better approximation is (1/2)I(z + 1) — (1/2)I(x +1). A
discrete second order derivative is I(z) — (1/2)I(x +1) — (1/2)I(z + 1).
For discrete images, we perform linear filtering as follows:

¢+ I1(Z) = //dudv¢(m —u,y — v)I(u,v). (3)

Deriwative Filters: differentiating an image is also a filtering operation. Smoothing an image by a
filter F' and then differentiating it d/dx correspond to filtering the image by a derivative filter dF/dz.
(Easy to check). Differentiating the image, without smoothing, is the same as differentiating an image
which has been smoothed by a delta function — i.e. filtering the image by d/dxd(z), where 6(.) is the
Dirac delta function.

We can take as many derivatives as we like — e.g., d?/dx?, d”/dx” — although more smoothing is
usually required to smooth out the images and make high order derivatives well behaved.

For discrete images, a filter F'(x,y) is a derivative filter if it sums to zero — >° F(z,y) = 0. It can
be checked that this happens for the simple filter I(x+1) —I(z) and I(x)— (1/2)I(z+1)—(1/2)I(z—1).

Filterbanks. Filterbanks consists of several filters. They give local descriptions of images. IL.e. you
can describe a pixel by the the values of the filters evaluated at that point. It is a richer description
that the pixel value. Many pixels in an image have the same values — but fewer have the same filterbank
values (why filterbanks? — with bag of words — see below — these are one way to model textons)

Examples of filterbanks consist of derivatives of Gaussians (at different values of o — i.e. differ-
ent scales). The derivatives are in different directions and can include first, second, and higher order
derivatives.

Other filterbanks are based on Gabor filters. These are sinusoids multiplied by Gaussians. They obey
certain optimizality criterion in terms of their localization in the space and frequency domain (based on
least square measure of locality). They are of form:

Gabor (x) = exp{ics - 7} exp{—(1/2)2” 27}, (4)

The Gabor filter is complex and can be decomposed into a cosine Gabor (the real part) and a sine
Gabor (the imaginary part) (exp{if} = cos@+isinf), see Fig (6). Energy filters are defined by summing
the squares of the cosine and sine parts. (The receptive fields of some neurons, simple cells, in area V1 or
the visual cortex can be approximated by Sine and Cosine Gabors and it has been argued that complex
cells can be modeled as energy filters — but some neuroscientists point out that many complex cells do
not have input from simple cells and also the distinction between simple and complex cells may be based
on a false dichotomy and instead there are a family of cells with a range of different properties).

Wavelets (cite Wikipedia) give a way to define other filterbanks. See the Fourier series and basis
function section for a discussion of these and other filters (and overcompleteness).

4 The Gaussian and the Heat/Diffusion Equation

The Gaussian filter is related to the heat/diffusion equation for the temperature 7'

2 2

0 0 0

The solution is
T(l‘,y,t) = Gt *T(xay70) (6)

where G is a Gaussian with covariance o2 = t/2 and where T'(z,y,0 is the initial conditions. It can
be shown that the heat equations rapidly smooths out the input so that it tends to a spatially constant
temperature — by proving that quantities which measure the smoothness of the temperature — like
[IVT,|?dzdy — decreases monotonically as o increases.

The Gaussian has many special properties. For example, it implies that the number of edges in an
image decreases monotonically with ¢ (equivalently with o) (Babaud et al, Yuille and Poggio). Moreover,
the Gaussian is the only filter for which this is true. This is important for scale-space representations
where an image is represented by its edges at multiple scales (Koenderink, Babaud et al.).

But a problem with the Gaussian is that it blurs out edges too much which also causes the positions
of edges at large o to be strongly influenced by the positions of other edges. This is highly undesirable. It
motivated Perona and Malik to advocate using a non-linear diffusion equation which reduces the flow of
heat at places where the intensity gradient is high (i.e. edges) and so which tends to maintain edges and
not to move them. The non-linear equation they proposed in mathematically unstable (see Mumford
and Shiota) but their discretized version is stable. There has been an extensive literature on related
non-linear differential equations for processing images.

The relationship between the Gaussian and the diffusion equation can be exploited to demonstrate
the effect of smoothing an image (see Fourier domain section). Multiscale Images:.

5 Fourier Theory and Expansions in terms of Basis Functions

Filtering is the convolution of the filter F' with the image I. Fourier theory allows us to analyze images
in their frequency domain by representing the image in terms of a sum (or integral) of sinusoids:

I(@,y) =) anm exp{inz/(2m)} exp{imy/(2m)} (7)

n,m

where the coefficients a,, ,, are given by:

Unm = (1/27)? Z I(x,y) exp{inz/(2m)} exp{imy/(2m)}. (8)

z,Y

Then the effect of smoothing by a Gaussian can be found (using the heat equation) by

I(z,y) = Y anm exp{inz/(2m)} exp{imy/(2r) exp{—(n® + m?)/(27)*t}} 9)

n,m

Hence the high frequencies get removed very qu1ck1y (exponentially fast) leaving only the low frequencies.
We can apply Fourier transforms to obtain d)(wm,wy) = gb(wm,wy)f (Wg, wy), where (wg,wy) is fre-
quency.
For discrete images I(Z) : x = 1,...,1024 y = 1, ..., 1024 and a discrete filter ¢(u,v), we define a linear
filter to be:

ox (T ZZ(JSI—U y —v)I(u,v). (10)

The simplest filters are derivatives —e.g. d/dx and d/dy. These can be converted into discrete filters
such as 1, —1 (in one dimension). Better derivative approximations can be performed (see standard
textbooks).

The fourier expansion is just one type of expansion in terms of basis functions. Many alternative
basis functions for expansion are possible (e.g., Haar basis functions). Fourier is used to compress images
— e.g., the standard jpeg compression — obtained by dividing the image into many small regions (of the
same size) and expressing the image in each region as a truncated Fourier expansion.

An alternative is to expand an image in terms of an overcomplete set of basis functions — like wavelets
— see Wikipedia.

6 Multiscale

Show some illusions. From http : //www.michaelbach.de/ot/ fcsmosaic/.

Figure 7: Upper Panels: the data images. Lower Panels: the groundtruth edge maps

100
of--edge ——

T — 7 o)
: ——L—'l H 5

......

__PI’-_._.-._

probability density

RHTAN — -
h 005 0f
[Vlg=Y

Figure 8: Left Panel: The distribution P(.|on) and P(.|of f) represented as histograms. Observe that
logP(.lon)/P(.lof f) is monotonically increasing as a function of the image gradient. Right Panel: a
Histogram. (Add log P(.|on)/P(.|of f) figure

7 Statistical Edge Detection

One of the first things to try is to detect places in the image where the intensity changes rapidly. These
are edges. They typically occur at the boundaries of objects or at discontinuities in texture.

The most straightforward way to design an edge detector is to calculate the intensity gradient VI =
(%, g—;). Label a point Z as an edge if |[VI(Z)] > T, where T is a threshold. (The derivatives are
approximated by the differences on the image lattice). This will give a very crude edge detector. More
generally, we can define the edge detector by a filter (linear or non-linear) 5 x 1(Z).

How to formulate this statistically in the spirit of this course? Get a dataset of images and label the
edges, see figure (7). Then learn probability distributions P(¢#* I(Z)|# onedge) and P(¢p*I(Z)|Z offedge),
see figures (8). These distributions can be represented non-parametrically (e.g., histograms) or by pa-
rameterized models (e.g., Gaussians). (These distributions should be learnt on the training dataset and
tested on the test dataset and perform cross-validation to ensure generalization).

Formulate edge detection as a log-likelihood ratio test. Label a point & as an edge if log % >
T, where ¢ is the edge detector filter and T is a threshold. You can plot the Receiver Operating Charac-
teristic (ROC) curve of true positives as a function of false positives (each value of T determines a point
on this curve), see figure (9).

Does this improve over simply thresholding the filter response — i.e. ¢ x I(Z) > T, for some T.
P(¢+I(Z)|Z onedge)
P(¢pxI(Z)|Z offedge)
¢ * I(Z) because P(¢ * I(Z)|Z offedge) is usually peaked at 0 (the derivatives of an image are usually
small at most places in the image) and then gradually decreases while, by contrast, P(¢ I(Z)|Z onedge)
is typically small at 0, then increases for larger ¢ x I(Z) and then decreases again — see figure (8). This
monotonic relationship means it does not matter if the threshold is placed on the filter response or on
the log-likelihood. So there is no advantage in using the statistical approach.

But the situation changes if you combine two, or more, different edge detectors to obtain a vector-

The answer is often no. The reason is that log is typically a monotonic function of

P(on-edge]on-edge)
P(on—edgeﬁlon—edge)

L ' Il 1 0 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

P(on-edgek|off-edge) P(On—edge’|0ff»edge)

Figure 9: ROC curves. Left Panel: generalization — the ROC curves for the test and training datasets
are very similar. Right Panel: failure to generalize — the ROC curves for the test and training datasets

differ.
T {W A”]Y‘M Y
N 5 y wfx(i 4
W=

v

Figure 10: Derivatives of Images at different scales. Left Panel: the derivatives will be large at many
places in a noisy image (even though there is only one large step edge). Right Panel: smoothing the
image with a Gaussian and then differentiating will make the derivatives much smaller in most of the
image but still keep a big response at the step edge (but weaker than before).

valued edge detector q; « I(Z). The statistical approach gives a natural way to combine these edge
detectors. Label Z as an edge if log % > T. The results of this are superior to putting
thresholds on the individual edge detectors, as can be seen from the ROC curves and other performance
measures — see figure (11).

Where do these other edge detectors come from? There are a whole set of different edge detectors
proposed in the computer vision literature. In particular, you can detect edges at different scales in the
image.

Smoothing will also degrade large intensity gradients, which are more likely to be edges, but to a
lesser extent — see figure (10). We can apply an edge detector ¢(.) to the smoothed image to obtain a set
of new edge detectors ¢G, * I(Z) by varying o, see figure (10). We can combine these detectors to give
a vector-valued detector — e.g. ¢ = (¢, $G,) — and learn the distributions P(¢ % I(Z)|W (Z)). Important
point — there is a limit to how many filter you can combine without running out of training data. If you
represent distributions by histograms, then the amount of data required scales like exponentially with
the number of filters (quadratically if you use Gaussian distributions).

The performance of edge detectors can be evaluated by ROC curves or by measures of the difference
between the distributions P(.lon), P(.|off). The Chernoff information as a measure of the different
between the distributions P(.Jon) and P(.|off). The larger the Chernoff, the more the distributions
differ. The Chernoff information C(p, ¢) = —ming<x<i1 log{}_, P y)g = (y). Chernoffis (u; —p2)/(802)
if p(.), q(.) are Gaussian distributions with identical variance o? and means y1, 2. The use of Chernoff
is motivated by the fact that the error rate in labeling N samples yi,...,yn as either all from p(.), or
all from ¢(.), behaves as exp{—NC(p,q)} for large N. The Chernoff information also can be used to
bound the Bayes risk for classifying a single sample y as being from p(.) or ¢(.). Figure (11) shows how
combining different filters can lead to better edge detectors.

These statistical edge-detectors are very successful when tested on large datasets. There are improve-
ments to the methods described here — you can design special features (Berkeley — see later), you can

full color greyscale chrominance

greyscale

Chernoff

Chernoff

0 0 0
1 2 4 1 2 4 1 2 4
filter scales (o) filter scales (o) filter scales (o) filter scales (o)

Figure 11: Evaluation of different filters and combinations of filters. Stars for the joint distribution of
(N1, Ny), crosses for Ny, triangle for |V|, diamonds for V2. Ny, Ny are the first and second eigenvalue of
the matrix-valued operator G * (G * I)(G * I)T, where G is a Gaussian and T denotes vector transpose.

e

X

Gaussiin noise ~

Figure 12: The assumptions made by the Canny edge detector. Left Panel: edges are step edges corrupted
by additive Gaussian noise. Right Panel: non-edges are Gaussian noise.

use alternative methods for combining different edge detectors (e.g., AdaBoost). These will be described
later in the course.

Now we compare statistical edge detectors to the default Canny edge detector (Canny 1983). This
formulates edge detection as distinguishing between a step-edge with additive Gaussian noise and pure
Gaussian noise, see figure (12) (this is an oversimplification). These can be thought of as generative
models for edges and non-edges. How well do they correspond to real images? It turns out that step
edges are a reasonable first order approximation to real edges (although there are a variety of other
edge profiles). But non-edges are often not well described by pure Gaussian noise. It is a reasonable
approximation for indoor images without texture, but fails in outdoor scenes because of vegetation (we
say more about texture later in the course). Hence the performance of statistical edge detectors are
significantly better than Canny on challenging outdoor images, see figure (13).

7.1 Alternative Statistical Methods

A subsequent method for statistical edge detection (Malik et al) uses a slightly different approach. They
use a filterbank of Gabor filters at different scales. They apply this filterbank to all the image data and
then perform a clustering algorithm to obtain a dictionary of words — the centers of the clusters. Then
the response of the filterbank at each pixel is the word that it corresponds to.

Figure 13: Comparison of Canny and Statistical Edge Detection. Left Panel: Canny edge. Right Panel:
Statistical Edge Detector. Observe that Canny has bigger response on the texture in the background
but also fails to detect the sides of the road.

m,;k‘m‘E) = /l Vi&‘
/ \ ﬁm‘?“‘% :M v

; Ntz © The hishhar ' Lo asrowseot bing

Figure 14: The histogram of the first derivative takes the following form.

At each pixel they search for edges at a range of different orientations. They select a small region of
the image based on the pixel they want to classify as edge or non-edge and divide it into two regions by
a line at each orientation. Then then compute the historgams of the words (of the filterbank) on each
side of the line. They use a chi-squared test as a measure of similarity between the histograms. This
is thresholded to give a get of edges. Next they perform a grouping of these edges — using a spectral
technique (see lecture 5 or 677) — to group edges which are supported by other edges (e.g., a prior
assumption about the spatial structure of edges). The result of this edge grouping is then combined with
the original edge map (how/ — weighted averaging??) to yield the edge map.

8 Are Images piecewise smooth?

Several influencial image models from the 1980’s assumed that images were piecewise smooth (Geman
and Geman, Blake and Zissrmann, Mumford and Shah, Osher et al.). We will discuss these models in
later lectures (4 and 577). But how good as these assumptions?

To explore this, we can differentiate an image I(z,y) — to obtain dI /dx — and compute its histogram.
This has been done by many people (reference). The form of the histogram is very similar for all images,
see Fig 14

This histogram suggests that images really are piecewise smooth. The gradients are small for most
image pixels, but for some pixels the gradients are very large. Similar plots also occur for almost all
derivative filters (Lee and Mumford, Green). Also similar results arise from many other data sources
(Green — and who else). Note that if the derivatives were normally distributed, then the plots would look
like a Gaussian and the "tails” would fall off rapidly, like exp{—(1/2)z2}. But instead they fall off much
more slowly — the Gaussian distribution is not "robust” enough to deal with this data (it under-estimates
the changes of rare events — e.g., the black swans that arguably caused the recent recession/depression).
But mixtures of Gaussians may be sufficient (e.g., Black!!).

These results suggest that images really are locally smooth — but that this ”weak smoothness” is
not just captured by the first order statistics. This is a pity since the 1980’s models (which didn’t have
access to these statistics) modeled only very local interactions (see lecture 4). This was partly due to the
difficulty of performing computation with that class of models if the interactions were more non-local.

7

9 Bayes Decision Theory and Learning

Note: this material was not covered in the lectures.

9.1 Bayes Decision Theory

So far, we have assumed that the goal of inference is to obtain the Maximum a Posteriori (MAP) estimate
W* = arg maxy P(W|I). But why? Where does this come from? What are the alternatives?

The basis is Bayes Decision Theory which formulates problems as minimizing the expected loss. To
make this precise, assume we have a joint distribution P(W,), a set A of decision rules «f(.), and a loss
function L(a(I), W) for making decision a(I) for input I when the true state is W.

Bayes Decision Theory states that you should pick the decision rule that minimize the risk which is
defined to be the expected loss:

= L(a(D), W)P(I,W), (11)
,W
where we replace the summations by integrals if I, W, or both are continuous valued.

Bayes Rule o = arg miR R(«), Bayes Risk R(a™) = miR R(w). (12)
aE agc

NOTE: there are a few mathematical special cases where R(a*) # argmin,ea R(a) but they very
rarely occur outside mathematics books.

We can re-express the risk as:
ZP R(a|I), whereR(a|l) = ZL YP(W|I). (13)

Hence minimizing the Bayes risk is equivalent to minimizing the conditional risk R(«|I) for each I
(i.e., the Bayes decision rule for input I is independent of its decision for other inputs — alternatively,
the distribution P(I) has no effect on determining the Bayes rule). This gives:

o*(I) = argmmZL YP(W|I), discrete W
o*(I) = argm(ijr)l/dWL(a(I),W)P(W|I), continuous W. (14)

The MAP estimate arises as a special case for a particular choice of loss function.

In the discrete case, set L(a(I), W) =1—4§(a(I), W), where the delta function é(a(I), W) takes value
1if o(I) = W and value 0 otherwise (i.e., correct responses pay no penalty but incorrect responses are
weighted the same). The Bayes rule reduces to maximizing >, 6(a(), W)P(W|I) = P(W = o(I)|I),
which is the MAP estimate.

For certain applications — e.g., edge detection, face detection — it may be better to use a different
loss function which penalizes false negatives (failure to find edges/faces) more than false positive (finding
edges/faces where they do not exist). The reason is that we can use later processing (i.e., other models)
to eliminate the false positives. But it is harder to resurrect the false negatives.

In the continuous case, set L(a(I), W) = —d(a(I) — W), where §(.) is the Dirac delta function (i.e.,
§(z) =0, x # 0 and [dzd(xz) = 1, provided the range of integration contains the point 2 = 0. The Bayes
rule reduces to maximizing [dWé(a(I), W)P(W|I) = P(W = «(I)|I) which is the MAP estimator.

Observe that the Dirac delta function is a strange choice of loss function because it pays an (infinite)
penalty unless the decision is perfectly correct. There is no partial credit for making a decision a([)
that differs from the correct decision W by an infinitesimal amount. This is highly unrealistic. More
reasonable choices of loss function are to set L(a(I),W) = —G(a(I) — W : o), where G is a Gaussian
whose variance/covariance determines how much partial credit to give. In practice, the simplicity of
MAP estimation — and the difficulty of determining how to assign partial credit — means that MAP
estimation is often used in practice. Alternatives will be described later in the course. They include the
mean estimate [P(W|I)WdW which occurs for quadratic loss function L(a(I), W) = (a(I) — W)% In
summary, MAP estimation for continuous variables should be used with caution.

Bayes deciston theory and approximate models. There is a simple but important conceptual point to
be made from the Bayes Risk (which several well-known vision researchers have got wrong!). The Bayes
risk is obtained by minimizing with respect to all decision rules. If we reduce the set of allowable decision
rules, for example if we do edge detection with a restricted class of filters, then we have to do worse.

Bayes decision theory has some implications which may be counter-intuitive. Suppose the likelihood
term P(I|W) is sufficient to determine the correct W. Then the prior P(W) may bias the result. The
reason is that Bayes decision theory assumes that you should make the best decision on average, which
does not correspond to making the best decision on a specific example. Bayes decision theory can be a
bad guide for how to make one-time only decisions — such as buying a house, or gambling on the stock
market. In such case, it may be wiser to take into account the worst-case loss rather than the average
case (i.e., how much money can you afford to loss in the stock market). But the mathematics for this is
much more complicated and worrying about the worst case is often paranoid.

9.2 Learning — Memorizing and Generalizing

The study of Machine Learning has taught us a lot about the differences of generalizing and memorizing.

All learning is done from a finite training set of data {(z;,y;) : ¢ = 1,..., N} but we want decision
rules to be valid for data that we have not seen yet. Most studies of this problem assume that the
data samples are independent identically distributed (i.i.d.) from some unknown distribution P(Z). We
design a decision rule «(.) € A which maps x to y. We choose a loss function L(a(x),y) which is the
penalty for making decision a(x) for data x when the true decision is y (i.e., usually L(a(x),y) = 0 if
a(r) =y).

From the training dataset, we can learn a decision rule & to make the empirical risk small, where the
empirical risk (average loss over the training dataset) is defined by:

10

1 M

Rempl(@) = 1 3 Lla(wi),) (15)
i=1
But this is only memorization (i.e., applies only to the training data) unless & also minimizes the
risk (expected loss) of all the samples from the distribution:

R(a) =)) P(@)L(a(),y). (16)

Memorization typically occurs when the amount N of training data is small and the set A of possible
a(.) is large (technically the capacity). In this situation, it is too easy to find a decision rule that gives
a good fit to the training data by chance (this is how conspiracy theories get started).

To obtain generalization, we require that R(&) = Remp(&) (over-simplified?). How can we be sure
that this is the case?

For certain classes of problem (making decisions) there is a beautiful theory due to Vapnik (see also
Valiant) which shows that with probability greater than 1 — § that

R(a) < Remp(a) + ¢(N, h,0). (17)

where h is the VC dimension which is a measure of the capacity of the set of classifiers a € A. Provided
N is much large than h and than |logd| then we can be sure that minimizing R.,,, will make R small.
But this theory is unfortunately mostly of conceptual use because the bounds are often not tight enough.
The theory is slightly paranoid because it has to rule out the probability that a rule might classify the
training data correctly because of a chance structure in the dataset (e.g. in high-dimension space d and
only N datapoints it is always possible to get a rule to make any dichotomy). Note: Vapnik’s results
rely on the law of large numbers.

Instead, in practice, we use the idea of cross-validation (of which there are many variants). This
involves a training dataset and a test dataset. The decision rule is learnt on the training dataset and
evaluated on the test dataset (this can be thought of as using the test dataset to estimate the Bayes
risk). This is not rigorously guaranteeing that R(&) &~ Remp(&) (because there is always the chance that
both training and test datasets are atypical of the distribution P(&)). But how paranoid do you want
to be?

11

