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1 Lecture 4

1. MRF Models: Labeling and Grab-Cut as Examples.

2. Unary and Binary Potentials.

3. Functionals and MRFs.

4. Gibbs Sampling and MCMC.

5. Variational/Mean Field Theory. (CCCP)

6. Example: Geman and Geman model (mixture).

7. Appendix: MCMC.

2 MRF Models

Markov Random Fields (MRFs) are undirected graphical models. The graph
G = V,E where V denotes the graph nodes and E the edges between nodes.
State variables W = {wi} are defined on the graph nodes – i.e. wi is the
state of node i ∈ V . The edges define a neighborhood Nbh(i)E – so that
j ∈ Nbh(i) if (i, j) ∈ E. The MRF specifies a probability distribution P (W )
(or P (W |I) conditioned on the image). The MRF satisfies the Markov con-
dition P (wi|W/i) = P (wi|{wj : j ∈ Nbh(i)), where W/i denotes the state of
all nodes except i – in other words, node i is directly influenced by nodes in
its neigborhood Nbh(i) but only indirectly by other nodes. The Hammersley-
Clifford theorem states that an MRF can be expressed by a Gibbs distribution –
P (W ) = 1

Z exp{−E(W )}, where E(W ) is the energy. For more, Google MRFs
or read the handout.

In this lecture we treat MRFs where the graph is the image lattice – i.e.
nodes are indexed by (x, y) – and the neighborhoods are nearest neighbor – i.e.
Nbh(x, y) = {(x + 1, y), (x− 1, y), (x, y + 1), (x, y − 1)}. Note: these neighbor-
hoods are probably too small to capture the statistical structure of the problem
(see next lecture) and they are mostly used because they make the inference
task easier – i.e. to estimate Ŵ = arg maxP (W |I). They are related to the
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energy functionals described in the last lecture (see section – functionals and
MRFs). The energy function E is a sum of potentials φ defined over the nodes
and the edges:

P (W |I) =
1

Z
exp{−E(w, I)}

E(w, I) =
∑

(x,y)∈D

φ(w(x, y), I) +
∑

(x,y)∈D

∑
(x′,y′)∈Nbh(x,y)

φ(w(x, y), w(x′, y′), I). (1)

The unary potentials φ(w(x, y), I) depend only on the state of the individual
nodes w(x, y), while the binary potentials φ(w(x, y), w(x′, y′), I) depend on the
states of two nodes (or the edge that connects them). If the model only contains
unary terms then it reduces to the factorized model studied in lectures 2 and 3 –
i.e. P (W |I) = 1

Z exp{−
∑

(x,y)∈D φ(w(x, y), I)} = 1
Z

∏
(x,y)∈D exp{−φ(w(x, y), I)}.

Z is the normalization, or partition, function. It is specified by Z =
∑
w exp{−E(w, I)}

but this is usually impossible to compute exactly. The number of possible states
W is kN−1, where k is the number of possible states of each w(x, y) and N is the
number of pixels in the image. It can be computed if the model is factorizable
– only contains unary terms – then Z =

∏
(x,y)∈D

∑
w(x,y) exp{−φ(w(x, y), I)},

which requires only Nk computations.
In this lecture we focus on image labeling. There are two examples. The

first is labeling a pixel as one of a discrete number of labels (e.g., sky, road,
vegetation), which is an extension of the models described in lecture 2 and 3
(which used unary terms only). Now we introduce pairwise terms which allow
us to include spatial context – e.g., sky pixels are likely to be next to other sky
pixels. The second examples is grab-cut (see the handout) where the task is
to label pixels as foreground or background. The idea is that a user wants to
remove an object from a photograph – so you draw a boundary which surrounds
the object, and then want to detect the silhouette directly.

For these applications the unary potentials φ(w(x, y), I) provide local evi-
dence for the states w(x, y) of each pixel (x, y) conditioned on the image. These
can be learnt by the techniques described in lectures 2 and 3 using training data
(for grab-cut the boundary drawn by the user provides training data, contami-
nated because the object silhouette is not specified precisely by the user).

The binary potentials for these applications are specified as follows (ideally
we would learn the unary and binary potentials together – see next lecture).
They capture the intuition that neighboring pixels tend to have the same labels,
except if these pixels have very different intensities (suggesting an edge between
them). This can be specified by:

φ(w(x, y), w(x′, y′), I) = A{1− I(w(x, y), w(x′, y′))},
φ(w(x, y), w(x′, y′), I) = A{1− I(w(x, y), w(x′, y′))} exp{−B|I(x, y)− I(x′, y′)|}. (2)

Here A and B are constants. I(., .) is the identity function which takes value 1
if both terms are identical, and value 0 is they are different.
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More generally, MRF models involve three aspects: (i) representating the
problem by specifying the graph structure and the state variables, (ii) learning
or specifying the potentials of the distribution, and (iii) performing inference to
estimate Ŵ = arg maxP (W |I) or some other estimator of W .

We have discussed how to represent the problem of image labeling, we have
specified the potentials, and we will describe some techniques to do inference
later in this lecture. Other lectures will describe other applications, other infer-
ence algorithms, and learning.

3 Functionals and MRKs

The previous lecture described formulating vision problems in terms of mini-
mizing functionals. How does this relate to MRFs?

Consider the TV norm model: E[J ; I] =
∫
D
|~∇J |d~x+ λ

2

∫
D

(J(~x)− I(~x))2d~x
defined over D ⊂ R2. Suppose we approximate D by a discrete lattice of
points {(x, y) : (x, y) ∈ L}. This replaces the data term

∫
D

(J(~x)− I(~x))2d~x by∑
(x,y)∈L{I(x, y)−J(x, y)}2 and the smoothing term

∫
D
|~∇J |d~x by

∑
(x,y)∈L

∑
(x′,y′)∈Nbh(x,y) |J(x, y)−

J(x′, y′| (where the neigbhorhood is the nearest neighbors on the lattice). This
gives a discrete energy:

E(J ; I) =
∑

(x,y)∈L

{I(x, y)−J(x, y)}2 +λ
∑

(x,y)∈L

∑
(x′,y′)∈Nbh(x,y)

|J(x, y)−J(x′, y′|

(3)
We define a continuous-valued MRF by using the Gibbs distribution:

P (J |I) =
1

Z
exp{−E(J ; I)}. (4)

Note that the neigborhood structure (i.e. graph edges) of the MRFs arise
from the derivatives in the TV model (and the way we approximate deriva-
tives by taking differences between pixel values at neighboring pixels). Broadly
speaking, first order derivatives transform to nearest neighbor interactions on
the lattice. Higher order derivatives translate the longer range interactions.

Note that this translation between functionals and continuous-valued MRFs
does not guarantee that: (i) that the MRF is well-defined (e.g., normalizable),
and (ii) the solution to the MRF is similar to the solution to the funcational
(sometimes there is a simple limit result – e.g., as the number of lattice nodes
become infinitesimally close together then the MRF solution converges to the
functional solution – but this limiting argument becomes very tricky for some
models, like Mumford and Shah).

The MRF version of the TV-norm model can be decomposed into two parts:

P (I|J) =
1

Z1
exp{−

∑
(x,y)∈L

(J(x, y)− I(x, y))2}, P (J)
1

Ze
exp{−

∑
(x,y)∈L

∑
(x′,y′)∈Nbh(x,y)

|J(x, y)− J(x′, y′|}.
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Here P (I|J) is the likelihood function of generative the data I if the state
os J . The quadratic form means that it corresponds to assuming that the
observed image I is given by J plus additive zero mean gaussian noise which is
independent at each pixel.

P (J) is the prior on J – it assumes that images are piecewise smooth (for
justification see next lecture). Technically this an improper prior because it is
not normalizable because it is specified only on the relative values J(x, y) −
J(x′, y′) (it is invariant to J(x, y) 7→ J(x, y) +K for any constant K and hence
cannot be normalized).

P (J |I) = P (I|J)P (I)
P (I) is the posterior distribution of J given I. This can be

normalized – and this corresponds to the discretized version of the TV model.
Note that models like Geman+Geman and Blake+Zisserman are similar to

the discretized version of the TV norm model. They are not convex – and hence
harder to do inference with – but capture some aspects of images better (see
handout).

Finally, we can convert a continuous-valued MRF into a discrete-valued MRF
by discretizing w(x, y) – e.g., setting w(x, y) ∈ {0, 1, ..., 255}.

4 Gibbs Sampling

Gibbs sampling is a procedure to draw samples W1, ...,Wm from P (W |I). These
samples are likely to be from places where P (W |I) and from them we can
estimate properties such as arg maxP (|I) or

∑
W WP (W |I). Gibbs sampling is

a special case of Markov Chain Monte Carlo (MCMC) (see MCMC appendix).
Gibbs sampling initializes W at random and then repeats the following step

until convergence – select a point (x, y) at random, then sample the state w(x, y)
from the conditional distribution P (w(x, y)|{w(x′, y′ : (x′, y′) ∈ Nbh(x, y))}).
The procedure repeats until convergence. The output is a sample W1. Then
the procedure starts again to obtain a new sample W2, and so on.

The conditional distribution of w(x, y) can be calculated as:

P (w(x, y)|{w(x′, y′ : (x′, y′) ∈ Nbh(x, y))})

=
exp{−φ(w(x, y), I)− 2

∑
(x′,y′)∈Nbh(x,y) φ(w(x, y), w(x′, y′), I)}∑

(x,y) exp{−φ(w(x, y), I)− 2
∑

(x′,y′)∈Nbh(x,y) φ(w(x, y), w(x′, y′), I)}
. (5)

Sampling from the conditional distribution is practical because of the simple
form of the distribution. Its normalization factor can be computed (unlike the
normalization constant of the original distribution P (W |I) which is usually
impossible to compute).

The most probable samples from P (w(x, y)|...) will be those where φ(w(x, y), I)
is small (i.e. driven by the data) and

∑
(x′,y′)∈Nbh(x,y) φ(w(x, y), w(x′, y′), I) is

small (i.e. the state w(x, y) is consistent with the states of its neighbors).
A difficulty with Gibbs sampling, and with MCMC in general, is that it is

difficult to be sure when it has converged although there are tests (Jun Liu).
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5 Mean Field Theory and Variational Methods

Mean Field Theory attempts to find a probability distribution Q(W ) which
approximates P (W |I). Q(W ) takes a simple form – like

∏
(x,y)∈D q(x,y)(w(x, y))

– so that estimating ŴQ = arg maxQ(W ) is straightforward (e.g., ŵ(x, y)Q =
arg max q(x,y)(w(x, y))).

Q(W ) is chosen to minimize the Kullback-Leibler divergence:

F (Q) =
∑
W

Q(W ) log
Q(W )

P (W |I)
. (6)

F (Q) ≥ 0 with the property that F (Q) = 0 only if Q(W ) = P (W |I).
Hence MFT reduces to minimizing F (Q) with respect to Q. This is a con-

tinuous minimization problem so we can use steepest descent techniques to
estimate Q. If we assume the factorized form Q(W ) =

∏
(x,y)∈D q(x,y)(w(x, y))

then F (Q) can be expressed as:

F (Q) =
∑

(x,y)∈D

∑
w(x,y)

q(x,y)(w(x, y)) log q(x,y)(w(x, y)) +
∑

(x,y)∈D

q(x,y)(w(x, y))φ(w(x, y), I)

+
∑

(x,y)∈D

∑
(x′,y′)∈Nbd(x,y)

q(x,y)(w(x, y))q(x′,y′)(w(x′, y′))φ(w(x, y), w(x′, y′), I). (7)

Note that the first term is a convex function – for many potentials the third
term is concave (or can be made concave by a trick – Kosowsky and Yuille).
Then we can apply CCCP to obtain the update rule:

qt+1
(x,y)(w(x, y)) =

exp{−φ(w(x, y), I)− 2
∑

(x′,y′)∈Nbd(x,y) q(x,y)(w(x, y))q(x′,y′)(w(x′, y′))phi(w(x, y), w(x′, y′), I)}∑
w(x,y) exp{−φ(w(x, y), I)− 2

∑
(x′,y′)∈Nbd(x,y) q(x,y)(w(x, y))q(x′,y′)(w(x′, y′))phi(w(x, y), w(x′, y′), I)}

. (8)

This reduces F (Q) but is not guaranteed to converge to the global minimum.
Note that the MFT update rule is very similar to the Gibbs sampler. It can be
shown (e.g., Amit) that the MFT can be derived by taking the expectation of
the Gibbs sampler. It also combines the unary evidence for state w(x, y) with
the consistency of the neighbors.

If F (Q) has many local minima then we can use a continuation method called

deterministic annealing. This defines a family of FT (Q) =
∑
W Q(W ) log Q(W )

P 1/T (W )
,

where P 1/T (W ) is the distribution P (W ) taken to the (1/T )th power and then
normalized. For large T the distribution P (W ) is smooth and FT (Q) will have
a single minimum.

6 Geman and Geman:

See handout.
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7 MCMC Appendix

MCMC gives a way to sample from any distribution P (~x). This enables us to

estimate quantities such as ~x∗ = arg maxP (~x) or
∑
~x
~φ(~x)P (~x). The advantage

of MCMC is that it does not require knowing the normalization constant Z of
the distribution P (~x) = (1/Z) exp{−E(~x)}. But MCMC is an art rather than
a science.

A Markov chain is defined by transition kernelK(~x|~x′), such that
∑
~xK(~x|~x′) =

1, ∀~x′ and K(~x|~x′) ≥ 0. We also require the constraint that for any ~x0 and ~xN
there exists a chain ~x1, ..., ~xN−1 such that K(~xi|~xi−1) > 0 for i = 1, ..., N (i.e.
so that the chain is irreducible – you can get to any state from any other state
in a finite number of moves).

An MCMC for a distribution P (~x) is a special Markov chain where the
transition kernel satisfies

∑
~yK(~x|~y)P (~y) = P (~x) – i.e. the target distribution

P (~x) is a fixed point of the chain. In practice, most MCMC are designed to
satisfy the more restrictive detailed balance condition (which implies the fixed
point condition):

K(~x|~y)P (~y) = K(~y|~x)P (~x). (9)

To run MCMC we give an initial condition ~x0 and repeatedly sample from
K(~x′|~x) to get a sequence ~x1, ..., ~xt, ... so that for sufficiently large t ~xt is a
sample from P (~x).

7.1 Metropolis-Hastings and Gibbs Sampler

Metropolis-Hastings is an ansatz for constructing a transition kernel that
obeys the detailed balance condition. It is specified by:

K(~y|~x) = T (~y|~x) min{1, P (~y)T (~x|~y)

P (~x)T (~y|~x)
}, for ~y · ~x) (10)

where T (~y|~x) is a conditional distribution and K(~y|~y) is defined to ensure that∑
~yK(~y|~x) = 1 is satisfied for all ~x. It can be checked that this satisfies detailed

balance. The form of T (~y|~x) must be chosen to ensure that this is irreducible.
Metropolis-Hastings can be thought of as a two stage process. First, use the

proposal distribution T (~y|~x) to generate a proposal ~y. Accept the proposal with

acceptance probability min{1, P (~y)T (~x|~y)
P (~x)T (~y|~x)}. In practice, the convergence speed

of Metropolis-Hastings algorithms depends on whether good proposals can be
found (we will return to this issue later in the course).

A key property of Metropolis-Hastings algorithms (and other MCMC) is
that they do not require knowing the normalization constant Z of the distri-
bution P (~x) = (1/Z) exp{−E(~x)} (observe that Z cancels in the acceptance
probability).

What is the intuition for Metropolis-Hastings? First, we sample from T (~y|~x)
to propose a move to ~y. We accept this move with certainty if E(~y) < E(~x) +

log T (~x|~y)
T (~y|~x) (i.e. the energy decreases after allowing for the proposal probability).
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But if E(~y) > E(~x) + log T (~x|~y)
T (~y|~x) , then the move can still be accepted with

probability. Hence, unlike steepest descent the state of an MCMC will not
get stuck in a local minima because it can always increase the energy (with
probability). However, MCMC will not converge to a fixed point but instead to
a probability distribution.

The Gibbs sampler is another MCMC (often very simple to implement).
This is usually considered to be slower than Metropolis-Hastings (with good
proposal distribution) but is easy to implement. It has transition kernels

Kr(~x|~y) = P (xr|yN(r))δ~x/r,~y/r, K(~x|~y) =
∑
r

ρ(r)Kr(~x|~y), (11)

where xr denotes the states of a subset r of nodes, ~x/r is the state of all the
nodes except r, xN(r) is the state of all nodes that are neighbors of r, and
P (xr|yN(r)) is the distribution of xr conditioned on its neighbors. ρ(r) is a
distribution. In words, we select a subset r of nodes with probability ρ(~y) and
update their states by sampling from P (xr|yN(r)) keeping the other states fixed.
It can be checked that the Gibbs transition kernel satisfies detailed balance.

Here is a simple illustration of Gibbs sampling. Consider the Ising model
defined on {xi} with xi ∈ {−1,+1}.

P (x1, ...., xd) =
1

Z
exp{µ

d−1∑
i=1

xixi+1}. (12)

The graphical structure has nearest neighbors – i.e. site i is connected to
sites i + 1 and i − 1 so N(i) = {i − 1, i + 1} (except for N(1) = {2} and
N(d) = {d− 1}). We let r correspond to nodes i. Then:

P (xi|~x/i) = P (xi|xN(i)) = P (xi|xi+1, xi−1). (13)

To determine this, we write P (xi|~x/i) = P (~x)/P (~x/i). We know P (~x) and
P (~x/i) =

∑
xi
P (~x) = F (~x/i) where F (.) is some function which we can calcu-

late – but this is not the most direct way. It is better to observe that P (xi|~x/i) is
a function of xi and ~x/i divided by a function of ~x/i and must be normalized (i.e.,∑
xi
P (xi|~x/i) = 1). Hence P (xi|~x/i) = exp{µ(xi−1xi + xixi+1)}/f(xi−1, xi+1)

where, by normalization, we have f(xi−1, xi+1) = exp{µ(xi−1+xi+1)}+exp{−µ(xi−1+
xi+1)}. Hence the conditional distributions are:

P (xi|xN(i)) =
exp{µ(xi−1xi + xixi+1)}

exp{µ(xi−1 + xi+1)}+ exp{−µ(xi−1 + xi+1)}
. (14)

The moral is that the conditional distribution P (xi|xN(i)) is usually straight-

forward to compute for MRF models. Similarly, we get P (x1|xN(1)) = exp{µ(x1x2)}
exp{µx2}+exp{−µx2}

and P (xd|xN(d)) = exp{µ(xd−1xd)}
exp{µxd−1}+exp{−µxd−1} .

We now define a Gibbs sampler by selecting a site i{1, ..., d} from a uniform
distribution U(.) (s.t. U(i) = 1/d, ∀i). Then we sample from P (xi|xN(i)) to
generate a new value for xi (tossing a biased coin). Then we sample another
site and continue.
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7.2 Theory of MCMC for detailed balance

It is straightfoward to obtain converge results for MCMC (with detailed balance)
but unfortunately they depend on properties of the transition kernel which are
often hard or impossible to commute (some very clever people – Diaconis, Strook
– have obtained bounds for convergence of MCMC but only with difficulty and
– like most bounds – they are only of limited use).

To study MCMC with detailed balance the key observation is that the
quantity Q(x, y) = P (y)1/2K(x|y)P (x)−1/2 is a symmetric matrix. This en-
ables us to apply linear algebra. In particular, Q(x, y) has d real eigenvec-
tors {eµ(x)} and eigenvalues {λµ} (where d is the dimension of the state x
and the eigenvalues are ordered by their magnitude), and hence can be ex-
pressed as Q(x, y) =

∑n
µ=1 λ

µeµ(x)eν(x). It can be shown that λ1 = 1 (cor-
responding to the fixed point conditions

∑
yK(x|y)P (y) = P (x)) and that

|λi| < 1, i = 2, ..., d. It follows that

KM (y|x)P0(x) = P (x) +

d∑
µ=2

αµ{λµ}Meµ(x)P (x)1/2, (15)

where KM (y|x) is matrix multiplication of the transition kernel with itself M
times, P0(x) is the initial distribution and αµ =

∑
y P0(y)eµ(y)P (y)−1/2, µ =

2, ..., d.
The main result is that the second term on the RHS of the equation decay

exponentially fast (in M) with decay speed determined by the magnitude of
the second biggest eigenvalue λ2. This implies that samples from the MCMC
converge to samples from P (x) exponentially rapidly. The only problem is that
computing λ2 is often impossible.
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